

TrueGrid® Output Manual For KIVA4

A Guide and a Reference

by

David J. Torres and Robert Rainsberger

Version 2.3.0

XYZ Scientific Applications, Inc.

February 1, 2007

Copyright © 2007 by XYZ Scientific Applications, Inc. All rights reserved.

TrueGrid®, the **TrueGrid**® Output Manual for KIVA4, and related products of XYZ Scientific Applications, Inc. are copyrighted and distributed under license agreements. Under copyright laws, they may not be copied in whole or in part without prior written approval from XYZ Scientific Applications, Inc. The license agreements further restrict use and redistribution.

XYZ Scientific Applications, Inc. makes no warranty regarding its products or their use, and reserves the right to change its products without notice. This manual is for informational purposes only, and does not represent a commitment by XYZ Scientific Applications, Inc. XYZ Scientific Applications, Inc. accepts no responsibility or liability for any errors or inaccuracies in this document or any of its products.

TrueGrid® is a registered trademark of XYZ Scientific Applications, Inc.

Some other product names appearing in this book may also be trademarks or registered trademarks of their trademark holders.

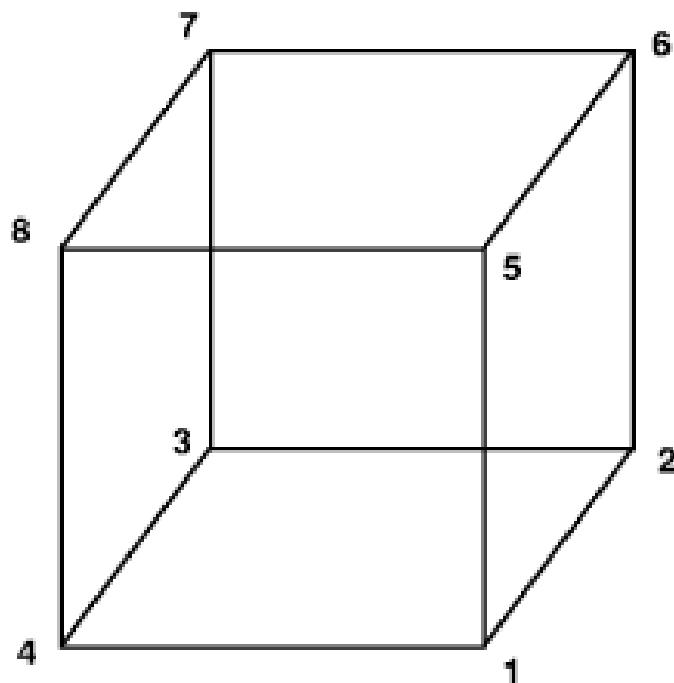
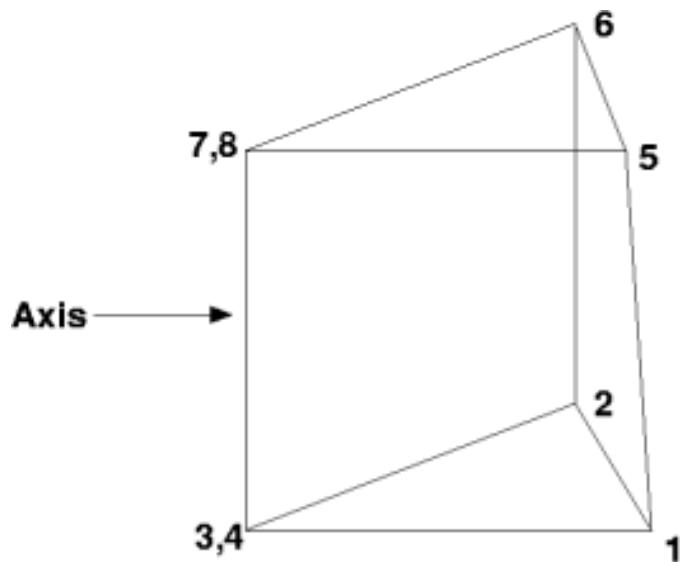
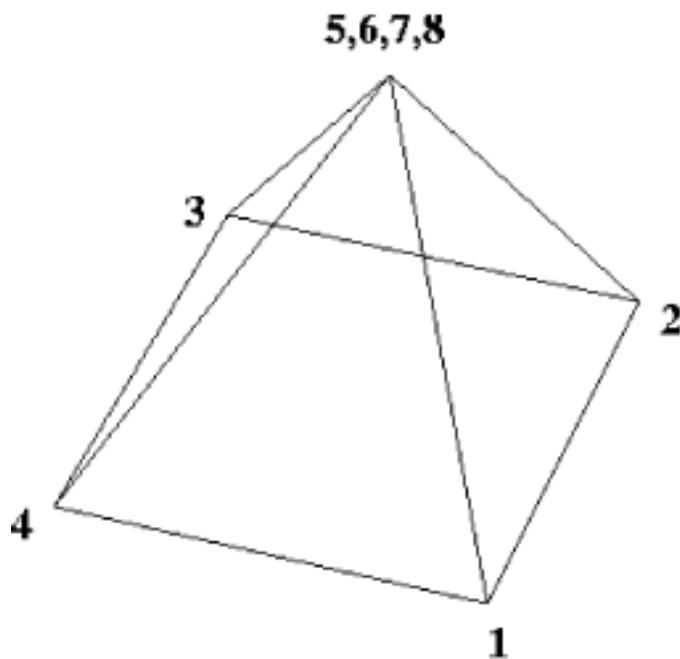

Table of Contents

Table of Contents	3	
I. Introduction	5	
II. KIVA4 Output Guide	11	
III. Example Problem 1	13	
IV. Example Problem 2	31	
V. KIVA4 Output Reference	35	
kivabc	KIVA4 Boundary Condition (Part Phase)	35
kivabci	KIVA4 Boundary Condition (Part Phase)	35
kivabc	KIVA4 Boundary Condition (Merge Phase)	36
co kivabc	KIVA4 Boundary Conditions Display (Merge Phase) ..	37
VI. INDEX	39	



I. Introduction


KIVA-4 is an engine simulation code which accommodates unstructured grids. KIVA-4 does impose restrictions on the unstructured grid if the snapping routines are used. The snapping routines allow layers of cells within the piston to be added or removed and layers of cells to alternately assume a role of solid valve surfaces. If the snapping routines are used, the mesh must be vertically layered in the cylinder. Specifically a vertical column of cells in the cylinder must be composed of only hexahedra or only prisms if the mesh is to be snapped. KIVA-4 assumes all elements (including tetrahedra, prisms and pyramids) are logically equivalent to a hexahedra. Figure 1 shows the node ordering for a hexahedral cell. One can create non-hexahedral cells by degenerating nodes. Figures 2-4 show how nodes can be degenerated in KIVA-4 to create other types of elements.

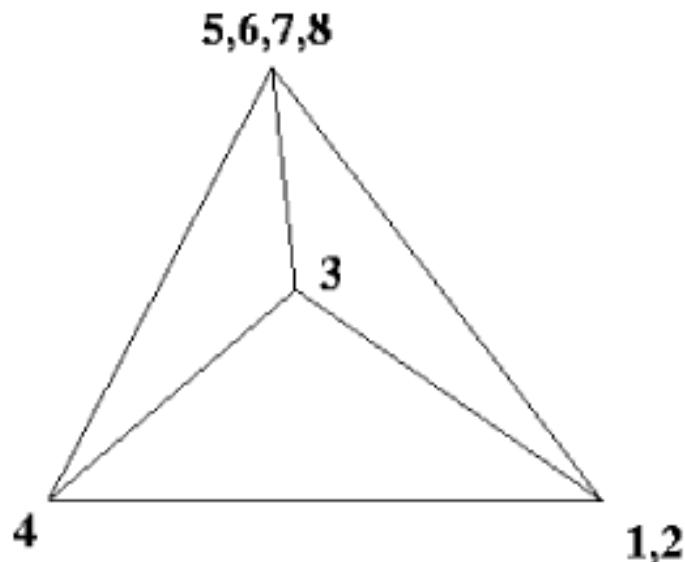

Figure 1 Node ordering for hexahedral cell

Figure 2 Node ordering for a prism cell. The left face has been collapsed to an edge.

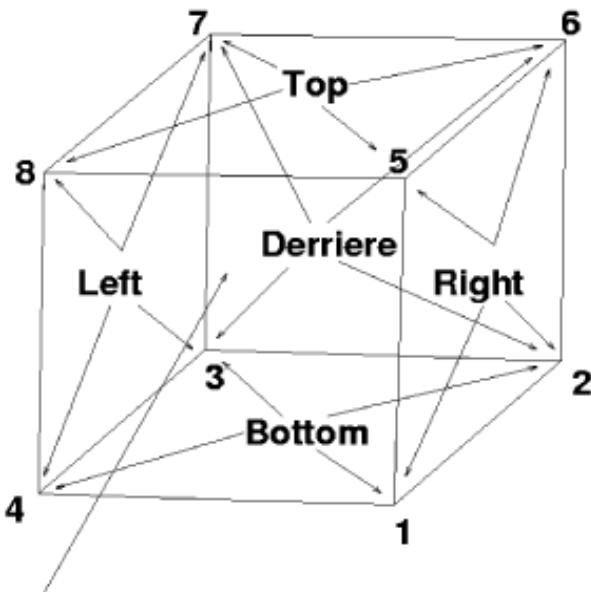


Figure 3 Possible node ordering for pyramid cell.

Figure 4 Possible node ordering for tetrahedral cell.

KIVA-4's mesh format requires one to define cell types and face types. Figure 5 shows the face conventions used for a cell in KIVA-4. Each face of a cell needs to be defined with a face type. Figure 6 shows the cell types that would be defined in a typical engine mesh. Figure 7 shows the corresponding exterior faces types that would be defined. Interior face types would be defined to be fluid.

Front: nodes 1,5,8,4 Derriere: nodes 2,6,7,3

Figure 5 Face conventions in KIVA-4 for a cell.

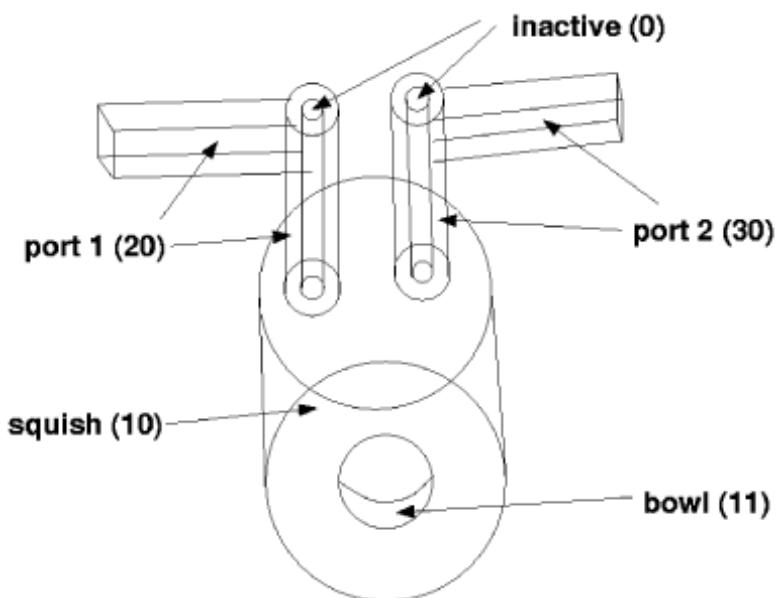
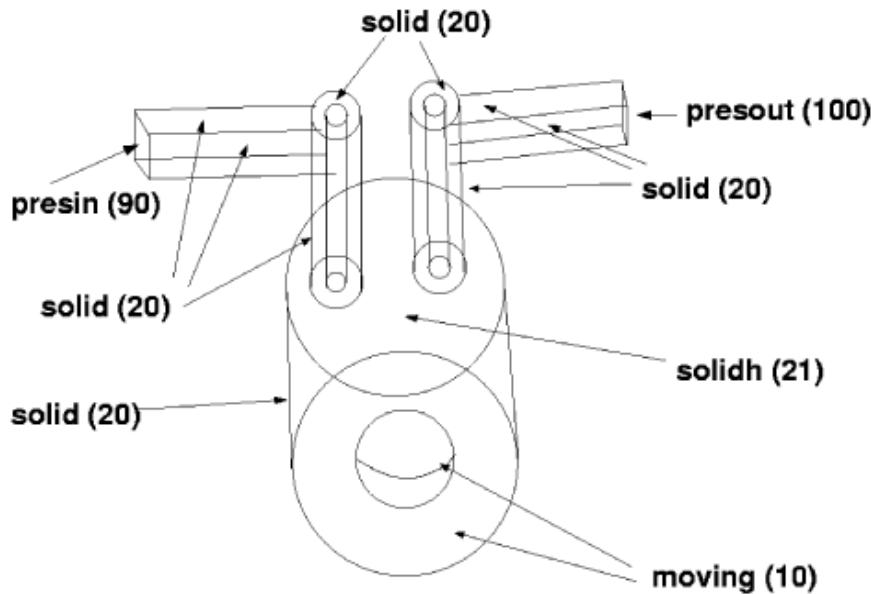



Figure 6 Cell types in a typical engine mesh.

Figure 7 Face types in a typical engine mesh. The boundary between the bowl and the squish region should be a fluid boundary but the walls of the bowl should be moving boundaries.

KIVA-4 uses the following cell types with their numerical values in parenthesis:

- squish (10): Cells in the cylinder region should be of squish type.
- flbowl (11): Cells in a piston bowl should be of flbowl type.
- fldome (14): A separate dome region can be created, if desired.
- flfluid (20,30,40,50): Cells in ports should be identified as flfluid cells. The exact value of flfluid to be used depends on the port ordering (the first port should have cells with type 20, the second port should have cells with type 30, etc.).

KIVA-4 uses the following face types with their respective numerical values in parenthesis:

- moving (10,11,12,13,14, ...): For faces that reside on a moving surface (e.g. piston crown, bowl faces, top and bottom of valves).
- solid (20): For faces that reside on a solid non-moving surface (e.g. cylinder walls, port walls). The sides of valves are considered solid surface despite the fact that they move.

solidh(21):	For faces that reside on the top or head of the cylinder. These surfaces can be labeled solid if the piston does not move. However if the piston does move, the faces should be labeled solidh surfaces.
axis(30):	For faces that coincide with an axis. The axis faces are only used in 2D or 3D sector geometries. These faces are actually edges because they are faces of hexahedra that have been collapsed to a line segment.
fluid(40):	For any non-periodic face through which fluid can freely pass.
periodf(50):	For faces on the front periodic boundary of a mesh.
periodd(60):	For faces on the derriere periodic boundary of a mesh.
inflow(70):	For faces on an inflow boundary.
outflow(80):	For faces on a continuative outflow boundary.
presin(90):	For cell faces on a pressure inflow boundary.
presout(100):	For faces on a pressure outflow boundary.

The mesh file name in KIVA-4 is called kiva4grid. The input deck is called itape5. Valve movement can be specified using a file called itape18.

II. KIVA4 Output Guide

The **kiva** command selects the KIVA4 output option. It can be issued in the control or merge phase. In the merge phase, use the **write** command to write the kiva4grid file. Be sure to merge the nodes using one of the merging commands such as **stp** before you write the output file. This is the standard procedure in **TrueGrid®**.

There are a few special considerations required when building a KIVA4 model. There are no material properties to specify. However, the **mt**, **mti**, and **mate** commands are used to assign predefined materials to the mesh. The following material numbers can be used:

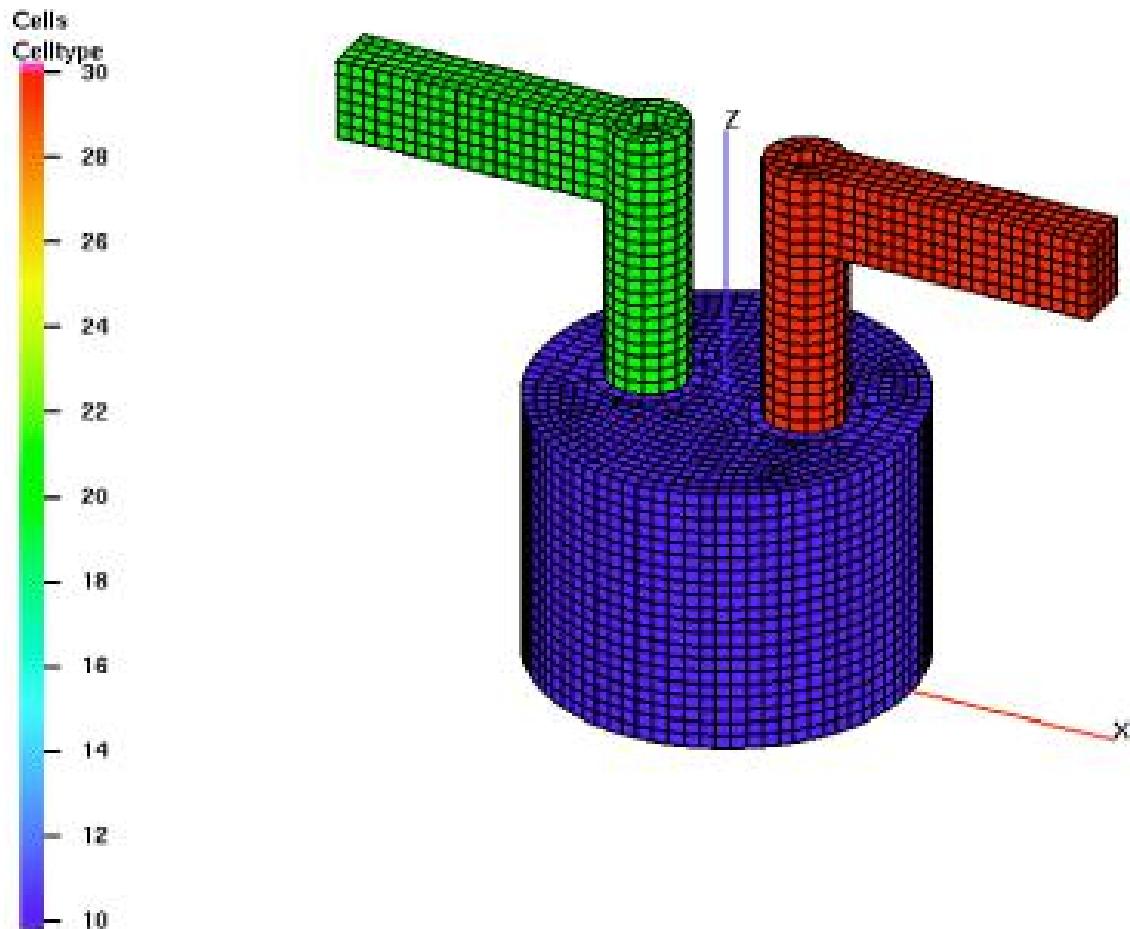
1	for squish (TrueGrid® default)
2	for inactive
10	for squish
11	for bowl
14	for dome
20	for port 1
30	for port 2
40	for port 3
50	for port 4

Use the **kivabc** or the **kivabci** commands in the part phase or the **kivabc** command in the merge phase to set face types, except for periodic conditions. The default interior face type is fluid. The default exterior face type is solid.

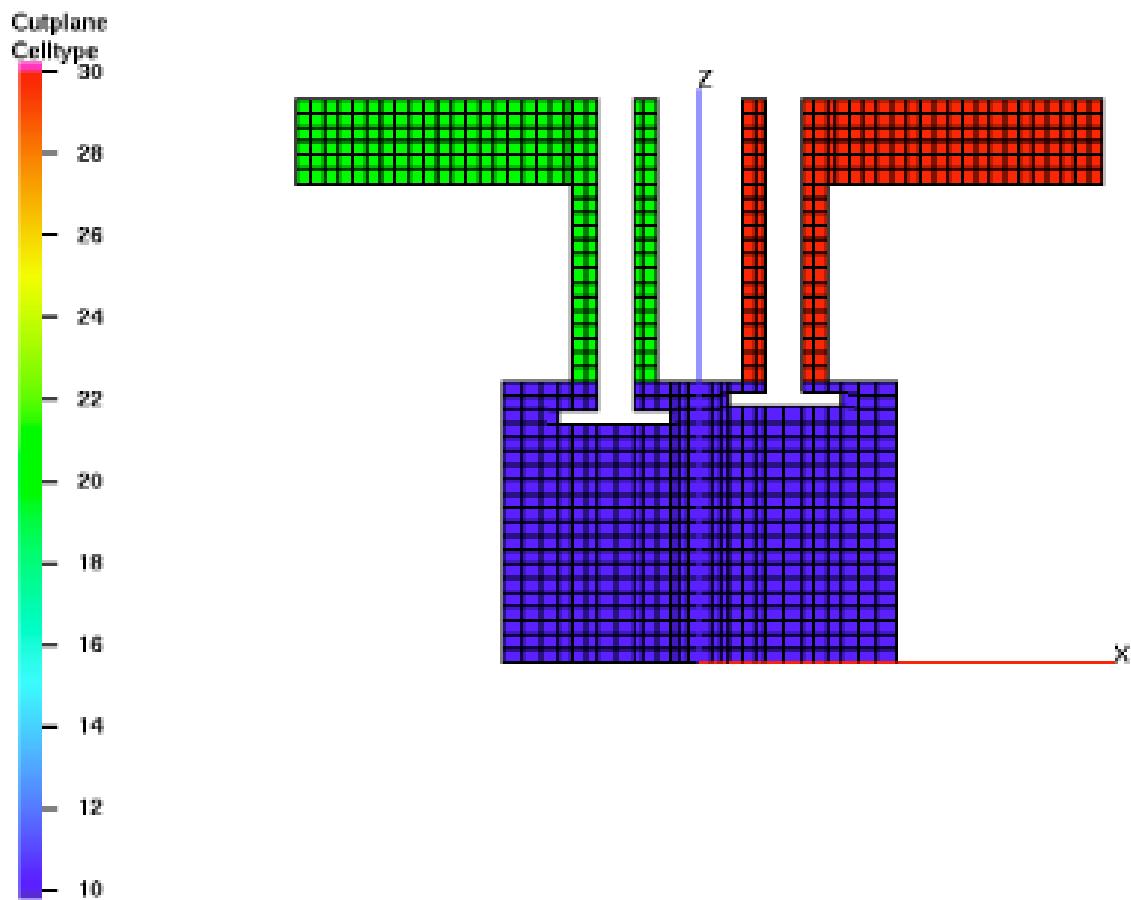
Care is needed in assigning the **axis** boundary condition. The edge that is placed on the axis must be a degenerate face. From outward appearances, this will be an edge of a wedge element. However, the internal representation of the wedge is be a hex element with 6 faces. When building the part that falls on the axis, use the computation window to select the degenerate face. Then use the **kivabc** command to assign the **axis** boundary condition to this face.

The Block Boundary (**bb**) and the Transitional Block Boundary (**trbb**) commands have the **periodf** (for the front of a periodic boundary condition) and the **periodd** (for the derriere of a periodic boundary condition) options. The periodic boundary condition cannot be set using the **kivabc** command. The **bb** and **trbb** commands with these options accomplishes 3 things.

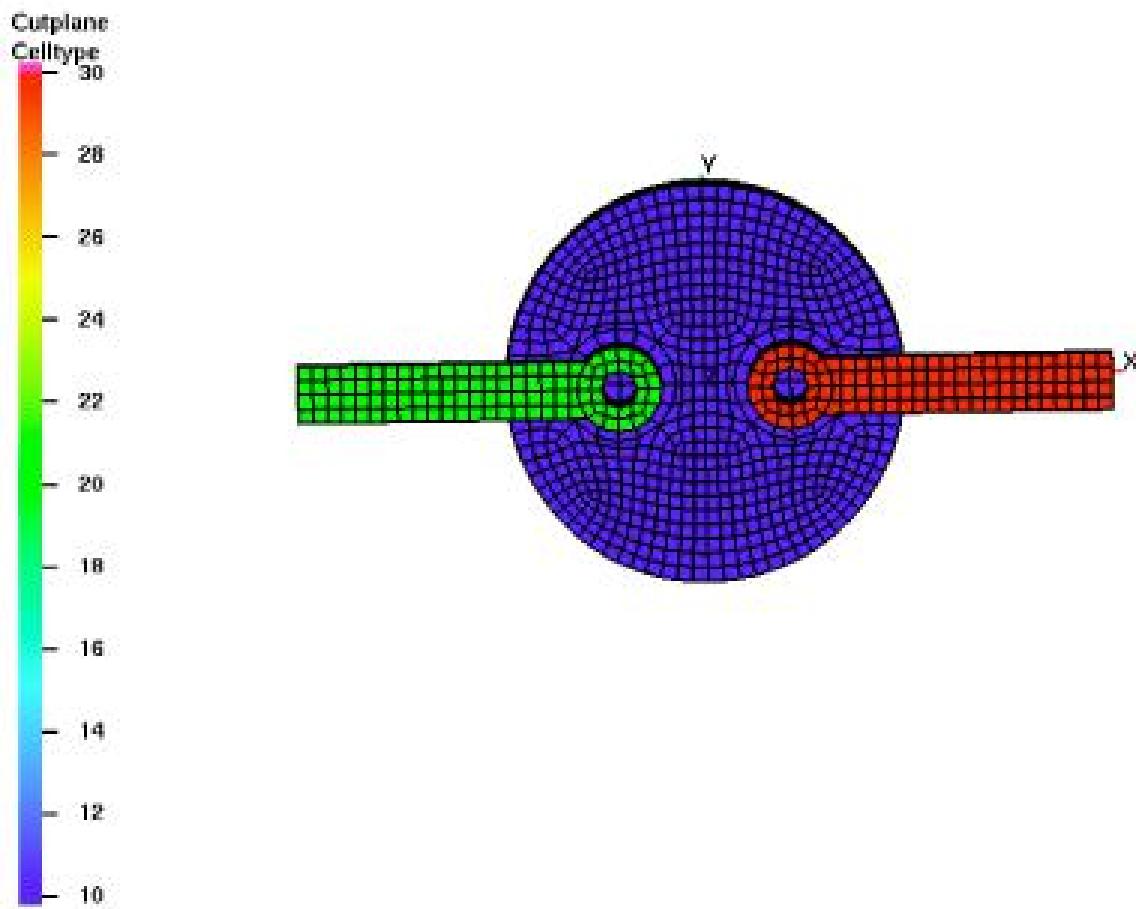
1. When an appropriate coordinate transformation is applied either to the master or the slave side of the block boundary, the nodal coordinates of the slave side are forced to be periodic with the master side.
2. This command, using the **periodf** and **periodd** options, produce the periodic boundary condition.

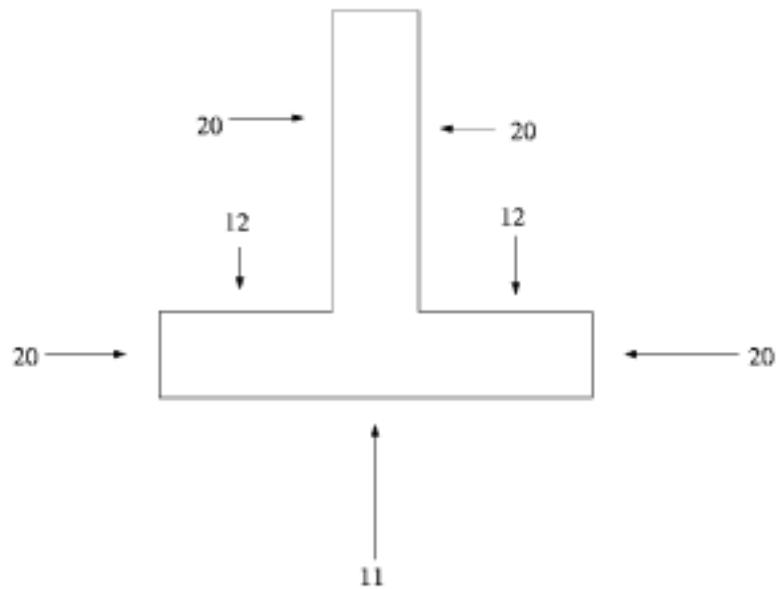

3. The same options also produce the node-to-node correspondence for the periodic constraints. The nodes of a master block boundary interface will appear first in the list of paired periodic vertices.

You can generate prisms, tetrahedrons, and pyramid elements by attaching some nodes of an element to other nodes of the same element. This is the way to create what is referred to in **TrueGrid®** as degenerate hexahedral elements. Only prism (or wedge) elements are allowed on the axis of a periodic boundary condition. All four types are allowed elsewhere in the mesh. Only the axis boundary condition has meaning on a degenerate face and only if it degenerates to an edge. Some of these conditions are due to the requirement that the **periodf** and **periodd** faces, when found on a single element, must be on opposing faces.


If precision is an issue, you may need to use the double precision version of **TrueGrid®**. This can become an issue with periodic boundaries because the slave side (derriere) must be exactly the master side (front) when the inverse periodic transformation is applied to the slave side. The single precision version of **TrueGrid®** may produce errors in the last digit.

III. Example Problem 1


This is a simple example of a piston with 2 valves. When creating a model, Figures 8-12 can help in designing the mesh. Figures 8-10 show the cell types used, and Figures 11-12 show the face types used in the mesh. Figure 7 is also helpful in determining what face types should be used.


Figure 8 Cell types used for 2-valve engine mesh. The cylinder region is designated squish (10), the first port and runner are designated ffluid (20) and the second port and runner are designated (30).

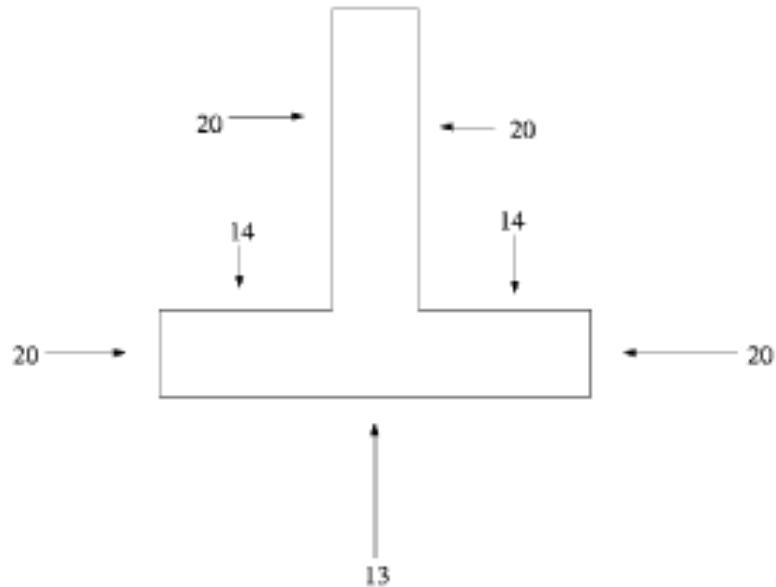

Figure 9 Cross-section view of cell types used in 2-valve engine mesh.

Figure 10 Top view of cell types in 2-valve engine mesh. Note the use of O-grids in the valve and cylinder perimeters.

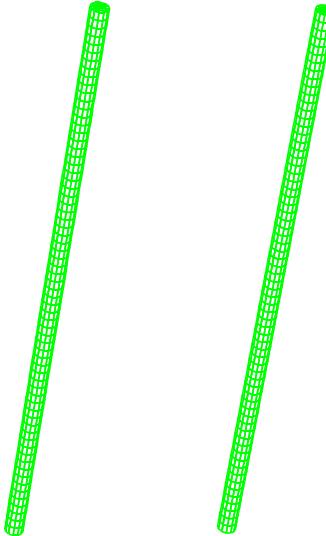
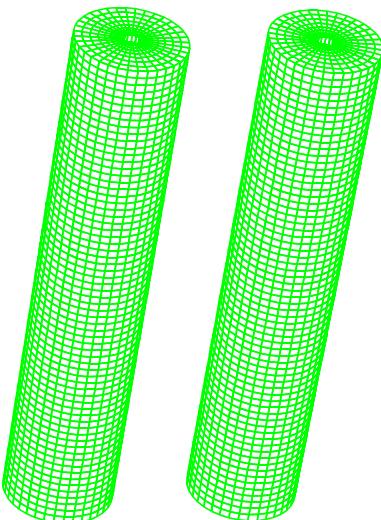
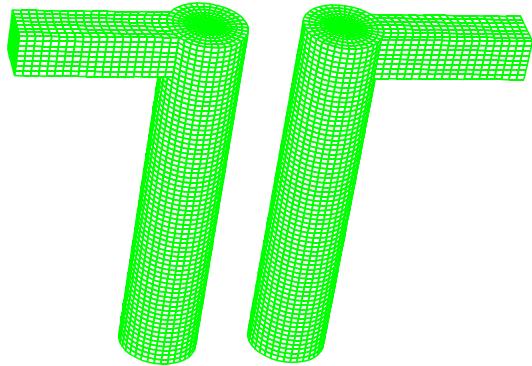


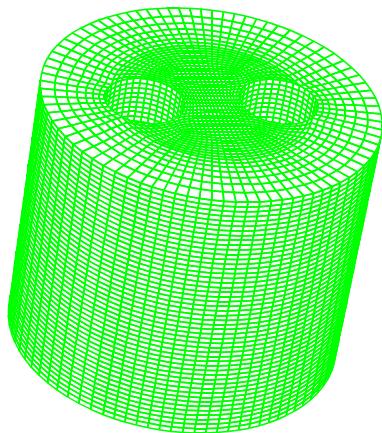
Figure 11 Cross -section view of face types for the first valve.
Note that the valve and the valve stem are solid.


Figure 12 Cross-section view of face types for the second valve.
Note that the edges of the valve and the valve stem are solid.

The problem is broken into 6 parts. Parts 1 and 3 form the stem. The part is extended through the entire model and the material below the extent of the stem is set to squish. The other parts are built around the stem parts.


Figure 13 Stem parts

The valve heads and the fluid around them are formed by parts 2 and 4. The cores are missing because they are formed by parts 1 and 3. Transitions are used for increase the mesh density out from the stem as the radius increases.


Figure 14 Valve head parts

Part 5 forms the two ports that connect to the fluid around the valve ports. To assure that these parts match, nod for node, block boundary interfaces were formed.

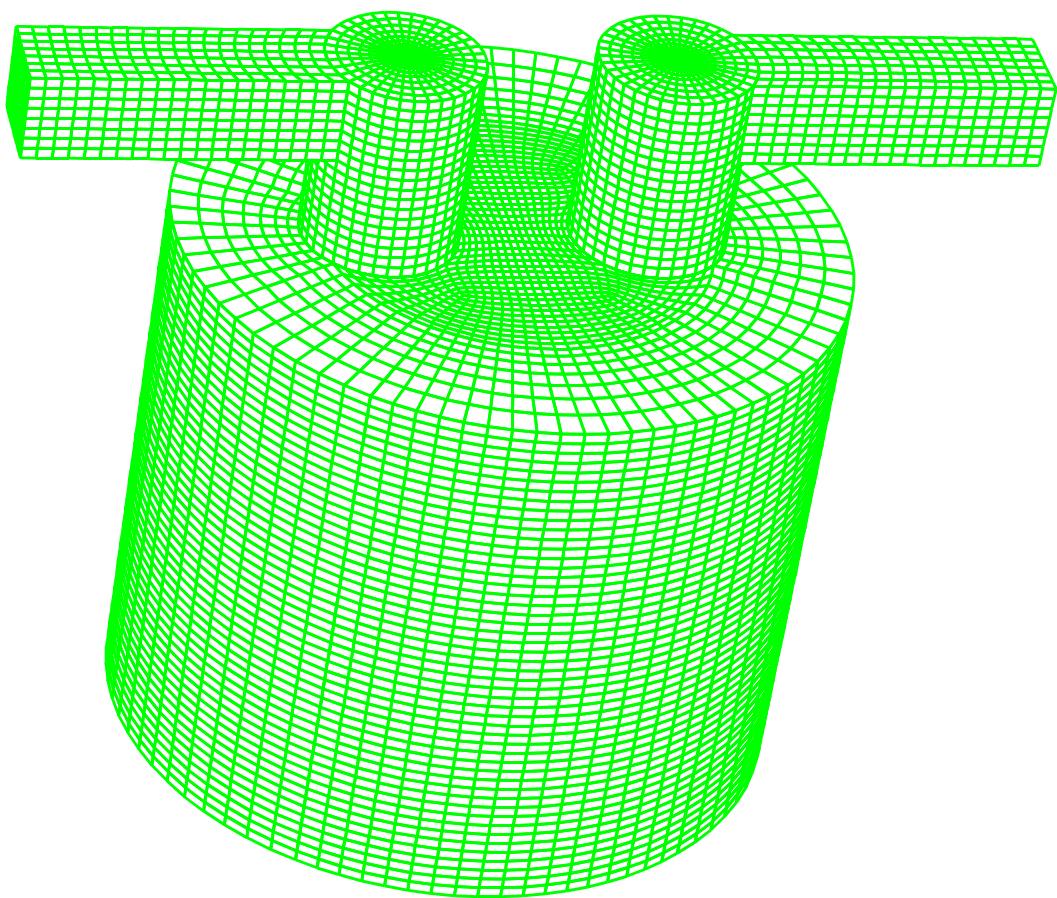


Figure 15 Port parts

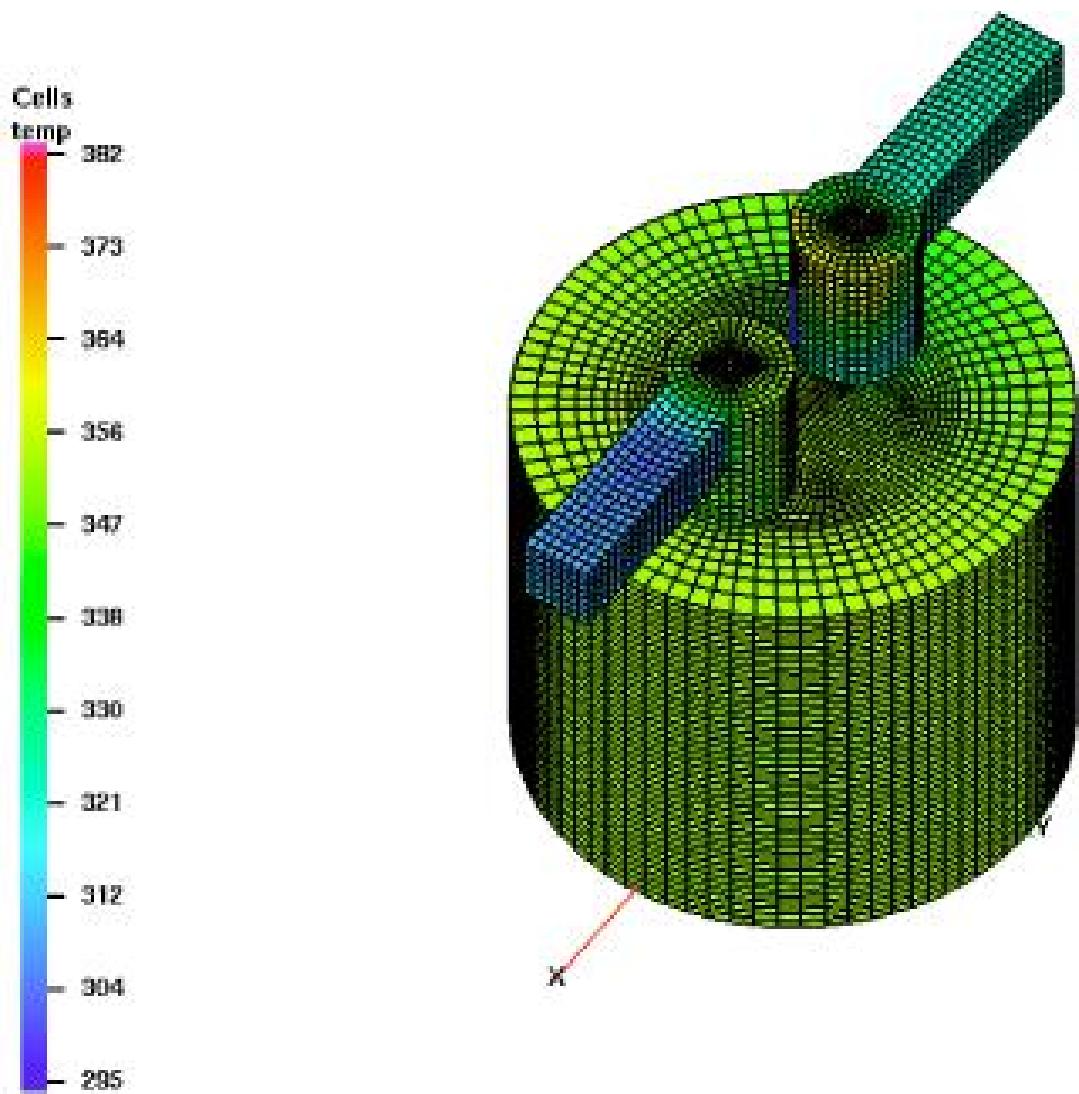

The last part is the bulk of cylinder around parts 1-5. Care was taken to form a topology that gave a nearly perfect o-grid at the outer radius while giving a nearly orthogonal mesh around the two ports. The elliptic smoothing was used extensively for this effect.

Figure 16 Cylinder part

Figure 17 Fully merged parts

Figure 18 Final mesh with temperature contours in computational simulation with KIVA-4.

The final mesh contains 129,768 nodes and 124096 hex elements. The model is parametric, so both shape and size are easily adjusted.

The following is the resulting session file with comments inserted to help the reader. The **TrueGrid®** User's Manual for a full discussion on generating a mesh. These commands are included to demonstrate a complete model for KIVA4.

title TrueGrid test problem for KIVA4

c Choose KIVA4 as the output format
kiva

c Simplify the part commands since there are no shells
intyp 2

parameter

r1 1 c radius of the valve stem
r2 5 c radius of the port
r3 7 c radius of the valve head
r4 30 c radius of the cylinder
d1 12 c offset from center of the valve
d2 8 c width of the inlet/outlet
d3 1 c thickness of the valve head
d4 9 c depth of valve 1
d5 12 c depth of valve 2
d6 .4 c thickness of first transition region
z1 50 c height of cylinder
z2 60 c height of bottom of inlet/outlet
z3 68 c height of top of inlet/outlet
r5 [sqrt(%d1*%d1+%r3*%r3+2*%d1*%r3/sqrt(2))]
;

c Surfaces needed to form the mesh
sd 1 cy 0 0 0 0 0 1 %r4 c cylinder wall
sd 2 cy [-%d1] 0 0 0 0 1 %r1 c valve stem port 1
sd 3 cy [-%d1] 0 0 0 0 1 %r2 c port 1
sd 4 cy [-%d1] 0 0 0 0 1 %r3 c valve head port 1
sd 5 cy %d1 0 0 0 0 1 %r1 c valve stem port 2
sd 6 cy %d1 0 0 0 0 1 %r2 c port 2
sd 7 cy %d1 0 0 0 0 1 %r3 c valve head port 2
sd 8 plan 0 [-%d2/2] 0 0 1 0 c back face of inlet/outlet
sd 9 plan 0 [%d2/2] 0 0 1 0 c front face of inlet/outlet
sd 10 plan 0 0 0 0 0 1 c bottom of cylinder
sd 11 plan 0 0 %z1 0 0 1 c top of cylinder
sd 12 plan 0 0 %z2 0 0 1 c bottom of inlet/outlet

```

sd 13 plan 0 0 %z3 0 0 1 c top of inlet/outlet
sd 14 plan 0 0 [%z1-%d4] 0 0 1 c depth of top face of valve 1
sd 15 plan 0 0 [%z1-%d4-%d3] 0 0 1 c depth of bottom of valve 1
sd 16 plan 0 0 [%z1-%d5] 0 0 1 c depth of top face of valve 2
sd 17 plan 0 0 [%z1-%d5-%d3] 0 0 1 c depth of bottom of valve 2
sd 18 cy 0 0 0 0 1 %r5
sd 19 cy [-%d1] 0 0 0 0 1 [(%r2+%r3)/2] c construction port 1
sd 20 cy %d1 0 0 0 0 1 [(%r2+%r3)/2] c construction port 2
sd 21 cy [-%d1] 0 0 0 0 1 [%r1+%d6] c valve stem port 1
sd 22 cy %d1 0 0 0 0 1 [%r1+%d6] c valve stem port 2

```

c Valve stem 1

block 1 2 5 6;

1 2 5 6;

1 51 61 69;

[-%r1/3-%d1] [-%r1/3-%d1] [%r1/3-%d1] [%r1/3-%d1]

[-%r1/3] [-%r1/3] [%r1/3] [%r1/3]

0 %z1 %z2 %z3

c Delete the corners of the butterfly topology

dei 1 2 0 3 4;1 2 0 3 4;;

c Project to the cylinder

sfi -1 -4;-1 -4;;sd 2

c Save the interfaces

bb 2 1 1 3 1 4 1;

bb 4 2 1 4 3 4 2;

bb 2 4 1 3 4 4 3;

bb 1 2 1 1 3 4 4;

c Insert additional partitions to connect to the port

insprt 1 5 2 9

insprt 1 5 2 1

c Project to the cylinders

sfi ; -2;sd 15

sfi ; -3;sd 14

c Assign material numbers

mt 1 1 2 0 0 6 2 c valve stem inactive

mt 1 1 1 0 0 2 10 c fluid below valve stem

```

c Glue the exposed faces together for smoothing
bb 1 2 1 2 2 6 40; bb 2 1 1 2 2 6 40;
bb 3 1 1 3 2 6 41; bb 3 2 1 4 2 6 41;
bb 3 3 1 4 3 6 42; bb 3 3 1 3 4 6 42;
bb 2 3 1 2 4 6 43; bb 1 3 1 2 3 6 43;

c Smooth the mesh
unifm 1 2 1 4 3 1 & 2 3 1 3 4 1 & 2 1 1 3 2 1 20 0.001 1 ;
unifm 1 2 2 4 3 2 & 2 3 2 3 4 2 & 2 1 2 3 2 2 20 0.001 1 ;
unifm 1 2 3 4 3 3 & 2 3 3 3 4 3 & 2 1 3 3 2 3 20 0.001 1 ;
unifm 1 2 4 4 3 4 & 2 3 4 3 4 4 & 2 1 4 3 2 4 20 0.001 1 ;
unifm 1 2 5 4 3 5 & 2 3 5 3 4 5 & 2 1 5 3 2 5 20 0.001 1 ;
unifm 1 2 6 4 3 6 & 2 3 6 3 4 6 & 2 1 6 3 2 6 20 0.001 1 ;

c Assign non-default boundary conditions
kivabci -1 -4;-1 -4;3 -6;solid
kivabc 1 1 2 4 4 2 movingb1

endpart

c Valve 1
block 1 3 8 9 18 19 24 26;
  1 3 8 9 18 19 24 26;
  1 51 61 69;
  [-%r1/3-%d1] [-%r1/3-%d1] [-%r1/3-%d1] [-%r1/3-%d1]
  [%r1/3-%d1] [%r1/3-%d1] [%r1/3-%d1] [%r1/3-%d1]
  [-%r1/3][-%r1/3] [-%r1/3] [-%r1/3]
  [%r1/3] [%r1/3] [%r1/3] [%r1/3]
  0 %z1 %z2 %z3

c Delete regions to form a butterfly topology
dei 1 4 0 5 8;1 4 0 5 8;;
dei 4 5;4 5;;

c Nodal distributions for smoother mesh
res 2 4 1 3 5 4 i .85
res 6 4 1 7 5 4 i [1/.85]
res 4 2 1 5 3 4 j .85
res 4 6 1 5 7 4 j [1/.85]

c Project to surfaces
sfi -1 -8;-1 -8;;sd 4

```

```
sfi -2 -7;-2 -7;;sd 3  
sfi -3 -6;-3 -6;;sd 21
```

c Transition from a coarse mesh in the stem

```
trbb 4 4 1 5 4 4 1;  
trbb 5 4 1 5 5 4 2;  
trbb 4 5 1 5 5 4 3;  
trbb 4 4 1 4 5 4 4;
```

c Save interfaces

```
bb 4 1 1 5 1 2 5;  
bb 8 4 1 8 5 2 6;  
bb 4 8 1 5 8 2 7;  
bb 1 4 1 1 5 2 8;
```

c Insert partitions

```
insprt 1 4 4 1  
insprt 1 4 5 7
```

c Project

```
sfi -1; -6; 3 4;sd 9  
sfi -1; -5; 3 4;sd 8
```

c Save interface

```
bb 1 5 3 1 6 4 30;
```

c More inserted partitions

```
insprt 1 5 2 9  
insprt 1 5 2 1
```

c More projections

```
sfi ;; -2;sd 15  
sfi ;; -3;sd 14
```

c Assign material numbers

```
mt 1 1 2 0 0 3 2  
mt 1 1 4 0 0 6 20  
mt 1 1 1 0 0 2 10  
mt 1 1 3 0 0 4 10
```

c Assign boundary conditions

```
kivabc 1 1 2 8 10 2 movingb1
```

```
kivabc 1 1 3 8 10 3 movingt1  
kivabci -1 -8;-1 -10;2 3;solid
```

```
endpart
```

```
c Valve stem 2  
block 1 2 5 6;  
 1 2 5 6;  
 1 51 61 69;  
 [-%r1/3+%d1] [-%r1/3+%d1] [%r1/3+%d1] [%r1/3+%d1]  
 [-%r1/3] [-%r1/3] [%r1/3] [%r1/3]  
 0 %z1 %z2 %z3
```

```
c Delete the corners of the butterfly topology  
dei 1 2 0 3 4;1 2 0 3 4;;
```

```
c Project to the cylinder  
sfi -1 -4;-1 -4;;sd 5
```

```
c Save the interfaces  
bb 2 1 1 3 1 4 11;  
bb 4 2 1 4 3 4 12;  
bb 2 4 1 3 4 4 13;  
bb 1 2 1 1 3 4 14;
```

```
c Insert additional partitions to connect to the port  
insprt 1 5 2 12  
insprt 1 5 2 1
```

```
c Project to the cylinders  
sfi ;; -2;sd 17  
sfi ;; -3;sd 16
```

```
c Assign material numbers  
mt 1 1 2 0 0 6 2  
mt 1 1 1 0 0 2 10
```

```
c Glue the exposed faces together for smoothing  
bb 1 2 1 2 2 6 44;bb 2 1 1 2 2 6 44;  
bb 3 1 1 3 2 6 45;bb 3 2 1 4 2 6 45;  
bb 3 3 1 4 3 6 46;bb 3 3 1 3 4 6 46;  
bb 2 3 1 2 4 6 47;bb 1 3 1 2 3 6 47;
```

```
c Smooth the mesh
unifm 1 2 1 4 3 1 & 2 3 1 3 4 1 & 2 1 1 3 2 1 20 0.001 1 ;
unifm 1 2 2 4 3 2 & 2 3 2 3 4 2 & 2 1 2 3 2 2 20 0.001 1 ;
unifm 1 2 3 4 3 3 & 2 3 3 3 4 3 & 2 1 3 3 2 3 20 0.001 1 ;
unifm 1 2 4 4 3 4 & 2 3 4 3 4 4 & 2 1 4 3 2 4 20 0.001 1 ;
unifm 1 2 5 4 3 5 & 2 3 5 3 4 5 & 2 1 5 3 2 5 20 0.001 1 ;
unifm 1 2 6 4 3 6 & 2 3 6 3 4 6 & 2 1 6 3 2 6 20 0.001 1 ;
```

```
c Assign non-default boundary conditions
kivabci -1 -4;-1 -4;3 -6;solid
kivabc 1 1 2 4 4 2 movingb2
```

```
endpart
```

```
c Valve 2
block 1 3 8 9 18 19 24 26;
  1 3 8 9 18 19 24 26;
  1 51 61 69;
  [-%r1/3+%d1] [-%r1/3+%d1] [-%r1/3+%d1] [-%r1/3+%d1]
  [%r1/3+%d1] [%r1/3+%d1] [%r1/3+%d1] [%r1/3+%d1]
  [-%r1/3][-%r1/3] [-%r1/3] [-%r1/3]
  [%r1/3] [%r1/3] [%r1/3] [%r1/3]
  0 %z1 %z2 %z3
```

```
c Delete regions to form a butterfly topology
dei 1 4 0 5 8;1 4 0 5 8;;
dei 4 5;4 5;;
```

```
c Nodal distributions for smoother mesh
res 2 4 1 3 5 4 i .85
res 6 4 1 7 5 4 i [1/.85]
res 4 2 1 5 3 4 j .85
res 4 6 1 5 7 4 j [1/.85]
```

```
c Project to surfaces
sfi -1 -8;-1 -8;;sd 7
sfi -2 -7;-2 -7;;sd 6
sfi -3 -6;-3 -6;;sd 22
```

```
c Transition from a coarse mesh in the stem
trbb 4 4 1 5 4 4 11;
trbb 5 4 1 5 5 4 12;
```

```
trbb 4 5 1 5 5 4 13;  
trbb 4 4 1 4 5 4 14;
```

```
c Save interfaces  
bb 4 1 1 5 1 2 15;  
bb 8 4 1 8 5 2 16;  
bb 4 8 1 5 8 2 17;  
bb 1 4 1 1 5 2 18;
```

```
c Insert partitions  
insprt 1 4 4 1  
insprt 1 4 5 7
```

```
c Project  
sfi -8; -6; 3 4;sd 9  
sfi -8; -5; 3 4;sd 8
```

```
c Save interface  
bb 8 5 3 8 6 4 31;
```

```
c More inserted partitions  
insprt 1 5 2 12  
insprt 1 5 2 1
```

```
c More projections  
sfi ;; -2;sd 17  
sfi ;; -3;sd 16
```

```
c Assign material numbers  
mt 1 1 2 0 0 3 2  
mt 1 1 4 0 0 6 30  
mt 1 1 1 0 0 2 10  
mt 1 1 3 0 0 4 10
```

```
c Assign boundary conditions  
kivabc 1 1 2 8 10 2 movingb2  
kivabc 1 1 3 8 10 3 movingt2  
kivabci -1 -8;-1 -10;2 3;solid
```

```
endpart
```

```
c inlet/outlet
```

```

block 1 21 0 22 42;
  1 8;
  1 9;
  [-1.5*%r4] [-%d1-%r3] 0 [%d1+%r3] [1.5*%r4]
  [-%d2/2] [%d2/2]
  %z2 %z3

```

c Save interfaces

```

bb 2 1 1 2 2 2 30;
bb 4 1 1 4 2 2 31;

```

c Assign material numbers

```

mt 1 1 1 2 2 2 20
mt 4 1 1 5 2 2 30

```

c Assign boundary conditions

```

kivabc 1 1 1 1 2 2 presin
kivabc 5 1 1 5 2 2 presout

```

endpart

c Main cylinder

```

block 1 3 12 21 30 32;
  1 3 12 14 23 25 34 36;
  1 51;
  [-%r4] [-%r5] [-%d1+%r3] [%d1-%r3] %r5 %r4
  [-%r4] [-%r5] [-%d1] [-%r3] %r3 %d1 %r5 %r4
  0 %z1

```

c Add elements

```

mseq i 5 0 9 0 5
mseq j 5 0 5 0 5 0 5

```

c Delete blocks to form a butterfly topology

```

dei 1 3 0 4 6; 1 3 0 6 8;;
dei 2 3 0 4 5; 4 5;;

```

c Move some of the key vertices into position

```

pb 3 5 1 3 5 2 xy [-%d1+%r3*cos(45)] [%r3*sin(45)]
pb 1 6 1 3 8 2 xy [-%d1+%r3*cos(45)] [%r3*sin(45)+5]
pb 4 5 1 4 5 2 xy [%d1-%r3*cos(45)] [%r3*sin(45)]
pb 4 6 1 6 8 2 xy [%d1-%r3*cos(45)] [%r3*sin(45)+5]

```

```
pb 3 4 1 3 4 2 xy [-%d1+%r3*cos(45)] [-%r3*sin(45)]  
pb 1 1 1 3 3 2 xy [-%d1+%r3*cos(45)] [-%r3*sin(45)-5]  
pb 4 4 1 4 4 2 xy [%d1-%r3*cos(45)] [-%r3*sin(45)]  
pb 4 1 1 6 3 2 xy [%d1-%r3*cos(45)] [-%r3*sin(45)-5]
```

c Node distribution other than equal spacing for smoothness

```
res 6 3 1 6 6 2 j 1  
res 1 3 1 1 6 2 j 1  
res 1 3 1 2 6 2 i .85  
res 3 1 1 4 2 2 j .85  
res 3 7 1 4 8 2 j [1/.85]  
res 5 3 1 6 6 2 i [1/.85]
```

c Project

```
sfi -1 -6; -1 -8;;sd 1  
sfi -2 -5; -2 0 3 4 0 5 6 0 -7; 1 2;sd 18
```

c Glue to saved interfaces

```
bb 2 4 1 2 5 2 8;  
bb 2 5 1 3 5 2 7;  
bb 3 4 1 3 5 2 6;  
bb 2 4 1 3 4 2 5;  
bb 4 4 1 4 5 2 18;  
bb 4 5 1 5 5 2 17;  
bb 5 4 1 5 5 2 16;  
bb 4 4 1 5 4 2 15;
```

c Glue the exposed faces together for smoothing

```
bb 1 3 1 3 3 2 60; bb 3 1 1 3 3 2 60;  
bb 4 1 1 4 3 2 61; bb 4 3 1 6 3 2 61;  
bb 4 6 1 6 6 2 62; bb 4 6 1 4 8 2 62;  
bb 3 6 1 3 8 2 63; bb 1 6 1 3 6 2 63;
```

c Smooth the mesh

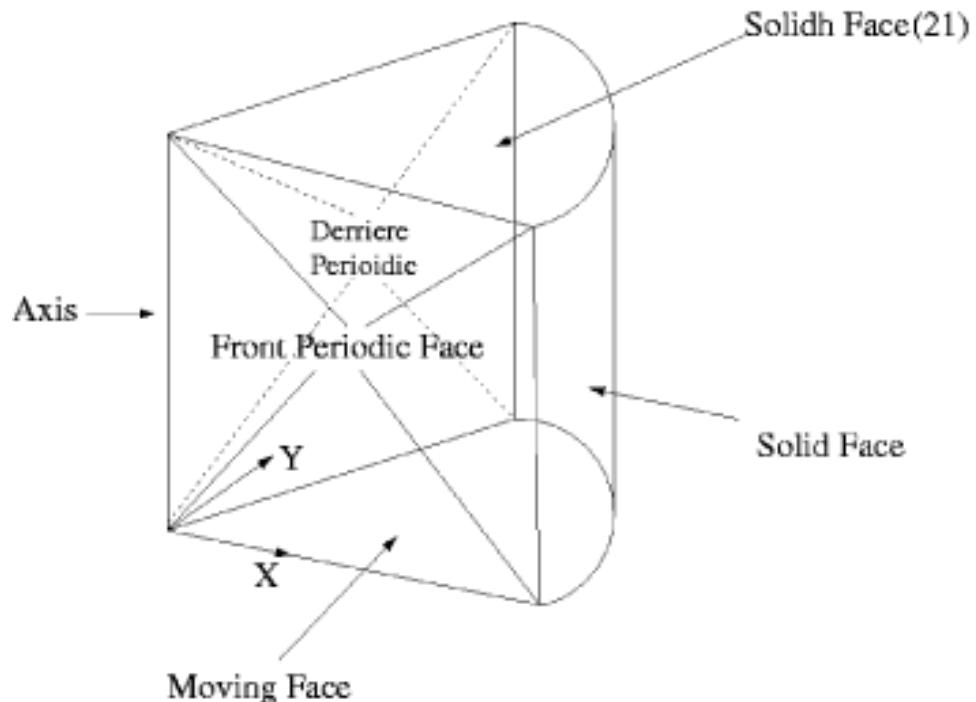
```
unifm 2 5 1 5 6 1 & 2 3 1 5 4 1 &  
3 6 1 4 7 1 & 3 4 1 4 5 1 & 3 2 1 4 3 1 5 0 0 1 ;  
unifm 2 5 2 5 6 2 & 2 3 2 5 4 2 &  
3 6 2 4 7 2 & 3 4 2 4 5 2 & 3 2 2 4 3 2 5 0 0 1 ;
```

c Assign a material number to this part

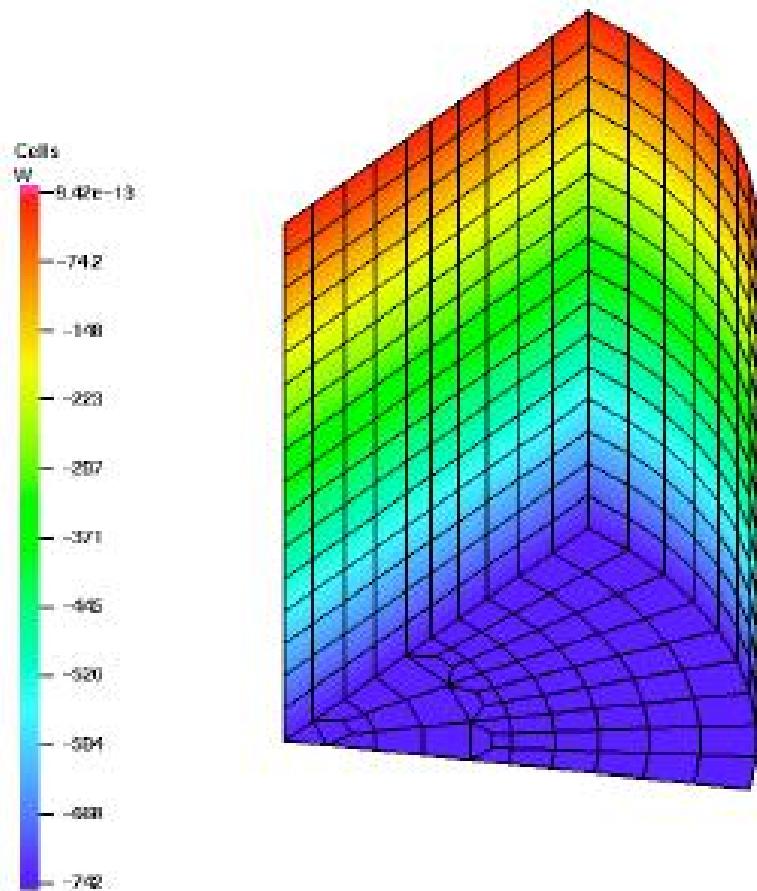
```
mate 10
```

endpart

c Enter the merge phase


merge

c Merge the nodes


stp .01

IV. Example Problem 2

This example has a periodic boundary condition with elements on the axis. When creating a model, it is best to have a diagram (Figure 19) shown below. Figure 20 shows vertical velocities computed with KIVA-4 in a compression-expansion calculation.

Figure 19 Face types used in periodic sector mesh. All cells would be designated squish (100).

Figure 20 Vertical velocity computed with KIVA-4 in compression-expansion calculation

Periodic Mesh Construction with TrueGrid®

The following is the resulting session file with comments inserted to help the reader. The **TrueGrid®** User's Manual for a full discussion on generating a mesh. These commands are included to demonstrate a complete model for KIVA4.

```
title KIVA 4 test problem using periodic conditions

c First part is one element thick and on the axis
cylinder 1 2;1 2;1 21;0 .5;0 60;0 10;

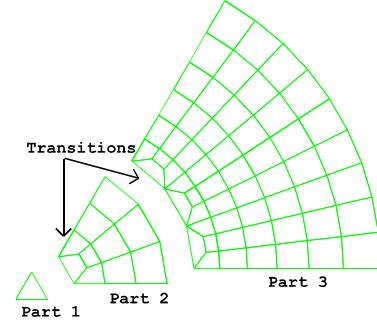
c Create the periodic boundary condition
bb 1 1 1 2 1 2 1 periodf ; ;
bb 1 2 1 2 2 2 1 periodd rz -60;;

c Identify face for transition to next part
bb 2 1 1 2 2 2 2;

c Set the material to squish
mate 10

c Set the boundary conditions
kivabc 1 1 1 1 2 2 axis
kivabc 1 1 2 2 2 2 solidh
kivabc 1 1 1 2 2 1 moving

endpart


c Second part will be attached to the first
with more elements
cylinder 1 4;1 4;1 21;.5 2;0 60;0 10;

c Transition from the first part
trbb 1 1 1 1 2 2 2;

c Transition to the third part
bb 2 1 1 2 2 2 3;

c Periodic boundary condition
bb 1 1 1 2 1 2 4 periodf ; ;
bb 1 2 1 2 2 2 4 periodd rz -60 ; ;

c Squish material
mate 10
```


Figure 21 Transitions

```

c Set the boundary conditions
kivabc 1 1 1 2 2 1 moving
kivabc 1 1 2 2 2 2 solidh

endpart

c Third part like the second part with more elements
cylinder 1 7;1 10;1 21;2 5;0 60;0 10;

c Geometric increase in element size in radial direction
res 1 1 1 2 2 2 i 1.075

c Transition from second part
trbb 1 1 1 1 2 2 3;

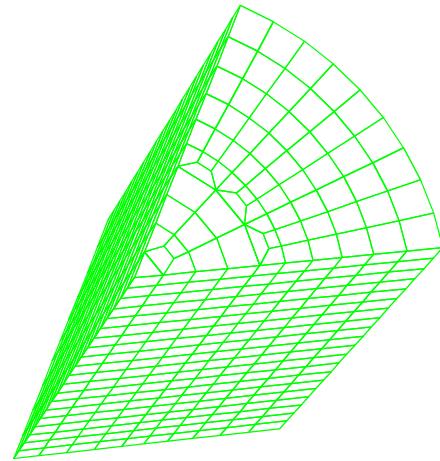
c Periodic boundary condition
bb 1 1 1 2 1 2 5 periodf ; ;
bb 1 2 1 2 2 2 5 periodd rz -60 ; ;

c Squish material
mate 10

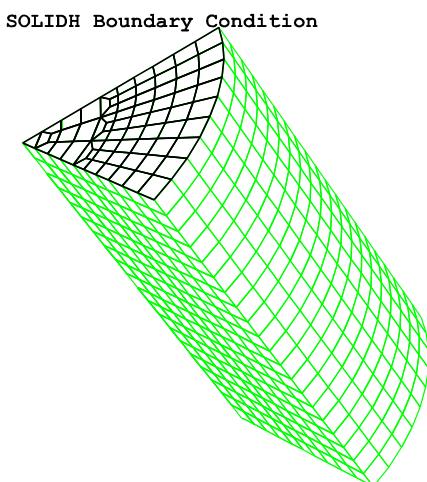
c Set the boundary conditions
kivabc 1 1 1 2 2 1 moving
kivabc 1 1 2 2 2 2 solidh
kivabc 2 1 1 2 2 2 solid

endpart

merge


c Merge the nodes
stp .001

c Write the output file
kiva
write


```

To view any of the boundary conditions, except axis, use the **co** command. For example, you can view the solidh boundary condition on this problem with the following command:

```
co kivabc solidh
```


Figure 22 Merged parts

Figure 23 Boundary conditions

V. KIVA4 Output Reference

The syntax and remarks for the KIVA4 specific commands can be found below.

kivabc

KIVA4 Boundary Condition for a Region (Part Phase)

kivabc *region type*

where *type* can be

moving	for moving piston
movingb1	for moving bottom face of 1st valve
movingt1	for moving top face of 1st valve
movingb2	for moving bottom face of 2nd valve
movingt2	for moving top face of 2nd valve
movingb3	for moving bottom face of 3rd valve
movingt3	for moving top face of 3rd valve
movingb4	for moving bottom face of 4th valve
movingt4	for moving top face of 4th valve
solid	for a face of a solid
solidh	for a solid face of a cylinder head
axis	for a face on the axis
fluid	for a fluid face (default)
inflow	for an inlet
outflow	for an outlet
presin	for pressure inflow
presout	for pressure outflow

Remarks

An interior face can be assigned a boundary condition. Since an interior face can be found on to elements, it is possible to assign different boundary conditions to the same face. This would be flagged as an error. Use the **bb** or **trbb** command to assign periodic boundary conditions.

kivabci

KIVA4 Boundary Condition for a Progression (Part Phase)

kivabci *progression type*

where *type* can be

moving	for moving piston
movingb1	for moving bottom face of 1st valve
movingt1	for moving top face of 1st valve
movingb2	for moving bottom face of 2nd valve

movingt2	for moving top face of 2nd valve
movingb3	for moving bottom face of 3rd valve
movingt3	for moving top face of 3rd valve
movingb4	for moving bottom face of 4th valve
movingt4	for moving top face of 4th valve
solid	for a face of a solid
solidh	for a solid face of a cylinder head
axis	for a face on the axis
fluid	for a fluid face (default)
inflow	for an inlet
outflow	for an outlet
presin	for pressure inflow
presout	for pressure outflow

Remarks

An interior face can be assigned a boundary condition. Since an interior face can be found on to elements, it is possible to assign different boundary conditions to the same face. This would be flagged as an error. Use the **bb** or **trbb** command to assign periodic boundary conditions.

kivabc

KIVA4 Boundary Condition (Merge Phase)

kivabc fset set_name type

where *type* can be

moving	for moving piston
movingb1	for moving bottom face of 1st valve
movingt1	for moving top face of 1st valve
movingb2	for moving bottom face of 2nd valve
movingt2	for moving top face of 2nd valve
movingb3	for moving bottom face of 3rd valve
movingt3	for moving top face of 3rd valve
movingb4	for moving bottom face of 4th valve
movingt4	for moving top face of 4th valve
solid	for a face of a solid
solidh	for a solid face of a cylinder head
axis	for a face on the axis
fluid	for a fluid face (default)
inflow	for an inlet
outflow	for an outlet
presin	for pressure inflow
presout	for pressure outflow

Remarks

An interior face can be assigned a boundary condition. Since an interior face can be found on to elements, it is possible to assign different boundary conditions to the same face. This would be flagged as an error. Use the **bb** or **trbb** command to assign periodic boundary conditions.

co kivabc

KIVA4 Boundary Conditions Display (Merge Phase)

co kivabc *type*

where *type* can be

moving	for moving piston
movingb1	for moving bottom face of 1st valve
movingt1	for moving top face of 1st valve
movingb2	for moving bottom face of 2nd valve
movingt2	for moving top face of 2nd valve
movingb3	for moving bottom face of 3rd valve
movingt3	for moving top face of 3rd valve
movingb4	for moving bottom face of 4th valve
movingt4	for moving top face of 4th valve
solid	for a face of a solid
solidh	for a solid face of a cylinder head
axis	for a face on the axis
fluid	for a fluid face (default)
periodf	for the periodic front
periodd	for the periodic derriere
inflow	for an inlet
outflow	for an outlet
presin	for pressure inflow
presout	for pressure outflow

Remarks

The **co** command has many other options. For a complete list see the **TrueGrid®** User's Manual. An axis cannot be displayed at this time.

VI. INDEX

adding layers	5	master side	11
axis	10-12, 31, 35	mate	11
bb	11, 35	materials	11
block boundaries	11	merge nodes	11
bottom	7	moving	9, 31, 35
boundary conditions	35	movingb1	35
bowl	8, 11	movingb2	35
cell types	7	movingb3	35
co kivabc	37	movingb4	35
coordinate transformation	11	movingt1	35
defaults	11	movingt2	35
degenerate edge	12	movingt3	35
degenerate face	11, 12	movingt4	35
degenerating nodes	5	mt	11
derriere	7	mti	11
derriere periodic	31	O-grids	14
dome	11	opposing faces	12
element types	5	ourput file	11
exterior	7	outflow	10, 35
face conventions	7	periodd	10, 11
face types	7	periodf	10, 11
file name	10	periodh	11
flbowl	9	periodic	31, 35
fldome	9	port	11, 13
flfluid	9, 13	precision	12
fluid	10, 35	presin	10, 35
front	7	presout	10, 35
front periodic	31	prism	12
hexahedra	5, 12	prisms	5
inactive	11	pyramid	5, 12
inflow	10, 35	removing layers	5
input deck	10	restrictions	5
interior	7	right	7
itape18	10	runner	13
itape5	10	slave side	11
kiva	11	snapping routines	5
kiva4grid	10, 11	solid	9, 31, 35
kivabc	11, 35, 36	solidh	10, 31, 35
kivabci	11, 35	squish	8, 9, 11, 13, 31
layers	5	stp	11
left	7	temperatures	19

tetrahedra	5, 12
top	7
transitions	11
trbb	11, 35
unstructured	5
valve movement	10
velocities	31
vertically layered	5
wedge	11
write	11