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Abstract

The aortic heart valve undergoes geometric and mechanical changes over time. The cusps of a normal, healthy valve thicken
and become less extensible over time. In the disease calcific aortic stenosis (CAS), calcified nodules progressively stiffen the
cusps. The local mechanical changes in the cusps, due to either normal aging or pathological processes, affect overall
function of the valve. In this paper, we propose a computational model for the aging aortic valve that connects local
changes to overall valve function. We extend a previous model for the healthy valve to describe aging. To model normal/
uncomplicated aging, leaflet thickness and extensibility are varied versus age according to experimental data. To model
calcification, initial sites are defined and a simple growth law is assumed. The nodules then grow over time, so that the area
of calcification increases from one model to the next model representing greater age. Overall valve function is recorded for
each individual model to yield a single simulation of valve function over time. This simulation is the first theoretical tool to
describe the temporal behavior of aortic valve calcification. The ability to better understand and predict disease progression
will aid in design and timing of patient treatments for CAS.
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Introduction

Aging of the aortic valve (AV) is characterized by cuspal
thickening [1] and loss of extensibility [2], which can lead to
progressive changes in valve function with age, but these are not
usually themselves of clinical significance. The most common
disease of the AV is calcific aortic stenosis (CAS), found in 2% of
individuals over 65 years and in 4% of those over 85 [3]. Early
lesions with some features of atherosclerosis are found in almost all
adults [4].These lesions may progress into calcified nodules, which
can grow over time, stiffening the valve leaflets and eventually
critically interfering with valve opening and potentially closing [5].
Currently, the most common treatment for CAS is valve
replacement with a mechanical or bioprosthetic valve [6]. CAS
is the leading single etiology of valve disease necessitating
replacement, accounting for a major fraction of the approximately
300,000 valve replacement surgeries worldwide each year [7].

Opverall valve function depends on the mechanical properties of
the cuspal tissue: stiffer, thicker tissue causes the valve to be less
efficient. A model that describes the connection between tissue
properties and valve function will be clinically useful in two ways.
First, such a model can be used in conjunction with existing
imaging techniques to improve diagnostic criteria and to aid in
making decisions regarding timing of existing surgical therapies.
Second, such a model could be used to quantify the effects of
calcification on valve function and to aid in the design of
treatments aimed at preventing CAS onset and delaying valve
failure once CAS is present.
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Methods presently used in deciding when to intervene involve
examination both of the valve function and the state of the tissue.
Valve function is evaluated by using chest imaging to measure
various properties of blood flow [8-11] and various geometric
parameters of the valve [12-14]. Calcification is examined by
cardiac catheterization [12,15] or, more recently, chest imaging
[16]. A model that incorporates both valve function and tissue
health could aid in predicting the course of disease and in deciding
when to intervene.

In addition to aiding decision-making regarding existing
procedures, a model of calcific disease could be useful in
examining and designing emerging methods. Since the loss of
valve function is due to tissue dysfunction, treatments to prevent or
slow disease progression must target the tissue. Current options for
preventing the onset of CAS or valve failure are limited;
pharmaceutical approaches such as statins or other drugs may
ultimately be useful but have not shown consistent benefit in prior
studies [17]. A better understanding of the tissue-based nature of
CAS progression will enhance our ability to develop new
pharmaceutical and surgical treatments.

In this paper, we create a model for valve aging which describes
the impact of changes to tissue properties on valve function. We have
previously described a multiscale simulation of the healthy aortic
valve [18], where we modeled the valve at one point in the patient’s
lifetime. In the present paper, we extend the simulation to model
ages from 20 to 80. This collection of simulations describes aging in
the aortic valve, including calcification, over a patient’s adult life.
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Results

A number of computational models were created to simulate
aging in the human aortic valve, with and without calcification (see
Figures 1, 2, 3, 4 and Methods for illustration and detailed
description of these simulations). All simulations ran to conver-
gence with no computational instabilities. Computation time was
approximately 3 hours per cardiac cycle on a workstation with
four Xeon 5160 3.00 GHz processors.

In both normal aging and calcification, overall valve function,
measured by fluid peak velocity and valve orifice area, degraded
over time. Results are shown graphically in Figure 5, where the
computed geometries are shown at mid-diastole for a range of
ages. At each age, a section view overlaid with fluid velocity
vectors as well as a view of the whole valve seen from the aortic
orifice are shown. These plots show qualitatively the valve orifice
narrowing both in normal aging and CAS.

Computed peak velocities and areas are compared to
experimental data in Figure 6 and Figure 7, respectively. The
theoretical curve in these figures has disease onset at 50 years and
a range of growth rates. The experimental data is the typical curve

Calcification of Aortic Valve

for a patient in whom calcification appears at 50 years of age in a
previously unobstructed valve [15]. The plots are overlaid with
clinically accepted values for grading the severity of valve disease
[19]. In both plots, the theoretical model tracks the experimental
data best with lower growth rate in the years immediately after
onset of calcification and with higher growth rate in the years after
that.

Sensitivity of the model to the two input parameters was
analyzed. The age of valve failure, defined as the age when the
AVA reached <1.0 cm? [12], was recorded for all combinations of
the input parameters. Figure 8.a shows the age where the valve
fails versus the defined age of calcification onset, with curves for
various growth rates. Figure 8.b shows the age at valve failure
versus growth rate with various ages of onset, calculated at the
same ages and rates as Figure 8.a.

Discussion

We have developed a model for the mechanical consequences of
aging in the AV, including normal stiffening and thickening as well
as progressive calcification. This model predicts the organ-scale
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Figure 1. Changes in valve geometry with age. a) Measured thickness variation (Sahasakul 1988) and b) CAD geometry at ages 20 and 60 years.
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Figure 3. Simulated growth of calcified nodules.
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Figure 4. Percent of leaflet covered by calcification versus time.

doi:10.1371/journal.pone.0005960.g004

valve motion based on changes to the tissue-scale mechanical
properties. As such, the simulation method described above has
two directions for potential clinical translation. First, by incorpo-
rating the tissue-scale nature of calcification, the model may be
able to more accurately predict the degradation of valve function
than current methods. Second, the model may be used to evaluate
treatments that aim to modify the tissue properties using input
parameters consistent with a diminished rate of calcification owing
to prevention or therapy.

There are limitations to this study and approximations made in
this model. First, a number of assumptions are made to construct a
model of the valve at any point in time. These assumptions, which
we have previously discussed in detail [18], include simplified
representation of the geometry, modeling the interaction of the
valve with its environment through pressure and displacement
boundary conditions, and assumptions inherent to the material
models: a discrete fiber model for the leaflet mechanics, simple
Mooney-Rivlin for the sinus wall, and Newtonian fluid for the
blood.

Further assumptions were made to model the changes in the
valve over time. In normal aging, the most significant source of
error is our scaling of the leaflet extensibilities. Our model was
extrapolated from the known data [2], which provides only the
change in radial extensibility, and does not give reference to a no-
stress state. Changes to the valve other than leaflet thickening and
stiffening were not included in the model.

Calcification was modeled simply as the addition of stiff shell
elements on the aortic surface. Calcification sites were assumed to
appear simultaneously at different locations in the valve, where
physiologically they arise at different times. The nodules were
modeled as two-dimensional shells, though in CAS the calcifica-
tions are known to develop significant thickness.

Our current model assumes two input parameters, the age of
calcification onset and the calcification growth rate. Sensitivity
analysis shows that the model’s ability to predict overall valve
function, measured by when the model predicts valve failure will
occur, is sensitive to both parameters. The current model is a
simplification of the true three-dimensional, inhomogeneous

@ PLoS ONE | www.plosone.org

progression of calcification observed in patients. We expect that
future work will refine the growth model.

Our model provides a framework for linking overall valve
function to valve mechanical properties and geometry. This model
qualitatively captures the valve narrowing and increase in fluid
velocity seen in patients. With proper choice of input parameters,
the model can approximate experimental data for disease
progression. If the age of onset and growth behavior, which likely
does not follow the constant-rate model we have assumed, can be
measured, then our model can be clinically useful. A model that
can take patient inputs and predict the course of disease will be
useful in deciding timing of valve replacement, and a model that
can describe the effects of pharmaceutical and surgical interven-
tions can aid in the development of those treatments. The model
we have presented gives a theoretical basis for understanding the
link between therapy and valve function in CAS and for being able
to understand and predict the course of CAS can have significant
clinical impact.

In order to construct an accurate description of the calcification
growth, and thus to create a useful model of valve function,
significant experimental work is required. Currently, the biomo-
lecular processes involved in CAS and their link the changes in
local mechanical properties are poorly understood. We can suggest
an approach to creation of an accurate constitutive model of the
spread of calcification. First, CAS is recognized to be a multiscale
process, spanning scales from the molecular to the organ.
Accordingly, a model of CAS pathology should span the relevant
length scales. We have previously described the multiscale function
of the healthy valve [18,20], and this work should be extended to
the diseased states. To construct such a model, multiscale
experimental data on the disease process is required. While data
on disease progression is difficult to collect in humans, existing
small animal models for CAS, such as that in the rabbit [21,22],
can be utilized. In an animal model, mechanical and pathological
changes can be observed across the length scales. For example,
histology taken from animals sacrificed at varying ages with yield
observation of the disease process at the cell and tissue scales, while
live imaging can record organ-scale dynamic effects. An
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normal aging
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Figure 5. Computed geometries and flow velocities at mid-systole at various ages. Assumptions for calcification model are onset at age 50
and a growth rate of 1 mm/year.
doi:10.1371/journal.pone.0005960.g005
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experimentally-based model of calcification progression at the
smaller scales, coupled with the organ-scale methods described in
this paper, will yield a useful predictive model for the disease CAS.

Methods

We have previously described methods for using finite-element
simulations to model the mechanical behavior of the normal aortic
valve [18] and bicuspid aortic valve [20] over the cell, tissue, and
organ length scales. These simulations have modeled the valve at
one age in adulthood. In this paper, we extend our model of AV
organ-scale mechanics to describe the transient effects of aging on
the valve.

Here we briefly describe the method for modeling a healthy
adult valve. Details on the development and validation of this
model can be found in [18]. Valve geometry was created in
SolidWorks (SolidWorks, Concord, MA). Dimensions of the
overall valve structure [23] and thicknesses at various locations
[24] were taken from literature. The geometry was meshed with
brick elements using TrueGrid (XYZ Scientific Applications, Inc.,
Livermore, CA) and modified, including the addition of cable
elements, using HyperMesh (Altair Engineering, Troy, MI). The
cable elements are part of the discrete fiber model we developed
[18] to model the highly nonlinear, anisotropic material behavior
of the leaflets in a computationally efficient manner. Sinuses were
modeled as isotropic and rubber-like, and blood was modeled as a
simple Newtonian fluid. Dynamic pressure boundary conditions,
representing the pressures in the left ventricle and aorta entrance,
were applied to the blood at the valve orifices. A dynamic
displacement boundary condition was applied to the ventricular
orifice to represent ventricular contraction. The simulation was
run in LS-DYNA (LSTC, Livermore, CA), which readily accepts
large displacements of the solid through the fluid utilizing an
operator-splitting algorithm [25]. Models were post-processed in
HyperView (Altair Engineering, Troy, MI).

To simulate uncomplicated aging of the AV, individual
simulations were created representing the valve at ages between
20 and 80 years at 10 year intervals. We are modeling the effects of
aging on the adult valve, and have not included the ages from 0 to
20 where the young valve grows and remodels appreciably.
Thicknesses were varied according to experimental data [1].
Thickening versus age data is shown in Figure l.a and resulting
CAD geometries of the valve at age 20 and 60 years are shown in
Figure 1.b. Material properties were also varied following
experimental data. The only known data for leaflet stiffening
versus age 1s that of [2], plotted in Figure 2.a. We have previously
discussed at length the choice of extensibilities in our model for the
healthy AV [18]. Here, we consider that model to represent age
20. For all other ages, we scale the extensibilities proportionally
following the linear fit illustrated in Figure 2.a. In Figure 2.b, we
plot the resulting radial and circumferential stress-strain curves at
ages 20 and 60.

Progression of CAS in the AV was modeled by adding calcified
zones to the valve. Initiation sites for calcification were defined at
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