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SUMMARY

This paper presents a finite element model based on mathematical non-linear programming in order to
determine upper bounds of colapse loads of a mechanical structure.

The proposed formulation is derived within a kinematical approach framework, employing two si-
multaneous and independent field approximations for the velocity and strain rate fields. The augmented
Lagrangian is used to establish the compatibility between these two fields. In this model, only continuous
velocity fields are used.

Uzawa’s minimization algorithm is applied to determine the optimal kinematical field that minimizes
the difference between external and dissipated work rate. The use of this technique allows to bypass the
complexity of the non-linear aspects of the problem, since non-linearity is addressed as a set of small
local subproblems of optimization for each finite element.

The obtained model is quite versatile and suitable for solving a wide range of collapse problems. This
paper studies 3D strut-and-tie structures, 2D plane strain/stress and 3D solid problems. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last two decades, the limit analysis research field has observed important advances. By

taking advantage of the rapid growth in computer capabilities, new numerical methods have been

developed.

The use of formulations based on standard limit analysis theorems presents two important

limitations. First of all, they can only be applied with elastic–perfectly plastic materials to
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geometrically linear problems and with monotonic load cases. Secondly, they provide collapse

load estimates and, occasionally, the respective failure mechanisms, but cannot predict the struc-

ture behaviour during an intermediate state. Nevertheless, these formulations do not display the

error accumulation problems associated with the common elasto-plastic incremental analysis tech-

niques and they require significantly less computational costs.

Most of these models address the limit analysis problem as a mathematical programming

problem. It is a well-known fact that the plastic behaviour renders the problem intrinsically non-

linear. Essentially, two different approaches are adopted to deal with this fact: (i) the use of

linearization techniques associated with linear programming algorithms, found, for example, in

Sloan and Kleeman [1], Christiansen [2] and Pastor et al. [3]; (ii) models based on direct non-linear

programming algorithms, such as the works of Zouain et al. [4], Christiansen and Andersen [5],
Lyamin and Sloan [6, 7], Li and Yu [8], etc.

The present work can be included in this latter group. The proposed model is a strict upper

bound limit theorem numerical implementation, using a mixed finite element formulation in which

both the velocity and the strain rate fields are independently approximated. The formation of slip

lines caused by discontinuities in the velocity field, admitted in the classical plasticity theory, is

discarded in this formulation.

This article is divided into five sections. After this brief introduction, in Section 2, we review

some basic plasticity concepts and the upper bound limit analysis theorem, which are required for

developing the proposed model. The continuity assumption is stated and discussed. Moreover, the

adopted yielding criteria are presented. In Section 3, the finite element formulation is derived. In

Section 4, several numerical examples are provided to demonstrate the effectiveness and accuracy

of the model. These examples can be divided into three distinct problem categories: struts-and-ties

(1D elements), 2D plane strain and plane stress and 3D solids. Finally, concluding remarks are

presented in Section 5.

2. THEORETICAL BACKGROUND

2.1. Plasticity basics

Let � represent a rigid-perfectly plastic body, delimited by a boundary �, with two complemen-

tary parts, �u and �� : � =�u ∪�� ∧ �u ∩ �� = ∅. In the first region, �u , being denoted as the

kinematic boundary, the displacement field, u, is fixed

u = 0 in �u (1)

The remaining part, ��, represents the static boundary, in which external surface forces, t , are

prescribed.

The structure is subject to a given distribution of a set of constant body loads, b, and external

surface forces, t , affected by a load multiplier � (� ∈ R
+). The problem under consideration consists

of finding the load multiplier that leads the structure to its maximum load bearing capacity and to

likely failure, i.e. the collapse load multiplier, �c.

Assuming, as previously stated, a rigid-perfectly plastic behaviour, means that the stress tensor

value, �, must comply, on the whole domain, with a yield criterion, expressed in the following form:

f (�)�0 in � (2)
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Whenever the equality in (2) holds, the material enters a plastic state and plastic flow can occur.

Otherwise, the strains remain null and/or constant. Unlike the theory of elasticity, there is no direct

relation between plastic strain, �, and stress tensors, �, and the total amount of plastic strain is a

priori undefined and unlimited.

In order to establish the kinematics of the plastic flow, the rule of normality, which defines the

plastic strain rate (�̇) direction, according to the outward normal to the yield surface, f (�) = 0, is

verified and can be expressed as follows:

�̇(�) = �
� f (�)

��
, ��0 (3)

The presented rule is denoted as an associated flow rule, given that the yield function is used to

define the plastic flow. If the yield surface has a singularity, the direction of the plastic strain rate,

at that point, can be defined by any vector pointing away from the surface, as long as it is located

within the cone formed by all the normal vectors in the neighbourhood of that point

�̇(�) ∈ �� f (�), ��0 (4)

This flow rule can be observed as a direct consequence of the Maximum plastic work postulate

stated by Hill [9]

∀� : f (�)�0, ∀�∗ : f (�∗)�0, (� − �∗) : �̇(�)�0 (5)

Mention must be made of the fact that the above principle is fulfilled only by convex yield surfaces.

By definition, the plastic energy dissipation rate is the result of the tensorial contraction

D(�, �̇) = � : �̇ (6)

By taking into account (2)–(5), the plastic energy dissipation rate can be derived in such a way

that it may depend on the plastic strains only [10]. It should be stated that if the yielding surface is

not strictly convex, there might be more than one stress state that originates a given plastic strain

rate, but the plastic energy dissipation rate will be solely defined in terms of the plastic strain rate.

For rigid-perfectly plastic material, the velocity field does not have to be continuous in the

whole domain. Hence, the plastic energy dissipation rate, D, can be written as:

D=D(�̇) + D( v̂ ), �̇ ∈Cc, v̂ ∈Cd (7)

in which, henceforth, �̇ represents the continuous component of the plastic strain only, and v̂

denotes the possible discontinuous component. The Cc and Cd spaces are defined in such a way

that they implicitly enforce the compliance with the normality flow rule (3)–(4), by confining the

strain tensor rate and the velocity discontinuities to those spaces.

2.2. Limit analysis upper bound theorem

Let us now assume u̇ to be a kinematically admissible velocity field, i.e. a velocity field that

satisfies the Dirichlet boundary condition (1) and the domain compatibility equation

�̇= Bu̇ in � (8)

where B is the usual differential compatibility operator.
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The upper bound theorem of limit analysis can be stated as follows: if, for a kinematically

admissible velocity field, the external load work rate

We = �

(∫

�

bT u̇ d� +
∫

��

tTu̇ d�

)
(9)

is greater or equal to the total internal plastic energy dissipation rate

Wd =
∫

�

D(�̇) d� +
∫

�d

D( v̂ ) d� (10)

then, collapse will occur. In expression (10), �d denotes the region in which a velocity field

discontinuity occurs. Now, let us assume the functional J to be defined by

J =Wd − We (11)

By taking into account the previous definition, the solution of the following mathematical mini-

mization problem

�∗ = min{� | ∃ u̇ ∈ S : J = 0} (12)

where S represents a subspace of the set of all kinematically admissible velocity fields, K , gives

an upper bound of the collapse load multiplier

S ⊂ K ⇒ �∗
��c (13)

Otherwise, if S represents the complete K space, the exact collapse load multiplier will be obtained

S = K ⇒ �∗ = �c (14)

2.3. Continuity assumption

This work does not allow for discontinuities in the velocity field. As a direct consequence of this

assumption, it is no longer possible to guarantee that the exact collapse load multiplier can be

reached within an upper bound theorem approach, in accordance with (13).

Nevertheless, in the authors’ opinion, this fact does not represent a relevant disadvantage. Indeed,

let us consider a given mechanical structure that requires unavoidably discontinuities to form the

respective collapse mechanism. From the authors’ experience, it is safe to state that in such cases

a kinematical numerical model based on continuous velocity fields can still satisfactorily yield

accurate upper bound estimates for the collapse load. This means, that, although in the vicinity of

the slip lines, where the singularities take place, the solution error can be relevant, this will not

affect significantly the overall solution.

2.4. Yielding criteria and dissipation functions

In this paper, four common yielding criteria are considered. They are defined below, in the principal

stress space, assuming �I��II��III:

• Tresca:

f (�) = �I − �III − �0 (15)

where �0 denotes the uniaxial yield stress;
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Table I. Plastic energy dissipation rate functions.

Criteria D(�̇) �̇∈Cc

Tresca
�0
2

(|�̇I| + |�̇II| + |�̇III|)
tr(�̇) = 0

von Mises k

√
2 tr(�̇2)

Mohr–Coulomb tr(�̇)�(|�̇I| + |�̇II| + |�̇III|) sin�

c
tan�

tr(�̇)

Drucker–Prager tr(�̇)�

√
2 sin2 �

3+sin2 �
(3 tr(�̇2) − tr2(�̇))

• von Mises:

f (�) =
√

1
2
tr(s2) − k (16)

where s represents the deviatoric stress, k the pure shear yield stress and tr(·) denotes the

trace tensorial operation;

• Mohr–Coulomb:

f (�) = �I(1 + sin�) − �III(1 − sin�) − 2c cos� (17)

where c represents the cohesion and � the angle of shearing resistance;

• Drucker–Prager:

f (�) =
√
1

2
tr(s2) −

3 sin�√
3(3 + sin2 �)

(
c

tan�
−

1

3
tr(�)

)
(18)

Table I summarizes the internal energy dissipation functions together with the respective Cc

space definition, for all the previously mentioned yielding criteria. These expressions are presented

only for the continuous strain rate condition.

3. NUMERICAL FORMULATION

As a starting point, let us divide the domain, �, into nE finite elements. For each element, two

independent and simultaneous approximations, for the velocity and plastic strain rate fields, are used

u̇i = {vx , vy, vz}Ti = Nidi in �i (19)

�̇i = {�̇x , �̇y, �̇z, 2�̇xy, 2�̇yz, 2�̇xz}Ti = Eiei in �i (20)

The matrices N and E collect the approximation functions and the vectors d and e their

associated weights, in reference to the i th finite element. For simplicity, the notation used in this

section assumes the 3D problem form. The adjustments needed for other types of problems are

straightforward.

The velocity approximation functions used are the conventional nodal shape functions from the

finite element method, FEM [11]. Thus, continuity in velocity field solution is imposed. As another
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Figure 1. Optimal collapse load search algorithm.

consequence of this field approximation, subspace S only fulfills condition (13) and condition (14)

is no longer valid. Regarding the approximation of the plastic strain rate field, local functions are

considered for each finite element, without any relation with the adjacent elements.

In order to solve the mathematical programming problem (12), the following strategy is

adopted:

• for a given load multiplier, �, an optimal continuous kinematic field which minimizes the

difference between dissipated and external work rate, J , is searched

Min J

s.t. �̇ = Bu̇

�̇ ∈Cc

(21)

Since velocity and strain rate fields are independently approximated, the relationship between

these two fields is established as a constraint in problem (21);

• following the kinematical theorem, if, for the optimal solution of (21), J value is non-positive,

� will unavoidably be an upper bound of the collapse load parameter (���c). Otherwise, no

conclusions can be drawn.

Therefore, the search for the best collapse load multiplier can be achieved by a simple iterative

algorithm, as shown in Figure 1. The authors have improved the efficiency of the described

algorithm with a few small adjustments. In fact, when the size of the search interval for the

collapse load multiplier is smaller than a given threshold, the search for �∗ is carried out using

algorithm 2 (Figure 2).

3.1. Mathematical programming problem

This section presents the method to solve the minimization problem (21). First, the augmented

Lagrangian method [12] is applied to (21), thus producing the following velocity field minimization
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Figure 2. Optimal collapse load search algorithm 2.

problem:

Min
�̇∈Cc

L(u̇, �̇, �) =
∫

�

D(�̇) d� − �

(∫

�

bTu̇ d� +
∫

��

tTu̇ d�

)

+
∫

�

� : (Bu̇ − �̇) d� +
r

2

∫

�

‖Bu̇ − �̇‖2 d� (22)

where the � vector collects the Lagrange multipliers and r denotes the penalty parameter, a positive

scalar. In Equation (22), the first two terms are the J functional, where the discontinuity velocity

term in the dissipated energy rate expression is cancelled out, since it is discarded by the finite

element formulation. The last two terms introduce the compatibility constraint (8), present in

problem (21), in the objective function.

Now, taking into consideration the finite element discretization of the domain and the field

approximations (19)–(20), the augmented Lagrangian definition is re-written in the following

expanded way:

L(d, e, �) =
nE∑
i=1

∫

�i

D(Eiei ) d� − �
nE∑
i=1

(∫

�i

bTNi d� +
∫

��i

tTNi d�

)
di

+
nE∑
i=1

∫

�i

�Ti A0(BNi ) d�di −
nE∑
i=1

∫

�i

�Ti A0Eiei d�

+
r

2

nE∑
i=1

dTi

∫

�i

(BNi )
TA0(BNi ) d�di − r

nE∑
i=1

dTi

∫

�i

(BNi )
TA0(Eiei ) d�

+
r

2

nE∑
i=1

∫

�i

(Eiei )
TA0(Eiei ) d� (23)
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Figure 3. Uzawa’s algorithm.

where the differential operator, B, the Lagrange multipliers vector, �, and the A0 matrix, assume

the form:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�x
· ·

·
�

�y
·

· ·
�

�z

�

�y

�

�x
·

·
�

�z

�

�y

�

�z
·

�

�x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x

�y

�z

2�xy

2�yz

2�xz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

i

, A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · · ·
· 1 · · · ·
· · 1 · · ·

· · · 1
2

· ·

· · · · 1
2

·

· · · · · 1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To perform the minimization of the Langrangian (23), Uzawa’s iterative saddle-point search

algorithm can be used [13]. Figure 3 summarizes Uzawa’s algorithm.

This algorithm displays quite a robust convergence, which is ensured whenever the number of

inner iterations, m, is higher or equal to 1 (m = 3 was adopted) and the value of � belongs to

the [0, 2r ] interval (� = r was adopted). A fully detailed explanation of Uzawa’s method and its

convergence properties can be found in Reference [13].
Two independent minimizations must be carried out to perform Uzawa’s algorithm. The first

occurs during STEP 1, with respect to the nodal displacements and affects all the elements

simultaneously. This minimization is straightforward. For variable d , the Lagrangian (23) is an
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unconstrained quadratic function. Thus, the minimizer is obtained by

�L(d, e, �)

�d
= −�

nE∑
i=1

(∫

�i

bTNi d� +
∫

��i

tTNi d�

)

+
nE∑
i=1

∫

�i

�Ti A0(BNi ) d� + r
nE∑
i=1

∫

�i

(BNi )
TA0(BNi ) d�di

− r
nE∑
i=1

∫

�i

(BNi )
TA0(Eiei ) d�= 0 (24)

The result is a linear system of equations, which must be solved for each iteration. It can be

expressed in the following matrix form:

[A]{d}k,m = �{F} − {�}k + {L}k,m−1 (25)

where,

[A] = r
nE∑
i=1

∫

�i

(BNi )
TA0(BNi ) d� (26a)

{F} =
nE∑
i=1

(∫

�i

bTNi d� +
∫

��i

tTNi d�

)
(26b)

{�}k =
nE∑
i=1

∫

�i

(BNi )
TA0(�i )

k d� (26c)

{L}k,m−1 = r
nE∑
i=1

∫

�i

(BNi )
TA0(Eiei )

k,m−1 d� (26d)

Of note is the fact that the computational procedures of all the terms present in the governing

system are, in all aspects, similar to the ones adopted for the FEM.

The second minimization takes place during STEP 2 of Uzawa’s algorithm. In this stage, due

to the definitions of the functions of plastic energy dissipation, D (summarized in Table I), the

non-linearity of the problem emerges, which increases its complexity. However, the difficulties

that arise from the minimization problem are confined to each finite element, by the adopted

plastic strain approximation (20). In fact, it will be shown that this minimization can be solved

individually, element by element.

3.2. Local minimization

By assuming variables d and � as fixed throughout the local minimization process for variable e

in every (k,m) iteration, the objective function (23) can be simplified for each finite element:

L
∗
i (ei ) =

∫

�i

D(Eiei ) d� −
∫

�i

�Ti A0Eiei d�

− r

∫

�i

(BNidi )
TA0(Eiei ) d� +

r

2

∫

�i

(Eiei )
TA0(Eiei ) d� (27)

where, for notational simplicity, the k,m iteration superscripts were dropped out.
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Let us now assume that the strain approximation functions matrix, Ei , is the identity matrix.

This assumption has important consequences: (i) the strain rate field is constant for each element

of the domain; (ii) e vector components gain a direct physical meaning as they represent the strain

rate tensor components; (iii) the integrations in the above expression can be eliminated without

affecting the optimality point

L
∗
i (ei ) =D(ei ) − sTA0 ei +

r

2
eTi A0ei (28)

where

si = {sx , sy, sz, 2sxy, 2syz, 2szx }Ti = �i + r BNidi (29)

(iv) to ensure final solution compatibility, the velocity approximation functions will be linear;

therefore, 3-node triangle and 4-node tetrahedral isoparametric elements are used for 2D plane

strain and 3D solid problems, respectively.

Mention must be made of the fact that at this stage of development it is not yet possible to extend

the implementation of the model to higher order elements (i.e. elements with non-constant strain

rate approximations), if a strict upper bound policy is required. The first obstacle is to impose the

normality flow rule restriction to all the element domain (�̇∈Cc). For linear strain elements, as

shown in the work of Makrodimopoulos and Martin [14], this difficulty can, however, be overcome

by imposing the normality rule on the element vertices. The second obstacle results from the fact

that the mathematical complexity of the optimization subproblem (27) increases. In this case, the

approach presented here to solve this minimization is no longer suitable, a procedure with proven

efficiency has not been found so far.

A final step can be made to simplify the local minimization problem. According to Le Tallec

[15], a new equivalent minimization problem, formulated in the principal strain space, can be

derived and expressed as follows:

Min
ẽi∈C

L
∗
i (̃ei ) =D(̃ei ) − s̃Ti ẽi +

r

2
ẽTi ẽi (30)

where vector, ẽi ={eI, eII, eIII}Ti , collects the principal components of the domain strain rate tensor

approximation, and vector s̃i gathers the Si matrix eigenvalues, which are sorted in decreasing

order (sI�sII�sIII). The matrix Si is defined by

Si =

⎡
⎢⎢⎣

sx sxy szx

sxy sy syz

szx syz sz

⎤
⎥⎥⎦

i

(31)

Of note is the fact that the first and last terms from the objective function (30) present an isotropic

behaviour. On the contrary, for the middle term, each strain rate component is affected differently

by the coefficients of s̃i vector. Therefore, it is possible to conclude, by taking into account

the order adopted for these coefficients, that the optimal solution shares necessarily the same

characteristic

eI�eII�eIII (32)
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Another relevant property, stated in [15], is the following matrix orthogonal decomposition

relationship:

⎡
⎢⎣

ex exy ezx

exy ey eyz

ezx eyz ez

⎤
⎥⎦

i

= Yi

⎡
⎢⎣
eI · ·

· eII ·

· · eIII

⎤
⎥⎦

i

Y T
i (33)

Here, matrix Yi collects, column-wise, the normalized eigenvectors of Si matrix sorted in the same

way as the eigenvalues.

The different procedures adopted to solve the minimization problem (30) are explained in detail

in the Appendix, for the different yielding criteria.

3.3. Locking phenomenon

Tresca and von Mises criteria impose that plastic flow should occur under volumetric incompress-

ibility conditions, by enforcing tr(�̇) = 0 in Equation (7). Therefore, the locking phenomenon can

emerge. This is a well-known numerical problem of finite elements displacement formulations, as-

sociated with incompressive kinematical behaviour, in which the solution becomes very inaccurate

as a result of excessive stiffness of the model.

For Mohr–Coulomb and Drucker–Prager criteria, the admissible plastic strain domain (Cc) is

defined by a less or equal condition constraint which is less restrictive than the equality constraint,

imposed by the isochoric materials. However, the inequality condition is restricted to plastic strains

due to stress states located on the vertex of the yield surface. Thus, if the collapse problem under

study is governed by a compressive failure behaviour, the equality condition is always activated

and may affect the numerical results with a behaviour analogous to the volumetric locking, as

shown in [16] for plane strain problems. Nevertheless, the authors avow from their experience that

they never detected cases in which the results were manifestly affected by locking effects when

using Mohr–Coulomb or Drucker–Prager materials.

In an attempt to overcome the locking problem, special geometric arrangements are used. In

the case of 3-node triangle meshes, a very efficient distribution is proposed in Reference [17]:
each set of four elements must form a quadrilateral with the central node in the intersection of the

diagonals.

A similar procedure is adopted for 3D meshes: each assembly of 24 tetrahedrons must form a

hexahedron with nodes positioned on every vertex; each face contains a middle node located in the

intersection of the diagonals; finally, a central node is placed on the intersection of the diagonals

of vertices. However, of note is the fact that this 3D combination of elements does not guarantee

the elimination of the locking problem. To the best of our knowledge, no successful arrangement

has so far proven suitable for this type of elements.

4. ILLUSTRATIVE RESULTS

In order to illustrate the performance and versatility of the proposed method, different classes of

examples were studied. Whenever possible, the results are compared either with analytical solutions

or with the outcome of other numerical formulations. All the results reported in this paper were
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Figure 4. Strut-and-tie tower structure.

computed in a PC machine equipped with a Pentium IV 2.4GHz CPU and a 1.0GB RAM. The

quadrilateral and hexahedral base meshes were generated using TrueGrid [18] software.

4.1. Strut-and-tie 3D structure

In this example, the plastic load of collapse of a strut-and-tie tower structure is computed. The

tower, represented in Figure 4, consists of 114 bars and is subject to three concentrated loads at

the top level. The yielding tension capacity, N+
y , is the same for all bars and is the double of the

value of the yielding compression capacity (N+
y = 2N−

y ).

The practical interest of this type of problems is limited, given that the bearing capacity of

such structures is constantly dictated by instability phenomenon. Nevertheless, the 2-node bar

element was implemented by taking into consideration its utility when conjugated with 2D and

3D elements.

This simple example was chosen not only to fully demonstrate the versatility of the proposed

method, but also because, in this particular case, the finite element velocity approximation encloses

all the kinematic admissible fields, i.e. condition (14) is verified. Thus, the exact collapse load

is likely to be reached. As predicted, the exact collapse load, F ≃ 0.97742N+
y , was reached in

0.45 s. Figure 4 shows the attained collapse mechanism.

4.2. Prandtl’s punch problem

As a plane strain example, we study the classical Prandtl’s punch problem, which is represented in

Figure 5. The strong discontinuity at the footing edge makes this problem numerically demanding.

It places a challenge to the present method, which does not contemplate discontinuities in the

velocity field.

First, the analysis of Tresca material was performed for two cases: (a) a rigid rough footing

and (b) a perfectly flexible footing. The footing deformability does not alter the upper bound

approximation of the collapse load value, which is in accordance with Prandtl’s analytical solution
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p

L

b
H

Figure 5. Prandtl’s punch problem: model geometry.

Table II. Prandtl’s punch problem for Tresca material:
comparison of solutions by different methods.

Authors and methods Scaled collapse load Time (s)

Analytical [19] 2 + �≃ 5.142 —
Present work (b) 5.170 52
Tin-Loi and Ngo [20] 5.173 —
Capsoni [21] 5.191 —
Sloan and Kleeman [1] 5.210 —
Capsoni and Corradi [22] 5.240 —
Present work (a) 5.264 57

[19]. A mesh of 4784 3-node elements was used to discretize the domain, defined for H = 2b and

L = 4b. In an attempt to overcome the singularity caused by the footing extremity, the mesh density

was increased below that region. Table II presents, using the dimensionless parameter 2p/�0, the

collapse loads obtained and the respective CPU times. The results proved to be competitive with

other methods and showed a very good accuracy when compared with the analytical solution.

As expected, it is in case (a), in which the footing rigidity imposes a stronger singularity, that

the larger discrepancy with the exact solution is observed. Even so, the error in this case did not

exceed 2.4%. Better results can be attained by increasing the number of finite elements, since

these analyses only required about 5% of the available memory and a reduced CPU time. In fact,

a more refined mesh using 28 212{38 572} elements was tested for the rigid footing scenario and

a value of 5.204{5.198} was attained for the upper bound estimated value, which corresponds to

a 1.21%{1.10%} error value. The CPU time in this case was 405{684} s.
Figure 6 illustrates the distribution of the plastic dissipation energy rate of collapse (normalized

to the maximum value) and the respective collapse mechanisms. These dissipation patterns clearly

indicate that the two cases under study form different punch mechanisms. In case (a), the mechanism

is similar to the one proposed by Prandtl [19], with a single large rigid block under the footing.

Case (b) presents a more similar mechanism with the one proposed by Hill [23]. Another difference
between the two solutions is the fact that in case (a) the plastic dissipation is more concentrated

on narrower regions, approaching the form of well-defined slip lines.

The punch collapse load problem is also analysed using Mohr–Coulomb material with different

shearing resistance angles (�), considering only the perfectly flexible footing case. The results

are juxtaposed with the analytical curve [19] in the graph of Figure 7. Once more, the results

match the exact solution perfectly. The error never exceeds 1.87%. The highest CPU time of
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Figure 6. Prandtl’s punch problem: plastic dissipation energy rate and collapse mechanism: (a) rigid
footing and (b) flexible footing.

0.55% 0.88% 0.77% 0.61%
0.80%

1.11%
1.16%

1.09%

1.51%

1.87%

0
0 5 10 15

20

20 25 30 35

40

40 45

60

80

100

120

140

Upper bound

Analytical

S
ca

le
d

 c
o

ll
ap

se
 l

o
ad

(
p c

)

Angle of shearing resistance φ

Figure 7. Punch problem: scaled collapse load and relative error for Mohr–Coulomb material.

487 s and available memory use of 22% occurred during the computations for a � value of 35◦

and 45◦, respectively. The increase in � value expands the region of the collapse mechanisms.

Therefore, the analysis domain had to be amplified for higher values of �, which required the use

of more finite elements to maintain the level of accuracy. This procedure justifies the increasing

use of computational resources when compared with the ones used during the analysis with Tresca
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Table III. Influence of h-refinement on the upper bound solution
for � = 35◦.

h/b Total number of elements p/c Error (%) Time (s)

0.500 2016 49.71 7.78 20
0.250 8064 47.96 3.99 105
0.167 18 144 47.42 2.81 344
0.125 32 256 47.11 2.14 1016
0.100 50 400 46.92 1.73 1140
0.083 72 576 46.80 1.47 1888
0.071 98 784 46.71 1.27 2921

material. Of note is, for instance, the fact that for � = 45◦, the region of H = 5b and L = 15b was

discretized and 31 752 finite elements were used.

In order to illustrate the influence of the h-refinement on the obtained solutions and the limitations

of the proposed model in obtaining the best approximation of the upper bound load, a set of

calculations for the same shearing resistance angle were performed. In these calculations, all the

meshes were regular, in the sense that the size of the elements was the same in all the domains.

For �, a value of 35◦ was adopted, since this was the most time-consumming task of all the

computations for the results reported in Figure 7. Table III shows the values of the upper bound

calculated with the regular meshes. The level of mesh refinement is defined by parameter h,

which represents the length of the elements in the quadrilateral base mesh. The h-refinement was

performed within the maximum extent of the available computer capacities, leading to a 92%

memory use for the most refined mesh.

The analysis of the Table III makes it possible to conclude that:

• Although the resources employed in the regular mesh computations are a few times greater

than those used in the previous calculations, the results are worse. This can be justified by

the fact that the singularity of the problem cannot be as easily overcome with a regular mesh

as with a variable density mesh.

• Uniform meshes are not suitable for this type of problems.

These points show the need for developing in the near future an adaptive mesh approach. Despite

the works already published as regards mesh adaptivity in limit analysis field ([24–26], etc.)
the authors consider that it is essential to adapt/develop an approach that takes into account the

particularities of the present formulation.

Figure 8 shows the collapse load mechanism and the plastic energy dissipation rate obtained

for this case. The results shown for the collapse mechanism regard the coarsest studied mesh due

to limitations in graph representation. As for the plastic energy dissipation rate representation, the

results for both the finest and the coarsest mesh are represented. These results demonstrate an

obvious improvement in the dissipation pattern with mesh refinement. It should be noted that the

minimization programme leads to an optimal velocity field without requiring, from the user, any

guidelines for its configuration.

4.3. Perforated square plate

For the plane stress case example, a square plate perforated with a concentric circular hole of von

Mises material, subject to a uniform biaxial traction, is considered, as shown in Figure 9. This
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Figure 9. Perforated square plate: (a) geometry and loading (b) finite element mesh.

problem is a benchmark test, which has been studied by several authors. For symmetry reasons,

only a quarter of the plate was analysed. Figure 9 shows the domain discretization using 3200

finite elements. Three different loading cases, defined by the load ratio parameter, �, equal to 1, 1
2

and 0, respectively, were analysed. These analyses required an average CPU time of 73 s.
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Table IV. Perforated square plate: comparison of solutions by different methods.

Loading cases

Approach Authors �= 1 �= 1/2 �= 0

Analytical Gaydon and McCrum [27] — — 0.800

Incremental INTES [28] 0.904 — —

Static Groß-Weege [29] 0.882 0.891 0.782
Tin-Loi and Ngo [20] 0.845 0.912 0.803
Liu et al. [30] 0.903 0.915 0.795

Kinematic Present work 0.899 0.915 0.807

The results for the scaled collapse loads, P/
√
3k, are summarized in Table IV together with

those obtained by other authors using different methods. The present results are found to be in

good agreement with those of other methods. When compared with the analytical solution for the

� = 0 case, the only one available to our knowledge, a difference of merely 0.875% is observed.

Reference must be made to the fact that the lower bound collapse load estimate by Liu et al. [30],
for the � = 1 load case, surpasses the upper bound value of the present work. This fact can be

justified since, in the Liu et al. method, the static limit analysis theorem is not strictly imposed.

A similar phenomenon can be observed in Tin-Loi and Ngo [20], in which the lower bound estimate

exceeds the exact value for the � = 0 load case. Figure 10 presents the patterns of plastic energy

dissipation and the configuration of collapse mechanisms for the three load cases studied.

4.4. Defective pipeline

The 3D defective pipeline collapse load problem represented in Figure 11 has been studied by Liu

et al. [30] using both an incremental method and a limit analysis method based on a boundary

element formulation of the static theorem approach. A von Mises material is adopted, which is

characterized by a shear yield stress of k = 200/
√
3MPa. Two distinct load cases are considered:

(i) an internal pressure, p, associated with a proportional axial stress, pN = �R2
i p; (ii) a bending

moment M , applied through a pM stress distribution.

This example was chosen because it contains two numerical difficulties associated with 3D

problems for the present method. On the one hand, the local minimization of von Mises criterion

requires an iterative procedure, a relevant time-consumming factor. On the other hand, von Mises’

volumetric incompressibility may cause locking problems.

By taking into account the symmetry of the problem, the hexahedral base mesh represented in

Figure 12 was adopted. The results, reported in Table V, show a satisfactory compliance with the

values of Reference [30]. However, of note is the fact that the level of accuracy of the results

is lower when compared with the results of the prior 2D examples. The previously mentioned

locking effects and the lower mesh refinement degree are probably the cause for this discrepancy.

Figure 13 depicts the collapse mechanisms for each load case studied.

4.5. Circular footing punch problem

The next example analyses the load p bearing capacity of a smooth, rigid circular footing in a

semi-infinite media of Mohr–Coulomb material. The results obtained for several shearing resistance
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Figure 10. Plastic dissipation pattern and collapse mechanisms configurations.
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Figure 11. Defective pipeline.

angles (�) are presented in Table VI and compared with the exact solution derived by Cox et al.

[31]. The same table also shows the values computed by an accurate lower bound method proposed

by Lyamin and Sloan [6].
By taking into consideration the axisymmetry of the problem, only a 5◦ slice was studied, using

meshes of a fixed number of 45 541 tetrahedral finite elements. This number of elements required

36% of the available memory. The length and depth of the meshes were adjusted according to
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Figure 12. Defective pipeline: hexahedral base mesh.

Table V. Defective pipeline: comparison of solutions by different methods.

Case a Case b

Approach Authors Collapse pressure (MPa) Time (s) Collapse moment (kNm) Time (s)

Kinematic Present work 67.13 697 56.02 611
Incremental Liu et al. [30] 64.05 — 55.27 —
Static Liu et al. [30] 63.42 — 54.96 —

load case (ii)load case (i)

Figure 13. Defective pipeline: configurations of the collapse mechanisms.

angle �. As in the Prandtl punch problem, the singularities at the edge of the footing pose a

numerical constraint to the present method. In order to overcome this problem, the mesh elements

were refined in this region.

For the friction angle of �= 40◦, the colapse load obtained showed that the originally adopted

mesh was not able to produce satisfactory results. Therefore, a new mesh of 52 981 elements was

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 72:1192–1218

DOI: 10.1002/nme



NON-LINEAR PROGRAMMING METHOD APPROACH FOR UPPER BOUND LIMIT ANALYSIS 1211

Table VI. Circular footing punch problem: comparison of solutions by different methods.

Upper bound (present work) Analytical [31] Lower bound [6]

� (deg.) p/c Error (%) Time (s) p/c p/c Error (%)

0 5.80 +1.93 1102 5.69 5.54 −2.64
5 7.60 +2.15 1063 7.44 7.2 −3.23

10 10.26 +2.81 1085 9.98 9.61 −3.71
15 14.34 +3.17 1081 13.9 13.3 −4.32
20 20.80 +3.48 1266 20.1 19.06 −5.17
30 51.9 +5.27 1696 49.3 — —

180.6 +10.12 1601
40 164 — —

174.4∗ +6.34∗ 2176∗

0.000 0.025 0.050 0.750 0.100

Figure 14. Scaled plastic dissipation energy rate for � = 15◦.

analysed. The collapse load obtained for this second mesh is presented in Table VI marked with

a star (∗). The upper bounds predicted by the present method can be considered very accurate

for this type of problems. The computational costs are significant, but acceptable for this level of

accuracy in this kind of problems. Figure 14 shows the plastic dissipation energy rate for � = 15◦,
scaled to the maximum obtained value.

4.6. Conic excavation stability

Lastly, to conclude the example section, the stability of a conical excavation subject to its self-

weight, 	, is analysed. The depth and the diameter at the base of the excavation correspond to 5

and 2m, respectively. In order to simulate the soil behaviour, a cohesive-frictional material was

assumed, with a cohesion of c= 1 kPa and a friction angle of � = 20◦, using both Mohr–Coulomb

and Ducker–Prager criteria.

The results obtained for a range of slope angles, 
, are summarized in Table VII and compared

with the solutions obtained with a discontinuous upper bound formulation [32]. Once more, the

axisymmetry of the problem was taken into account: only a 15◦ slice was discretized with the

proper symmetry boundary conditions. In all the meshes adopted during the analyses of the different

slope angle excavations, a fixed number of 24 468 elements was used. This discretization results

in a total of 181 456 problem unknowns, embodied by 17 324 and 164 132 degrees of freedom

for the velocity and strain rate field, respectively. For this same problem, a total of 325 206
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Table VII. Conic excavation stability: upper bound values and CPU time.

Present method Discontinuous formulation [32]

Mohr–Coulomb Drucker–Prager Mohr–Coulomb Drucker–Prager


 (deg.) 	H/c Time (s) 	H/c Time (s) 	H/c Time (s) 	H/c Time (s)

50 27.73 443 25.63 447 27.72 3120 25.75 532
60 22.27 483 20.79 485 22.34 2700 20.80 486
70 19.22 318 17.99 384 19.25 2580 18.06 443
80 17.71 539 16.50 431 17.55 2280 16.52 378

0.0 0.175 0.350 0.525 0.7000.000|v|max

DissipationVelocity magnitude

Figure 15. Collapse load mechanism and scaled plastic dissipation energy rate for 
 = 60◦.

problem unknowns were required to obtain the solutions reported by Krabbenhøft et al. [32], used
as reference. Mention must be made of the fact that the analysis in [32] was performed in an

architecture about 1.4× slower than the one used to compute the results for the current work.

The results reveal not only a good agreement with those of [32], but also with the upper and

lower bound estimates produced by different formulations, also mentioned in the paper referred to

above. Taken as a whole, the results show a better accuracy when compared with the upper bound

reference values, and even for the worse result obtained the relative error never exceeds 0.9%.

This fact supports the authors’ opinion, expressed in Section 2.3, that the continuity assumption

does not affect significantly the accuracy of the method and may represent a computational speed

up. In fact, the authors consider that a discontinuous formulation would represent an advantage

particularly if conjugated with a proper adaptive mesh approach.

Another important feature of the present model, corroborated by these results, is its aptitude to

deal with non-smooth yielding criteria without affecting the convergence rate of the method and

consequently the computational time.

Figure 15 shows the configuration of the collapse mechanism and the plastic energy dissipation

rate for a slope angle excavation of 60◦, using Mohr–Coulomb criterion.
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5. CLOSURE

This paper implemented a finite element formulation using mathematical non-linear program-

ming for computing collapse loads estimates and the respective failure mechanisms, based on the

kinematical upper bound theorem of limit analysis.

Implementation and computational aspects were discussed for Tresca, von Mises,

Mohr–Coulomb and Drucker–Prager yielding criteria. To perform domain space discretization,

2-node bars, 3-node plane triangles and 4-node tetrahedral isoparametric elements were used. To

avoid or to diminish the locking phenomenon, particular geometric arrangements of finite elements

were used during mesh generation.

The efficiency, accuracy and robustness of the proposed method were demonstrated using some

numerical examples. The latter also demonstrate the versatility of the method that can be applied

to solve a wide range of collapse problems.

APPENDIX A: TRESCA MINIMIZATION CRITERION

A.1. 3D solid problems

As a starting point, the constraint of problem (30) is eliminated, by considering the definition of

Cc (Table I) and the number of independent variables is reduced, using the following relationship:

eIII = −eI − eII (A1)

Introducing (A1) into the objective function, a R
2 piecewise quadratic function is obtained

L
∗(eI, eII) =

�0

2
(|eI| + |eII| + |eI + eII|)

+ r(e2I + e2II + eIeII) + (sIII − sI)eI + (sIII − sII)eII (A2)

By taking into account condition (32), only four regions should be considered: eI = 0∧ eII = 0,

eI>0∧ eII = 0, eI>0∧ eII>0 and eI>0∧ eII<0 the following points become thus feasible candidates

for a minimizer:

ẽ1 = {0, 0, eIII}T

ẽ2 =
{
−

�0 − sI + sIII

2r
, 0, eIII

}T

ẽ3 =
{
−

�0 − 2sI + sII + sIII

3r
,−

�0 − 2sII + sI + sIII

3r
, eIII

}T

ẽ4 =
{
−
2�0 − 2sI + sII + sIII

3r
, −

−�0 − 2sII + sI + sIII

3r
, eIII

}T

(A3)

The most basic and yet efficient procedure to attain the minimizer is to test all these points and

select the best one.
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A.2. 2D plane strain problems

In this case, an extra and obvious condition is naturally imposed

eIII = 0 (A4)

and the feasible points are reduced to two

ẽ1 = {0, 0}T

ẽ2 =
{

−�0 + sI − sII

2r
,
�0 − sI + sII

2r

}T (A5)

APPENDIX B: VON MISES MINIMIZATION CRITERION

B.1. 3D solid problems

Similarly to the Tresca criterion, the constraint of the problem is eliminated and relationship (A1)

is applicable. However, this time a non-linear objective function is obtained

L
∗(eI, eII) = 2k

√
e2I + e2II + eIeII + r(e2I + e2II + eIeII) + (sIII − sI)eI + (sIII − sII)eII (B1)

To solve this unconstrained minimization problem, the Fletcher–Reeves algorithm [12] is used, as
described below. This algorithm is adapted from the conjugated gradient method and is suitable

for convex non-linear optimization. Each iteration step is obtained by

{eI, eII}Tk+1 = {eI, eII}Tk + �k pk, �k ∈ R
+ (B2)

where �k is the step length and pk is the step direction

pk ={p1, p2}Tk =−∇L
∗
k +

∇L
∗T
k ∇L

∗
k

∇L
∗T
k−1∇L

∗
k−1

pk−1 (B3)

The expression for the objective function gradient is given by

∇L
∗(eI, eII) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k(2eI + eII)√
e2I + e2II + eIeII

+ r(2eI + eII) − sI + sIII

k(2eII + eI)√
e2I + e2II + eIeII

+ r(2eII + eI) − sII + sIII

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B4)

The best step length for k + 1 iteration can be accomplished by solving the following problem:

MinL∗
k(eI + �p1, eII + �p2) (B5)

However, performing this exact minimization for every iteration is computationally very demanding.

Instead, a good estimate is obtained by expanding this objective function in Taylor series (truncated

in the quadratic term) and by solving the resulting minimization problem analytically, thus deriving
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the next explicit formula

� = −

⎡
⎢⎣
k(2eI p1 + 2eII p2 + eI p2 + eII p1)√

e2I + e2II + eIeII

+ r(2eI p1 + 2eII p2 + eI p2 + eII p1)

− sI p1 − sII p2 + sIII(p1 + p2)

⎤
⎥⎦

/[
3k(eI p2 − eII p1)

2

2(e2I + eIeII + e2II)
2/3

+ 2r(p21 + p22 + p1 p2)

]
(B6)

For notational simplicity, the k iteration superscript was dropped out. To start the algorithm, the

initial step direction is given by ∇L
∗
0. A first reasonable guess of the solution is also needed.

Prior simulations suggest as a good estimate the following point:

{
eI

eII

}

0

=

⎧
⎪⎪⎨
⎪⎪⎩

2sI − sII − sIII

3(r + k)

2sII − sI − sIII

3(r + k)

⎫
⎪⎪⎬
⎪⎪⎭

(B7)

B.2. 2D plane strain problems

For 2D plane strain problems, this criterion coincides with the Tresca criterion and, therefore, the

same optimization procedure can be used, with
√
3k = �0.

APPENDIX C: MOHR–COULOMB MINIMIZATION CRITERION

C.1. 3D solid problems

A different strategy from the ones presented above is used to solve the Mohr–Coulomb criterion

minimization. We now stand before a quadratic objective function, subject to piecewise linear

inequality constraints.

Let us start by solving the problem regardless of constraints. In this case, the unconstrained

solution, ẽu , is given by

ẽu ={o1, o2, o3}T =
1

r

{
−

c

tan(�)
+ sI,−

c

tan(�)
+ sII,−

c

tan(�)
+ sIII

}T

(C1)

Subsequently, the previous solution is tested to check if it belongs to the feasible domain, ẽu ∈C.

If so, the optimality point is reached. Otherwise, the solution consists in the closest point of the

unconstrained optimal point, located on the feasible domain surface [33]

tr(�̇) =(|�̇I| + |�̇II| + |�̇III|) sin� (C2)

In fact, the coefficients affecting the quadratic terms of the objective function are the same (r/2).

Therefore, the equipotential of the function surfaces define spheres centred on the unconstrained

optimal point. Given that the feasible domain is convex, the optimal point is necessarily the point
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of the feasible domain nearest to the centre. According to restriction (32), only the following four

points are admissible candidates:

ẽ1 = {0, 0, 0}T (C3a)

ẽ2 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(1 + sin(�))
(2H − sIII − sI) sin(�) − sI + sIII

2r(sin(�)2 + 1)

0

−
(2H − sIII − sI) sin(�)2 + 2(sIII − H) sin(�) + sI − sIII

2r(sin(�)2 + 1)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C3b)

ẽ3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

o1 − (1 − sin(�))
(1 − sin(�))o1 + (1 − sin(�))o2 + (1 + sin(�))o3

2(1 − sin(�))2 + (1 + sin(�))2

o2 − (1 − sin(�))
(1 − sin(�))o1 + (1 − sin(�))o2 + (1 + sin(�))o3

2(1 − sin(�))2 + (1 + sin(�))2

o3 − (1 + sin(�))
(1 − sin(�))o1 + (1 − sin(�))o2 + (1 + sin(�))o3

2(1 − sin(�))2 + (1 + sin(�))2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(C3c)

ẽ4 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

o1 − (1 − sin(�))
(1 − sin(�))o1 + (1 + sin(�))o2 + (1 + sin(�))o3

(1 − sin(�))2 + 2(1 + sin(�))2

o2 − (1 + sin(�))
(1 − sin(�))o1 + (1 + sin(�))o2 + (1 + sin(�))o3

(1 − sin(�))2 + 2(1 + sin(�))2

o3 − (1 + sin(�))
(1 − sin(�))o1 + (1 + sin(�))o2 + (1 + sin(�))o3

(1 − sin(�))2 + 2(1 + sin(�))2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(C3d)

Choosing the minimizer involves the following steps: (i) confirming if the points comply with

Equation (C2); (ii) selecting, from among all the points that satisfy the previous condition, the one

that minimizes the objective function (30).

C.2. 2D plane strain problems

The same procedure can be applied to 2D plane strain problems. Taking into account condition

(A4) the unconstrained solution, ẽu , is therefore given by

ẽu ={o1, o2}T =
1

r

{
−

c

tan(�)
+ sI,−

c

tan(�)
+ sII

}T

(C4)

and the possible candidates located on the surface domain are reduced to two

ẽ1 = {0, 0}T (C5a)

ẽ2 =

⎧
⎪⎪⎨
⎪⎪⎩

o1 − (1 − sin(�))
(1 − sin(�))o1 + (1 + sin(�))o2

(1 − sin(�))2 + (1 + sin(�))2

o2 − (1 + sin(�))
(1 − sin(�))o1 + (1 + sin(�))o2

(1 − sin(�))2 + (1 + sin(�))2

⎫
⎪⎪⎬
⎪⎪⎭

(C5b)

A more detailed discussion about this minimization can be found in Reference [33].
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APPENDIX D: DRUCKER–PRAGER MINIMIZATION CRITERION

D.1. 3D solid problems

The local minimization for the Drucker–Prager criterion follows the same procedure adopted for

the Mohr–Coulomb criterion. However, the admissible candidates located on the feasible domain

surface, must be adjusted to comply with the Drucker–Prager criterion

tr(�̇)�

√
2 sin2 �

3 + sin2 �
(3 tr(�̇2) − tr2(�̇)) (D1)

hence, the points given by (C3a)–(C3d) are replaced by

ẽ1 = {0, 0, 0}T (D2a)

ẽ2 =

⎧
⎪⎨
⎪⎩

w(−rm + 2sI − sII − sIII)

w(−rm + 2sII − sI − sIII)

w(−rm + 2sIII − sI − sII)

⎫
⎪⎬
⎪⎭

(D2b)

where

m = −
1

r

√
2 sin2(�)

3 + sin2(�)
a, w =

rm

(
3

c

tan(�)
− sI − sII − sIII

)
+ a

3r((rm)2 + a)

a = 2(̃sTs̃ − sIsII − sIsIII − sIIsIII)

D.2. 2D plane strain problems

For 2D plane strain problems, this criterion coincides with the Mohr–Coulomb one.

REFERENCES

1. Sloan SW, Kleeman PW. Upper bound limit analysis using discontinuous velocity fields. Computer Methods in

Applied Mechanics and Engineering 1995; 127:293–314.

2. Christiansen E. Limit analysis of collapse states. In Handbook of Numerical Analysis (Part 2), Ciarlet PG, Lions

JL (eds), vol. IV. North-Holland: Amsterdam, 1996; 193–312.

3. Pastor J, Thai T-H, Francescato P. Interior point optimization and limit analysis: an application. Communications

in Numerical Methods in Engineering 2003; 19(10):779–785.
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