
SANDIA REPORT
SAND97-3141 UC-705
Unlimited Release
Printed December 1997

Solid Model Design Simplification

Arlo L. Ames, J. Jill Rivera, Annie J. Webb, David M. Hensinger

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 871 85 and Livermore, California 94550

Sandia is a multiprogr
a Lockheed Martin Co
Energy under Contrac

ory operated by Sandia Corporation,

Sc2900Q(8-81

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express o r implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process dmlosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein t o any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessady state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
mrectly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

SAND 97-3141 Distribution
Unlimited Release Category UC-705

Printed December 1997

Solid Model Design Simplification

Arlo L. Ames
J. Jill Rivera

Advanced Engineering and Manufacturing
Software Development

Intelligent Systems and Robotics Center

Annie J. Webb
Special Projects Department I1

Aerospace Systems Development Center

David M. Hensinger
Thermal Sciences

Engineering Sciences Center

Sandia National Laboratories
P. 0. Box 5800

Albuquerque, NM 87185-1010

Abstract
This paper documents an investigation of approaches to improving the quality of
ProEngineer-created solid model data for use by downstream applications. The
investigation identified a number of sources of problems caused by deficiencies in
Promngineer 's geometric engine, and developed prototype software capable of detecting
many of these problems and guiding users towards simplified, usable models. The
prototype software was tested using Sandia production solid models, and provided
significant leverage in attacking the simplification problem.

Acknowledgments
Thanks to David Saylors, Rick Eisler, and Pat Xavier for serving as willing reviewers and
Pat Wheeler for help in document preparation.

i

Contents
Introduction ... 1

Problem Statement .. 1

Technical Problem ... 1
Technical Approach ... 1
Technical Issues .. 2
Quality Metric .. 2

Representations .. 3

Boundary Representation .. - 3
Feature-Based Modeling .. 3
Parts and Assemblies ... 4

Range of Downstream Applications ... 5
Topological Query ... 5
Geometric Query ... 5
Geometry Modification ... 5
Geometric Interaction ... 5
Identifying Problem Areas in Parts ... 6

Numerical IMCCU~~CY ... 6
Degenerate Surfaces ... 7
Unnecessary Topology ... 7
Unanticipated Topologies .. 8
Excessive Detail .. 9
Interactions in the Object Interior ... 10

Identifying Problem Areas in Assemblies .. 10

Positioning Errors ... 11
Assembly Definition Errors ... 11

Approaches to Part Simplification ... 12

Editing the Boundary Representation ... 13
Constructing New Models ... 14
Design Rules .. 14

Approaches to Assembly Simplification ... 16

Part Elimination ... 16
Providing Matching Parts ... 16
Combining Parts ... 16
Modeling Missing Geometry ... 17

. .
Feature Suppression ... 12

ProEngineer Based Simplification ... 18

Degenerate Surface Detection ... 18
Detection of Details ... 19
Simplification Algorithms .. 19
Inquiry and Summarizing .. 20

Feature Reroutin- .. 21

ACIS Based Simplification .. 21

Application-Driven Simplification .. 20
0

11

Assembly Level Tools ... 22
Part Simplification .. 25

Design Rules .. 27

Results ... 29

Future Directions ... 31

Pro/Engineer-Based Simplification Tools ... 31
ACIS-Based Tools ... 32
Distribution .. 34 . . f

Figures
Figure 1: Degenerate NURBS surface and a torus with zero major radius. 7
Figure 2: Minimal and non-minimal topologies..8
Figure 3: Detailed and simplified representations of a part, with comparative sizes..9
Figure 4: A block with ribs cannot be conveniently simplified to remove the slot. 13
Figure 5: Automatic detection of degenerate surfaces. .. 19
Figure 6: Size-based geometric search .. 19
Figure 7: An example of constructing a model of encapsulant from the surrounding geometry. The left

image shows a case, lid, and two buttons. The right image shows a solid body created by filling the
void between the case and lid and subtracting the two buttons. ... 25

Figure 8: The feature history of a part.__ ... 26
Figure 9: Automatically derived delta volumes representing changes induced with each feature. These delta

volumes, combined with the base feature, can produce the original part and a much wider variety of
variants than feature suppression. -. .27

Figure 10: Manual simplification to remove automatically detected degeneracies at pointed ends.29
Figure 1 1 : A part simplified using the F’rohgineer-based tools. Only a few stubborn details remain, and

the part is proven free of degenerate surfaces. 30
Figure 12: A decomposed, meshable assembly. Foam was produced and assembly gaps were corrected

automatically.. 3 1

iv

Introduction
This report documents the results and recommendations of the Solid Model Design
Simplification LDRD project.

The principal accomplishments of this project are: an understanding of the variety of
problems encountered in downstream applications caused by design data, understanding of
the sources of these problems, a variety of approaches to attacking the simplification
problem, and a prototype system for automatically detecting and semi-automatically
eliminating design data problems within and outside of a feature-based framework.

Problem Statement

Technical Problem
In developing automated analysis and manufacturing applications that use solid model
descriptions of part geometry, we are confronted with a curious dilemma: designers are
rewarded for including as much geometric detail as possible, and that detail causes great
difficulty for automated analysis and manufacturing applications. Designs are created to
enable parts to be made, not necessarily to enable analysis to be performed. Extra detail at
best causes the algorithms to require far more time and space to execute; at worst, the
application completely fails. In many cases design data is so overly complex that the cost
of manually simplifying the model far exceeds the cost of re-creating the geometry for
analysis. In one recent example, over 99 percent of a design was unnecessary for analysis
purposes, and ferreting out the important geometry was hopelessly impractical. Less time
was required to create the analysis model from scratch than to load the design model of the
assembly into the CAD system.

Even in cases where the designer has constructed models tailored for analysis, we still
encounter problems. “Dirty Geometry” is a term coined to describe models that, for a
variety of unexpected (and frequently unknown) reasons, are unusable for the analysis or
manufacturing task at hand. A slip of a mouse can create invisible topology that can cause
effects ranging from sluggish algorithm performance to complete failure of the application.
Failures caused by dirty geometry tend to be frustrating “show-stoppers” -- the application
fails to work for unexplamed reasons, with no suggestion of how to proceed.

In an ideal world, designers would model geometry in a manner that would easily permit
part and assembly features to be trivially suppressed. In practice, it is difficult to predict
what portions of the model will be interesting. We thus have the problem of how to
traverse and simplify ProEngineer [11 design data in an easy, efficient manner.

Technical Approach
Our approach to simplifying ProLEngineer designs is conceptually quite simple: recognize
which elements of a design are unnecessary for analysis, and suppress them. Practically,
this requires significant effort. Recognizing which parts of a design are unnecessary is
dependent on the analysis being performed, and requires a variety of geometric and non-
geometric (e.g . functional) information. Selection of suppressible geometry may even be
dependent on physics information (e.g. removing fillets where stress gradients are low).
Eliminating superfluous detail is greatly simplified through the possibility of suppressing
the form features that spawned the offending geometry and regenerating new geometry, but
is not trivial because a feature may create any number of faces, some of which we do not
wish to remove.

Technical Issues
Algorithms for recognizing suppressible geometry involve a range of technologies. The
simplest algorithm involves searching for features of a certain type (e.g. suppress all holes)
or with some specific parameter (e.g. suppress all features with “Rl” less than .25).
Geometric queries, such as finding all very small faces, or small radius fillets, are more
difficult. In addition to suppressing features of a part, it is necessary to suppress parts in
an assembly (e.g. find all parts visible from outside, or all parts in the use-control system).

Algorithms for suppressing features to eliminate geometry are not straightforward. A
feature may produce some faces we wish to eliminate and others which we wish to keep. A
feature we wish to suppress might be a parent to other features, so other features have to be
suppressed or redefined to permit the suppression to be performed.

A user interface that enables recognition requests to be easily controlled by both naive and
sophisticated analysts is required. The interface must allow composition of complex
recognition queries (e.g. find all long, expensive, steel parts) easily.

Quality Metric
The ultimate success of this work is measured in terms of our confidence in our ability to
deal with new design data in production downstream applications. At the beginning of the
work, we had very low confidence in our ability to perform meaningful quadrilateral
surface meshing or hexahedral meshing of 2 3D’ geometries produced by ProLEngineer.

’ 2 3 D geometry is geometry that can be described by a 2 D cross-section and a sweep. Rotational and
linear swept objects are examples of 2$D geometry.

2

Representations
The fundamental representations used by modern CAD systems are feature-based and
boundary representations. Since this work is intimately tied to operations on these
representations, we provide a description of these models. These representations are
present .in two solid modeling packages in production use at Sandia, Pro/Engineer[11 and
ACIS [3].

Boundary Representation
Boundary representation is a fundamental means of representing solid objects. It is one of
a family of geometric representations (including, for example, constructive solid geometry
and spatial enumerations), and is used in design systems because it is an evaluated
representation that conveniently represents precise surface information.

A minimal three-dimensional boundary representation (as present in ProEngineer) consists
of faces, contours (also called loops) and edges2. Faces are bounded portions of sugaces.
A face is bounded by one or more contours. A contour is a list of directed edges. For a
given face, two notions of “interior” are necessary. The first tells which side of the
unbounded surface constitutes the outside of the face; a flag is used to define whether the
normal of the surface or it’s complement is outside. The second notion of interior tells
which side of each contour is in the bounded region of the face. The direction of traversal
of edges, crossed with the direction of surface normal at a point in question, tells which
side of each edge is on the interior of the face. An edge is a bounded portion of a curve;
two points are used to describe the beginning and ending of the interior of the edge.

Feature- Based Modeling
Feature-based design systems, such as ProEngineer, model designs in terms of an ordered
list offeatures (such as holes, slots, and pockets). The feature representation is a
constructive representation; each feature adds to the description of the model by adding or
removing material from the object.

Each feature has defining geometry and references. Defining geometry establishes the
shape of the feature; references relate the defining geometry of a feature to the geometry of
the part, for placement and sizing. References include dimensions and alignments.
Dimensions establish length and angular positional relationships. Dimensions have
parameters which establish the numeric values of lengths and angles, and which have
names (e.g. d5 = 4.0). Alignments explicitly relate endpoints of edges to curveslsurfaces of
existing geometry. Dimensions and alignments refer to sketch and part geometry to
establish a relationship defining the shape and position of the feature. Relations define
relationships between the values of parameters. The ProEngineer model of relations
partitions parameters into sets of dependent and independent parameters. The values of
dependent parameters are derived by evaluating relations (e.g. d l = d2 * d3, where dl is a
dependent parameter). Independent parameters do not depend on any relations; their values
are user-supplied.

A feature-based model is evaluated to produce a boundary representation. The
ProEngineer term “regeneration” is synonymous with the term “evaluation ”. In a typical
modification, one or more parameters are selected and changed, either through relations or

Boundary representations can be much richer than ProEngineer’s. ACIS represents bodies, lumps, shells,
faces, loops, coedges, edges and vertices.

through selecting the parameters of interesting dimensions of affected features.
ProEngineer reevaluates the feature list from the frrst changed feature through the end of
the list to produce a modified version of the part. If any geometric relationship cannot be
evaluated under the modified set of parameters, the regeneration fails.

From a data content standpoint, feature-based models are a richer source of information
than evaluated models. Feature-based models contain construction geometry (e.g. datums)
and a wealth of relationship information regarding how the part can be modified. Evaluated
models can be inferred from feature-based models, but the feature-based models cannot be
uniquely determined from evaluated models.

Parts and Assemblies
A design may represent apart or an assembly. A part is the smallest chunk of mass that is
individually considered in mechanical design, and can be of arbitrary geometric complexity.
Assemblies are collections of references to parts and other assemblies; each reference has
an associated transformation for placing the referenced part or assembly within the
coordinate frame of the containing assembly. An assembly may contain more than one
instance of any given part. Assemblies describe groups of parts that work together to
perform a mechanical function.

There are both feature-based and evaluated versions of assembly representations. The
feature-based version defines a set of features that place parts in the assembly using
positional relationships between them (e.g. contact and alignment relationships). The
evaluated version of an assembly representation is a list of pdassembly references, each
having an associated transformation matrix to position the instance within the assembly’s
coordinate frame.

4

Range of Downstream Applications
The downstream applications we considered span a range of geometric complexity, which
plays a critical role in the sensitivity of the application to the details in the input. The
following categorization of algorithms will serve to define sensitivity to input problems:
topological query, geometric query, geometry modification, and geometric interaction.

Topological Query
Topological query algorithms traverse the topology of the model, querying the information
found. An example algorithm of this type counts the number of faces in the model, or
searches for an attribute attached to an edge. Query algorithms are very insensitive to
problems in input data, as they are merely traversing pointers. They expect the topology to
be well-defined.

Geometric Query
Geometric query algorithms query the geometric definitions of points, curves, and surfaces
to determine shape information. Examples might discretize an edge, compute surface
normals, or find surface area. Besides requiring well-defined topology, algorithms of this
kind expect a certain “well-formedness” in the surface equations; that is, that each surface
and curve is continuous and differentiable everywhere on its interior.

Geometry Modification
Geometry modification algorithms modify the geometry and topology of the solid.
Boolean operations and sweep algorithms are examples from this class. Such algorithms
expect not only well-formed topology and geometry, but that adjacent entities match each
other well. Edges must lie on faces and points must lie on edges.

Geometric Interaciion
Geometric interaction algorithms operate on the shape of geometric interactions between
non-connected objects. Example algorithms compute adjacency between objects in an
assembly, or the shape of the space between two holes in an object. Algorithms of this
kind require topological and geometric well-formedness, and may or may not require close
entity matches as in geometry modification. They require well-formedness in the
interactions between objects that are being compared; if two objects are supposed to touch,
then the faces that touch should be close to each other with tangent surface representations.

5

Identifying Problem Areas in Parts
Historical experience in attempting to use design data for downstream analysis indicated
that many of the problem areas were invisible to the people defining and attempting to use
the data. Our intent in this project was to provide algorithms that would search the design
information, using a variety of metrics, to locate problem areas so they could be dealt with.

In order to be able to develop algorithms to search for suppressible geometry, it is
necessary to identify sources of difficulty. We identified problems by collecting examples
of processing failures in CUBIT, Archimedes, Cosmos/M, and other applications. The
following areas have been encountered in attempts to use ProEngineer design data for
analysis purposes: numerical inaccuracy, degenerate surfaces, unnecessary topology,
unanticipated topologies, extraneous detail, and difficult interactions in the object interior.
Similar problem areas are expected, to varying degrees, with any design system.

Diagnosis of problems can be very difficult. Problems are typically manifested by
downstream applications breaking, abruptly and without any clue as to how to proceed. In
instances where the application has been developed in-house, time spent with a debugger
can produce a reasonable diagnosis; in the case of commercial software, diagnosis requires
either involving the vendor, or dissecting the model to locate the problem area.

This list can be viewed as both a list of areas to search for in simplification, and as a list of
items to be wary of in developing robust downstream applications. For our purpose, the
former view is taken.

Numerical Inaccuracy
All modem CAD systems approximate a variety of numerical parameters to some degree.
The fundamental architecture of computers involves finite precision (typically 32 or 64 bit
floating point). Finite precision arithmetic guarantees truncation. Intersection curves are
frequently heavily simplified. A NURBS-NURBS3 intersection is theoretically a degree 54
polynomial which most CAD systems approximate with a cubic spline curve (degree 3).

ProEngineer has a parameter in the Setup menu of Sketch, Part, and Assembly modes that
defines what accuracy should be used in modeling. Adjusting that parameter can be
difficult -- it is possible that a part will regenerate correctly at a low accuracy, then fail
when higher accuracy is requested, because of difficulty in evaluating geometric
relationships precisely. This parameter defaults to low accuracy which improves modeler
speed, sacrificing accuracy.

Inaccuracies are typically discovered as gaps between points and the curves they are
supposed to limit, between curves and the surfaces they limit, and as gaps and overlaps
between surfaces of parts that are expected to be adjacent. In production ProEngineer
data, gaps as large as 10” have been observed between surfaces and the curves that limit
them, on ob‘ects of roughly unit size. Gaps at the highest accuracy setting tend to be
roughly 10 . Surface equations tend to be much more precise than edge equations; the
surfaces are extrusions and sweeps of curves that have been explicitly drawn and
dimensioned, while many of the curves are intersections of surfaces, which are
approximated for speed and representational convenience.

-2

Accuracy tends to have largest affect on geometric intersection-based calculations, such as
boolean operations, where algorithms attempt to resolve model topology to the shape of the

NURBS is an acronym for nonuniform rational B-spline surface.

6

geometric intersections. Query-based functions, such as surface-area calculations, are
entirely unaffected, as the positions of each entity are treated as independent parameters.
Finite element meshers are typically unaffected by inaccuracies, but decompositions applied
to geometry in preparation for meshing can be very sensitive to gaps.

Degenerate Surfaces
Degenerate surfaces are surfaces whose equations are defined in a manner that permits
more than one point in parametric space to occupy a single point in geometric space.
Examples are toroidal surfaces with zero major radius (a sphere), and NURBS surfaces
with a set of knots at a single point in space, such as along a single edge.

Degenerate Edge
of NURBS
parameterization

Degenerate Torus

-?ZT-m-WT

Figure 1: Degenerate NURBS surface and a torus with zero major radius.

ProEngineer has proven to generate a variety of degenerate surfaces. Filleting algorithms
frequently generate degenerate tori, and blending functions can produce surfaces with zero-
length edges in their boundaries if blends are connecting boundaries with differing numbers
of edges. Blending from a curve to a point always generates a degenerate surface.

Surface degeneracies produce erratic behavior in algorithms that expect uniformly
parameterized surface equations. Surface normal computations are extremely erratic at
points of degeneracy, such as cu\sps. Algorithm behavior can vary from producing subtle
numeric noise (in the case of querying algorithms, such as surface area), to algorithm
failure (e.g. the NO-SUW-PEW error in ACIS causing a core dump).

Degenerate curves are also theoretically possible; they have not yet been observed from any
CAD system, perhaps because of the nature of construction algorithms. Intersections of
degenerate surfaces could produce them, but the affect of the degenerate surface is likely
much more pronounced than the affect of a degenerate curve.

One known, expected, degenerate curve exists at the apex of rotationally swept curves,
such as the apex of a cone.

Unnecessary Topology
In defining topology to represent a geometric model, some topology occurs at arbitrarily
chosen locations to satisfy modeler limitations. For example, every edge might be required
to have a start and end vertex. For a circular edge, a minimal topology would not require
start and end vertices, yet current CAD systems always insert the vertices so that all edges

7

have a consistent topology. Another example of unnecessary topology is a seam along a
cylindrical face; the seam is not necessary, but it connects the boundary of the face into a
single loop.

A Simple Cylinder

Minimum Bounduq' Reprrsenmrion:
3 Fuces Non-Mini2inwl ~ ~ r y Representation.
2 mgcs 4 Firces
2 vrrrices 6 Edges

4 Venices

Figure 2: Minimal and non-minimal topologies.

All modelers produce some unnecessary topology. Figure 2 illustrates minimal and non-
minimal topology for a simple cylinder.

For most applications, arbitrary topology has little or no effect besides speed degradation.
Speed degradation occurs when extra unnecessary topology is introduced to algorithms
having super-linear (O(n log n) or worse, where n is a count of topological entities, such as
faces) performance; the extra entities slow processing down. Faceting and finite element
meshing algorithms have additional difficulties, because they produce geometry that is
required to match the topology of the given model. Unnecessary topology can produce
very short edges in the model, which force the faceting algorithm to produce facets with
very short edges, either resulting in waste of facet budget, or worse, in poorly shaped finite
elements. Extreme cases of short edges can cause complete failure of meshing algorithms.

It is possible to eliminate the effects of unnecessary topology automatically, either by
filtering it out or by developing algorithms that account for its presence. Current
downstream applications frequently lack such a capability.

Unnecessary topology presents difficulties for a simplifier, though, as it is necessary to
distinguish between short edges that occur because of the presence of some feature and
short edges that occur due to unnecessary topology created by the geometry engine.

Unanticipated Topologies
This problem case involves topologies that are more complex than the application developer
expected. In an example, a model of a silo was presented to a commercial tetrahedral
mesher. The silo was essentially a dome-topped cylinder with windows cut through the
walls. The mesher performed well until a simplification occurred that removed all the

8

windows. At that point, the mesher failed. When the windows were removed, the object’s
faces were disconnected into two separate shells; the mesher filled the exterior shell to
completion, then tried to fill the “interior” of the interior shell, effectively attempting to
mesh the universe. Failure occurred when the mesher ran out of memory.

In another example, a standard approach to representing the presence of the apex of a cone
(a degeneracy) as part of a face boundary is to use a zero-length edge having no curve
representation. Files containing such a representation caused a meshing package to fail
when attempting to discretize the edge. The developers of the mesher assumed that every
edge could be discretized into multiple, distinct points.

Dealing with unnecessary topology is certainly the job of the application developer. The
“simplification” tool can, however, provide warnings about atypical topologies (e.g.
disconnected shells, disconnected faces, nonmanifold topologies) so that the user has a
suggestion as to how to proceed until downstream applications can be corrected.

Excessive Deiail
One of the fundamental reasons for producing design data is to produce parts. The design
data is a statement of every detail that is expected to be in the final parts, so it is used in
defining contractual agreements.

Including details involves a price in the size and complexity of the data. In examining
typical design data, we find that the majority of the geometry present is in the form of
details. Comparing a simple cube to a filleted version of the same, the first has only 6
planar faces, while the filleted object has 26 faces. All of the intersection curves in the
simpler object are lines, while the filleted object has arcs as well. If variable radius fillets
were used, the surface complexity increases to NURBS (with significant increase in
representational cost4).

Features: 202
B-Rep: 4.45 MB
Facets: 8 MB

Features: 47
B-Rep: 507 KB
Facets: 214 KB

Figure 3: Detailed and simplified representations of a part, with comparative sizes.

Higher order surfaces, such as NURBS, incur significant computational cost because of the amount of data
involved in their definition, as well as the algorithms involved in their evaluation. While a quadric surface
involves a small amount of parameters (6 numbers define a plane), a NURBS is defined by a grid of points,
which can have arbitrary size. The algorithms to evaluate NURBS are frequently iterative, while quadrics
can be evaluated in closed form.

9

In Figure 3, we see a detailed part, and a simplified version of the same. The simplification
is typical of analysis needs, but does not represent any specific analysis. Various
representations of these objects show differences in data size; the largest variation shown is
for a faceted representation, where more than an order of magnitude difference in data size
is observed.

Details can cause great difficulty in downstream applications (e.g. finite element analysis).
In the simplest case, the downstream application takes longer to run. Since geometic
applications have worse than linear performance (O(n2) and O(n3) are common), detailed
models can take far too long to run. Designers concerned about long run times can speed
up their process considerably by judicious (temporary) simplification.

Frequently details can be ignored by downstream applications. Many applications facet or
mesh the object, ignoring much of the local surface detail. Depending on the resolution of
the analysis model being constructed, the details often have only negligible affect on the
solution, and can cause incredible cost in runtime.

Controlling details can have a significant effect on the speed of solid modeling operations
during designs. Feature addition algorithms are implemented in terms of Boolean
operations or Euler operatorss, both of which have superlinear runtimes (Booleans can
exhibit O(n3 log n) behavior).

Interactions in the Object Interior
Possibly the most difficult problem encountered in design data involves interactions in the
interior of objects. We are concerned here not with the shape of the exterior surface, but
the shape of the space between features that are close to each other (where the wall
thickness is small, or changes shape in a complex way). While many algorithms operate
on the object’s boundary, there are a few that perform operations on the shape of the
interior space. One such application is hexahedral finite element meshing, a current
research topic.

Interactions occur in the object’s interior for a variety of reasons. Some are for functional
reasons, but many are unexpected. Designers are typically working with 2 3D features that
are being used to create functional surfaces; non- 2 4D interactions can occur in regions that
are not of functional concern.

Most simple downstream applications are unaffected by the shape of the interior of the
object. For applications such as hexahedral meshing, such interactions can, however,
cause complete algorithm failure, or at least require inordinate time to deal with.

Identifying Problem Areas in Assemblies
I[n addition to the problem areas described above, assembly models present an additional set
of difficulties in the area of part/part interaction, including positioning errors and assembly
definition errors.

Euler operators are operations that preserve the Euler characteristic of an object -- that is, they maintain a
required consistency in the number of topological entities required to represent a valid solid object. Such
topologically localized operators are not guaranteed to preserve geometric integrity of an object.

10

Positioning Errors
Recall that parts and assemblies are positioned within their containing assemblies using
transformation matrices. When parts occur in subassemblies of assemblies, matrices are
concatenated to arrive at a matrix that will place parts in the global coordinate frame. Matrix
concatenation produces roundoff, resulting in positioning errors in placing parts.

When mixed-unit assemblies are defined, the units conversion is embedded in the
transformation matrix as a scale factor. If the transformation is applied to the geometric
definitions in a boundary representation (scaling the object up or down), the scaling also is
applied to gaps in the geometry (opening or closing them). The same effects as numerical
inaccuracy occur here, but in a nonuniform way; the part processes well by itself, but fails
in the context of an assembly.

Translations in matrices can produce yet another difficulty. Most modern CAD systems
use floating point representation for numbers. Floating point numbers degrade in accuracy
as they grow increasingly large. The result of applying a translation to an object that moves
it away from the origin is that the parameters in its representation are represented with less
accuracy. This reduction in accuracy produces closure errors that can grow larger than the
size of the part. In such a case, the object’s geometric definition is useless.

All of these positioning errors are subtle. Wherever possible, parts should be defined in a
consistent set of units, and operated on in the original coordinate system as long as
possible.

Assembly Definition Errors
Relative to parts, assembly information tends to be significantly less accurate. A common
practice is to defiie a rough model of the assembly in order to divide up the space, then
allow component designers to develop their designs within the space limitations they are
given. Over time, they produce increasingly detaled part definition, perhaps changing the
shape of their space (by trading space with others) until the detailed definition is complete.
Since attention is focused on the details, the assembly may not be updated (or even loaded,
since it is so complex relative to parts). Thus, natural work habits can result in an
assembly definition that really doesn’t match the parts in the assembly. Overlaps and gaps
are very common in such a scenario.

ProEngineer really provides little in the way of tools to guarantee that the assembly is as
intended. Parts and assemblies must be carefully scrutinized after regeneration to ensure
that design intent hasn’t been compromised.

11

Approaches to Part Simplification
There are a variety of approaches to removing portions of part geometry to achieve simpler
models, including feature suppression, boundary representation editing, and model re-
creation. These approaches are presented in order from maximal to minimal use of the
original design geometry.

Feature Suppression
Modem CAD systems tend to be based on a constructive model, such as a feature-based
representation. The explicit geometry produced by such models is generated by evaluating
the generative model, and reevaluation (regeneration) is frequently performed to achieve
some editing need.

Since feature inclusiodsuppression is a fundamental part of feature-based CAD interfaces,
suppression of this kind is as available as the CAD system itself. Suppression activities
operate in the originating CAD environment on the feature-based representation that is
evaluated to produce the geometry, so every downstream application has access to models
that have been changed in this fashion.

Producing simplified models in such representations appears to be very straightforward:
merely suppress certain details and regenerate. When such a scheme works, it is very
easy. Suppression-based simplification becomes difficult in cases of inconvenient
parentkhild and geometric relationships between features.

ParentKhild Relationships
As mentioned above, feature definitions require definition of geometry and references.
References relate shape and position of the feature’s geometry to other geometry of the
part. These references mean that any given feature can depend on the geometric definition
of any previously defined feature. This dependency is called a parent/child rezationship.

Under ordinary feature suppression, ProEngineer skips the evaluation of the geometry of
any suppressed features. Since some geometry has not been evaluated, any feature that
depends on that geometry is lacking definition and cannot itself be evaluated. In such a
case, RoEngineer presents a menu permitting child features to be rerouted (have new
definitions provided), or suppressed as well.

Suppressing child features can provide the desired simplification, but this is a binary
decision. If any geometry of the child features is desired in the final model, this route
cannot be taken.

Rerouting involves defining new references for the dimensions and alignments of a feature.
Manually rerouting a feature can be very difficult, as the original definition of the feature
may be forgotten, and there may be no convenient geometry to use in the rerouting.

A different approach to feature suppression in ProEngineer is the creation of a simpZz3ed
rep. The simplified rep finesses the parendchild relationship problem to a degree by
providing a mechanism for child features to reference geometry in a suppressed feature.
The effect of a simplified rep is that a complete model of the part is generated, and the
simplified rep is permitted to reference geometry in that representation to evaluate features
in the simplified rep.

12

Simplified reps would appear to finesse the problem of simplifying by feature suppression.
It is not a complete solution, because of difficulties related to feature usage (see next
section). Downstream applications must be aware of simplified reps in order to be able to
use them. ProDevelop applications cannot, at this time, create or access definitions of
simplified reps. The geometry of a simplified rep can be accessed by a ProDevelop
application if the simplified rep is the active representation of the object.

Inconvenient Geometric Relationships
More difficult than parentkhild relationships are inconvenient geometric relationships. Any
given part geometry can be created in any number of ways. Any choice implies certain
kinds of editability, and precludes others.

A very simple example is the creation of a hole pattern versus creation of individual holes.
If the hole pattern is created, it can be edited as a pattern. If individual holes are created,
they can be suppressed individually, but cannot be moved as a pattern.

Block with Ribs Feature Components Block with Slot(?)
“Removed”

Figure 4: A block with ribs cannot be conveniently simplified to remove the slot.
In another example (Figure 4), two ribs are added to a block. The region between the ribs
can be considered a “siot.” This slot cannot be suppressed, however, to form a larger
block, because it was not constructed by removing material to form the slot, but by adding
material around the space of the slot. The slot can only be removed by constructing an
object that represents the slot’s geometry, then performing material addition.

More subtle geometric interactions can occur, preventing the part from geometrically
resolving to a closed solid. Such difficulties represent a fundamental limitation of
suppression-based approaches.

Editing the Boundary Representation
Directly editing the boundary representation is another approach to achieving simplification.
Every known mechanism for editing boundary representation models can be applied in
simplifying the geometry directly, including Boolean operations, imprinting, slicing, and
local topology editing. A common thread throughout is that any new geometry required
(e.g. a primitive to unite with the object to remove a hole) must be created and aligned to
the object being modified.

Some CAD systems (notable ProEngineer) do not permit the boundary representation to be
directly edited. In such a case, boundary editing can only be performed by exporting to
another geometry engine (e g ACIS). Direct editing of the boundary representation
overcomes difficulties inherent in feature suppression, as the representation that defines the
limitations is not present.

13

While directly editing a boundary representation eliminates the possibility of parentkhild
interactions and bad feature choices becoming a limiting factor, this approach is not without
difficulty. In the feature suppression approach, a well-formed set of semantics are
available -- every feature can be present or absent. In direct boundary-representation
editing, no such semantics are present. You cannot simply “remove a hole” because no
“holes” are present. The “holesy7 are concave cylindrical faces. The model has to be treated
as unadorned solid geometry (faces, edges, and vertices) unless feature information is
available from another source or feature recognition (e.g. [4]) is used. Additionally,
construction geometry is frequently present in the feature-based representation that can ease
the simplification process.

Constructing New Models
Despite our best efforts to modify design models, it may be most expeditious to build new
models from scratch with the application’s needs in mind. Two approaches are: creating
only the topology (referencing the geometry), or creating the entire model.

Creating Only Topology
Frequently, the geometric information (surfaces, curves, and points) is sufficiently well
formed to be usable by the application. Problems might be principally topological,
involving too many details, unnecessary topology, and the like. A reasonable approach
would be to construct a new topological model that refers to the original geometry, but
provides a different, well-formed topology.

The TrueGrid [5] product uses this approach: meshable topology is imposed on product
geometry, ignoring the original solid topology.

Complete Reconstruction
Obviously, if the correct model is not available, it is always possible to build the requisite
model from scratch. If the CAD system is carefully driven, it is possible that building
simple models directly can produce usable results.

Such an approach is not directly connected to the “design” geometry, so changes in the
design do not propagate easily if analysis models have been built from scratch.
Additionally, errors may occur if the original model is not precisely followed in
constructing the analysis model. The cost of re-creating models can be high. However, in
cases where very small models are desired and only very large, complex models exist, this
approach may be the most practical.

Redefining the Feature Evaluator
Zn a related project, it has been necessary to produce geometry with a specific kind of
meshable topology independent of the geometric ramzficatiuns. A custom feature evaluator
was developed that guaranteed the necessary topology even if it entailed significant
geometric modification (i.e. telling geometric falsehoods to create a usable topology).
Development of such an approach is impractical with ProEngineer due to the closed nature
of its interface, but is possible in cases where a push-button solution is desired and the
domain of product definition is sufficiently simple. The approach has been very successful
in a real-world production setting.

Design Rules
Moving further upstream, it is possible to develop a set of design rules that define
constraints on how parts are designed (in terms of possible shape or in terms of feature

14

usage) to ensure the usability of design definition throughout the range of applicable
applications.

Designers tend to display a variety of responses when asked to conform to a set of design
rules. Rules limit creativity, and add burdens to the difficulty of creating a useful design.
Design rules tend to evolve over time as applications become increasingly sophisticated,
requiring periodic retraining. Additionally, design requirements for different disciplines
can conflict, adding to the designer’s burden. Designers must see an immediate benefit to
design rules, and their impact on practices must be balanced with their value, or the rules
will not be adopted.

15

Approaches to Assembly Simplification

Part Elimination
Suppressing parts in a feature-based model can involve the same difficulties as present in
the part-editing paradigm. Parent/Child relationships can make suppression of parts a
serious problem. Simplified rep, with its caveats, can improve this situation to a degree.

Removing part references from the evaluated representation of the assembly is very simple.
In that representation, elements of the assembly are simply references to parts and
assemblies, accompanied by transformation matrices. Removal of a part from the assembly
in this representation is as simple as removing a reference. This approach is not available
to applications within the ProEngineer framework, but works well if data has been
exported.

Providing Matching Parts
Inaccuracies in evaluation can produce gaps and overlaps between parts in an assembly.
Gaps in “contact” regions can occur for valid design reasons as well; for example, the
relationship between parts might be a running or a press fit, for which the geometry
of the real parts will involve such gaps and overlaps. For a number of assembly-level
applications (e.g. finite element meshing, assembly planning), it is desirable to provide
precisely matching geometry in contact regions.

We have used two approaches: modifying the geometry and explicitly representing the
relationship as a feature.

Modifying the geometry involves part editing techniques similar to those outlined above.
Parameters may be changed and geometry moved to close gaps. A function to find and
measure near misses between parts is useful in order to permit the editing to occur.

An alternative approach that was implemented in the Archimedes assembly planner is to
model the relationship as a feature. A press fit relationship can be explicitly modeled in the
application ([6]) or in the CAD system and translated to the application ([7]). Either
approach yields data that can support reasoning about the relationship without relying on
the contact.

Combining Parts
Excessive fidelity in an assembly model results in there being more parts present than the
analyst wishes to resolve. In such cases, it is necessary to treat multiple parts as a single
object. The multiple parts can be combined by boolean union, or replaced by newly-
modeled geometry representing the lumped mass of the objects being combined.
Combining the objects has the advantage of requiring no geometry creation, but can
produce rather complex models, due to interactions between the parts (e.g. gaps,
tangencies, etc.). The boolean union can tend to preserve significant geometric detail,
while modeling from scratch produces only the details desired.

In complex assemblies, it is sometimes appropriate to perform radical simplification,
perhaps replacing objects with simple lumped-mass models. Solid modeling engines are
very adept at producing mass and moment-of-inertia calculations for such simplifications,
so this approach to simplification is not further treated here.

16

Modeling Missing Geometry
While models of parts are generally too detailed, insufficiently detailed models also occur.
The missing information can be in the form of missing parts or missing details.

At Sandia, a common example of this occurs in modeling encapsulants and foams that
protect other parts. Since ProEngineer lacks functionality for filling voids between parts,
creating models of such parts would involve defining features representing the void space
around the parts that have already been defined and maintaining both part and void space
geometries over design changes. This represents significant work, and the shapes of these
objects can be inferred from the objects around them, so the foandencapsulant is not
modeled.

Frequently, analysis work requires that the encapsulants be modeled in order to achieve a
complete model. Boolean operations can produce models of many missing objects in a
direct way. Manual construction is also possible.

17

Pro/Engineer Based Simplification
Our investigation of simplification by feature suppression within the Prohgineer
framework focused on the requirements of radar cross-section analysis. The algorithms
used in our radar cross-section analysis require well-formed triangular facets. Ordinary
faceting algorithms don’t provide adequate control of the shape of the facets, so the
geometry is surface meshed with CUBIT to produce quadrilaterals, which are subdivided
to produce the requisite geometry.

The application was chosen because it involves translation of the geometry to an application
outside of the ProEngineer framework, and the application was experiencing significant
difficulty with the data being produced by ProEngineer.

The work focused on simplification within ProEngineer using feature suppression, as that
approach maximizes the number of downstream applications that can benefit from the
simplification activity. ProDevelop prevents direct editing of the boundary representation
in ProRngineer, so a feature-based approach is the only approach feasible. We identified
applications that were unable to process the ProEngineer “simplified rep,” so we limited
our inquiry to feature suppression.

The algorithms developed in this work were not intended to provide complete coverage;
rather, to provide a necessary set of tools for a particular kind of analysis, and to measure
the value of such tools in a production environment.

Degenerate Surface Detection
In our attempts to use ProEngineer-generated data downstream, degenerate surface
detection received a high priority, as degenerate surfaces caused some of the most difficult
problems. Crashes were frequent in CUBIT, occurring whenever the surface equations
were queried in the neighborhood of a degeneracy. The ACIS modeler complained of
inability to compute surface normals at points of degeneracy, causing an inability to find
closest points on surface, thus preventing meshing.

Degenerate surface recognition algorithms address degeneracies in the following kinds of
surfaces: spline face, conic face, NURBS, ruled surface and torus. Spline and N U N S
surfaces are checked to see if defining knots were too close to each other (within a
tolerance). The parameters of conic face and torus are checked to find degenerate angles
and radii.

The surfaces checked by our algorithms have been shown to exhibit degeneracy rather
frequently, due to peculiarities of feature construction algorithms in ProLEngineer (e.g.
blend surface and fillet). Most of the remaining surface types are simple extensions of the
algorithms already developed. The “foreign surface” in F’roEngineer is difficult to check
for degeneracy, as its definition is provided by an application programmer, and complete
access to the surface definition is not guaranteed.

18

Degenerate surfaces.

Figure 5: Automatic detection of degenerate surfaces.

Detection of Details
Algorithms for detecting details and redundant topology were developed. The faces of part
models are traversed? and measured in terms of surface area; edges are likewise measured
in terms of length. Filters for small and large-valued objects are provided, to enable
visualization of both important and unimportant geometry.

Algorithms for traversing the assembly to locate details were developed. The assembly can
be searched to identify and highlight piece parts of specific materials? to satisfy a need for
removing materials that were unimportant to analysis.

Longest edge

Figure 6: Size-based geometric search.

Simplification Algorithms
In the domain of part simplification, we developed an algorithm for traversing feature
definitions to determine the ramifications of parentkhild relationships, automatically
suppressing the feature if possible. In order to attack parentkhild relationships as much as
possible, we worked to develop an algorithm for automatic feature rerouting (see below).

19

In the domain of assembly simplification, we responded to a request from Design Services
to provide a means for suppressing/resuming all features in named layers of parts and
subassemblies in an assembly. The algorithm traverses the assembly data structure,
traverses layer information, and constructs a list of features to suppress. The part
suppression algorithm mentioned above is exercised for the features to be suppressed in
each part. The algorithm is complete; testing is underway.

Another assembly-level operation merges piece parts into a single part by simply selecting
them. Merging is not equivalent to boolean union, as all of the original faces of the merged
parts are left intact. Boolean operations can, however, be performed outside of the
ProEngineer framework, if such part combination is required. For certain applications it is
sufficient to consider the combined parts as a single object.

Inquiry and Summarizing
An almost surprising result of our work in providing algorithms for automatic search was
the requirement for summary information, and the ability to interactively apply evaluation
functions to anything the user selected. This summary information provides a rapid way to
assess how much simplification might be required before any significant time or effort is
invested.

Summary information for parts includes the number of surface finishes on the part, and a
table listing the number of faces having each type of surface (planes, cylinders, cones, tori,
surfaces of revolution, tabular cylinders, ruled surfaces, coons patches, fillet surfaces,
spline surfaces, NURBS, cylindrical splines and foreign surfaces). Summary information
available for a selected face includes surface type, number of bounding edges, and counts
of each type of edge(line, arc, and spline edges).

Application-Driven Simplification
After developing a number of recognition algorithms within the ProEngineer framework, it
became obvious that some applications are effective at determining which kinds of
geometry and topology they are not prepared to process, and that the algorithms for
detection of inappropriate geometry are best developed in the application. Thus, we
developed an algorithm for performing simplification within the ProRngineer simplification
framework, but driven by the external application.

Requisite for application-driven simplification is a means of stating which faces and edges
are not desired, in a manner that survives starting and stopping of ProEngineer.
ProEngineer defines three mechanisms (pointers, ID’s and user attributes) that can be used
to refer to faces and edges. Both ID’s and user attributes survive regeneration and restarting
of the modeler, so are appropriate. User attributes increase data size, so ID’s are the
labeling method of choice.

When geometry is transferred to the application, it is necessary to label faces and edges
using ID’s. In the case of translating to another geometric model (ACIS in our case),
attributes can be used to contain the ID information.

When the external application encounters inappropriate faces or edges, it needs to build a
list of the offending entities. This list is then processed by a ProLDevelop application to
locate the features that contain the offending geometry. The features are searched for
children and suppressed if appropriate/possible. After regeneration, the data can be
transferred to the application again for another attempt at processing.

20

Feature Rerouting
Work was begun on an algorithm for rerouting troublesome features. The work was halted
due to a lack of fundamental functionality in ProDevelop. The functionality was promised
in Profloolkit, but was unavailable in time to permit inclusion before project funding
terminated. The algorithm was designed and some coding begun; an outline of the
necessary algorithm follows.

Given that we desire to reroute a child feature in the absence of the parent, it is necessary to
change external references from objects in the feature being removed to other references in
the geometry. These references are of two forms: dimensions and alignments. The
referenced geometry in dimensions and alignments are any of the kinds of geometry
supported in ProEngineer: datums (points, axes, planes, curves and surfaces), and part
boundaries (faces, edges, and points). Features can be rerouted by finding or creating
geometry that is equivalent to the referent that is being eliminated, then changing the
reference and regenerating the feature.

Proof of geometric equivalence is rather straightforward, merely involving checking point,
edge, or surface definitions for coincidence. It is possible for equivalent curves and
surfaces to have different definitions, so algorithms must be sensitive to this possibility.
Most solid modelers have such algorithms embedded in them to permit merging of
equivalent geometry during boolean operations. Access to such algorithms is typically
missing from programmer’s interfaces, however.

For rerouting purposes, the definition of equivalence must be expanded to pennit
equivalence relative to the dimension or alignment being rerouted. In the case of a linear
dimension, for example, it is possible for a point and a line to be geometrically equivalent,
if the point lies on the line and the line is perpendicular to the direction of the dimension.
The referents must possess equivalent position in their projection onto the dimension.

If the search for geometrically equivalent geometry fails, two choices are possible for
dimension references: constructing equivalent geometry, or searching for non-equivalent
geometry that can be used in conjunction with a change in dimension value. If equivalent
geometry is constructed, a datum is adequate. Construction of arbitrary datums is greatly
simplified if the datum is referenced to other datums, possibly to the default coordinate
system. Algorithms for creating arbitrarily oriented datums in ProEngineer have been
developed.

For alignment references, geometrically equivalent references are required. They must
either be located in previously existing geometry or constructed.

The algorithms for rerouting features were designed and partially constructed. Incomplete
programmer interface to ProDevelop prevented their completion. The newly released
Profloolkit promises the possibility of performing feature rerouting automatically, but is
currently unproven in our environment.

AClS Based Simplification
In attempting to create hexahedral finite element meshes of complex 2$D assemblies, we
have encountered a variety of assembly-related difficulties. A suite of tools was developed
to provide a means of closing gaps, modeling foam, perforrning imprinting, and otherwise
modifying the geometry of these assemblies to produce meshable geometry. The tools
were developed as small, simple, standalone modules that can be executed from the UNIX
command line. Each file processed by the tools is assumed to contain the definition of one

21

or more solid objects, which are operated on and written to an output file. This approach
was taken following programming frustration in working with large packages such as
ProEngineer and CUBIT, where significant time is spent compiling and linking, and
dealing with the complexity and limitations of the tool. ACIS was used as the geometry
engine due to ease of programming the tools. It is interesting to note that these tools were
developed by an analyst to meet his needs, rather than being developed by a geometry or
software development specialist.

Assembly Level Tools
Certain of these tools are limited to 2 i D objects. Equivalent functionality will be required
in three dimensions.

This set of tools arose out of a need to perform geometric manipulations on a large number
of ACIS bodies. These tools take as arguments the names of ACIS ‘.sat’ files and in some
cases an axis designation and or numerical constant. The ‘.sat’ file can contain any number
of ACIS bodies. Each of the geometry tools operates on every body in every target file.
Operations can be performed on a single body by isolating that body in a ‘.sat’ file.

The output file name may be the same as any of the input file names. Very little error
checking is done within these tools. Some of the tools (tool-maker, cubemaker,
imprinter, leveler) are designed to operate on a file containing 2 i D geometry
aligned on the y axis.

ads-checker target-file
acis-checker checks every body in the target file for correctness and closure by
invoking the ACIS api-check function. This check is a useful but not all inclusive check
of the validity of the ACIS entities in the target file. Output includes statements regarding
peculiar topologies (e.g. backwards coedges, backpointers to parent entities that don’t
claim an entity as a child), and geometric gaps. Degenerate surfaces are not included in this
report. The functionality relies on built-in ACIS functionality; results are far more
comprehensive if recent versions of ACIS (Le. 3.0) are used.

boolean tool-file target-file output-file
Boolean decomposes (subdivides into small, simpler pieces) all bodies in the target file
with all bodies in the tool file. Any body in the target file which is overlapped by a body in
the tool file will be cut into separate bodies along the surfaces defined by the tool body (one
of the bodies from the tool file).

cube-maker target-file output-file
cube-maker creates large cubes (hard wired for size currently in x and z direction) which
have top and bottom faces (y axis) that correspond to the planar (constant y value) faces in
the target file. The cubes created by cubemaker are useful for decomposing geometry.
If boolean is invoked with a tool file of cubes and a target file from which the cubes were
made, the bodies in the target file will be decomposed by the y axis aligned planar faces in
the target file. On 2 3D geometry this leaves all of the resulting geometry meshable by a
pave and sweep operation.

extractor toolfile target-file output-file
Extractor removes every body fiom the target file which intersects with any body in the tool
file and places them in the output file. The target file is changed in this case. This tool can

22

be useful for segregating components which intersect before operating on them using
boolean or subtractor.

imprint-files tool-file target-files output-file
imprint-f iles imprints every body in the target file with every body in the tool file
and places them in the output file. When two bodies are imprinted, each body is modified
to include an image of the other body where they touch or overlap. Such functionality
permits each body to explicitly model its contact interactions with other bodies, and is
necessary for producing contiguous meshes across contacting objects.

imprinter target-file output-file
imprinter imprints every body in the target file with every other body in the target file
having its centroid at the same y location (this is very useful with David Saylors’ decomp
tool). This imprinting operation ensures contiguity of mesh between bodies on the same
extrusion level in a model decomposed using decomp. The contiguity of mesh in the
extrusion direction is guaranteed by the algorithms of decornp. Imprinting only within the
same extrusion level greatly reduces imprinting time.

imprinter-all target-file output-file
imprinter-all imprints every body in the target file with every other body in the target
file and places it in the output file. This imprint operation is more general than the
imprinter tool and can take a significantly longer time.

joiner target-files. . . . output file
Joiner places all the bodies from the input files into the output file (wildcards can be used
for the target files). This tool is extremely useful for building models out of separate files of
geometric parts.

inquire target-file
inquire writes to standard output the centroids and moments of bodies and lumps and
the areas and moments of faces in the model.

leveler target-file output-file tolerance
leveler operates on all of the faces in the input file which are normal to the y axis and
are planar. These faces are moved on the bodies so that their centroids are at their original
location rounded to the tolerance value supplied. WARNING: leveler will probably
perform erratically on files containing non- 2 4 D geometry or on files containing 2 3 D
geometry which is not aligned with the y axis. leveler is useful for removing small
gaps which can exist between components.

plane-align-bodies target-file output-file {xlyIz}
plane-align-bodies moves each body in the target file so that its minimum bounding
box6 location aligns with the x, y, or z plane. This is useful for removing small alignment
offsets between groups of bodies.

plane-align-file target-file output-file {xlyIz}
plane-align-f ile moves each the bodies in the target file so that the minimum
bounding box around all the bodies is aligned with its minimum location on the x, y, or z

Minimum bounding box is an axis-aligned box computed by functionality provided within ACIS.

23

plane. This is similar to plane-align-bodies except that it moves all the bodies in the
target file as a group.

rotator target-file output-file {xlyIz} angle (degrees)
rotator rotates all the bodies in the target file [angle] degrees about the given axis.

scaler target-file output-file scale-factor
scaler scales all bodies in the target file by the scale factor and saves them in the
output-file .

self-boolean target-file output-file
self-boolean decomposes every body in the target file with every other body in the
target file and places the result in the output file. This ensures that none of the bodies in the
output file share volume.

shellfiller target-file output-file
shell-f iller creates a new body for every void or solid within the main body. It
blindly creates a new volume for all but the first shell in the target file. The first shell of an
ACIS body is by convention its external boundary. This is very useful for creating solid
bodies to represent material filling the voids within components and parts. The foam within
a closed volume can be created using shell-f iller. The volumes occupied by bodies
within the foam can then be formed by subtracting (using subtractor) the surrounded
bodies from the foam.

splitter target-file output-root-name
splitter puts every body in the target file in a separate file with the base name
output-root-name. This will be a more useful function when it is enhanced to name
the resulting files according to attributes attached to the bodies in the target file.

subtractor tool-file target-file output-file
subtractor subtracts every body in the tool file from every body in the target file and
puts the result (if any) in the output file. subtractor is very useful in producing models
of encapsulants such as foam and potting material.

tool-maker target-file output-file
tool-maker creates extruded bodies from every planar (constant y) face in the target file.
Size of bodies is currently hardwired. tool-maker combined with cube-maker and
boolean can be used to fully decompose a set of 2+D bodies.

translator target-file output-file {xlyIz} distance
translator translates all bodies in target file a distance along the chosen axis.

uniter target-file output-file
uniter unites (combines into a single ACE body) all the bodies in the target file.

While any individual tool might seem almost trivial, the combination of tools is quite pow-
erful. For instance, foam can be modeled by performing unites of objects to create a shell,
which can be converted to a solid with shell-filler. The voids for components within the
foam can then be created using subtractor. See Figure 7.

24

The availability of a robust translator and a suite of solid model manipulation tools is
essential if solid models are to be used for the generation of spatial discretizations suitable
for finite element analysis. Most solid modeling applications focus on providing the ability
to add features to a solid in the process of defining a part. Their ability to manipulate
multiple parts into an assembly appears to be largely an afterthought. The command line
based geometry tools allow the user to manipulate components and assemblies on an equal
basis. These manipulations can be scripted to allow replication of components after the
original model parts have been modified.

I Lid

Figure 7: An example of constructing a model of encapsulant from the surrounding
geometry. The left image shows a case, lid, and two buttons. The right image shows
a solid body created by r i n g the void between the case and lid and subtracting the

two buttons.

Part Simplificaiion
Regeneration based feature abstraction is a strategy for transforming a feature-based part
representation into a collection of solids each of which corresponds to a feature on the part.
The strategy exploits Pro/E’s sequential regeneration of each feature of the part and
depends on a reliable translation of the ProE part into a solid model after each regeneration
step. If a correct solid model of the part can be produced after the regeneration of each
feature, and if these solid models are sufficiently precise to allow Booleans between them,
then Booleans performed between the solids of each regeneration will produce solids
representing only the features added during the generation.

If a part consists of just two features, a protrusion and a cut, then subtracting the solid
containing the second feature from the solid corresponding to the regeneration before the
cut was added will create a solid part corresponding to the cut. If the second feature is a
protrusion, then subtracting the first part from the second part will produce a part
corresponding to the protrusion feature. The procedure is executed for the entire feature
sequence to produce “delta volumes”, which are volumetric models of the material added or
removed with each feature.

This procedure can be automated. It removes all parent child relationships. The delta
volumes can be joined back onto or subtracted from the base part to produce a part with any
combination of the original parts’ features. Features can be combined with each other with
boolean operations to produce models of feature interactions, and permit portions of

25

features to be applied to a model. The original feature definitions still limit the kinds of
simplifications that can be perfonned, but the ability to recombine features in arbitrary ways
strongly reduces the affect of feature definitions. All these operations depend on the
successful operation of the translator and the Boolean operations.

The approach was tested with a small number of examples, with RoEngineer as the
generator of data and ACIS as the external geometry engine. It worked on our test cases,
one of which is shown in Figures 8 (the original feature history) and 9 (the automatically
derived delta volumes). The approach was expected to have robustness problems when
faced with large inaccuracies in the data because it relies on boolean operations. We have
not yet encountered accuracy-related difficulties, possibly because the bulk of the geometry
is precisely coincident, without the grazing cases that commonly plague Booleans. Further
experimentation is warranted.

Figure 8: The feature history of a part.

It is possible to construct a variant of boolean operations that would be significantly faster
and more robust for generating delta volumes. The approach exploits the fact that the
models we compare to produce delta volumes are precisely equivalent except where the
new feature has modified the geometry. A fast search can determine what geometry and
topology is identical in two models being compared, and construct the difference graph.
This difference graph can be operated on with simple Euler operations to produce the
desired delta solids, without the attendant computational cost or numerical problems
associated with boolean operations.

26

Figure 9: Automatically derived delta volumes representing changes induced with
each feature. These delta volumes, combined with the base feature, can produce the

original part and a much wider variety of variants than feature suppression.

Design Rules
We developed a set of design “suggestions” that would improve the ease of simplifying
ProEngineer models for use in radar and finite element activities. The design rules
included:

Defining part features using datums first, followed by main shape defining features,
followed by details. Such a feature ordering ensures that main shape doesn’t depend
on details.
Ensuring that parts can be regenerated at highest accuracy. This can be done by either
always using a high accuracy, or by periodically regenerating with accuracy high to
ensure that feature geometry is resolvable at high accuracy.
Dimensioning features from datums, rather than other part geometry. This is consistent
with geometric dimensioning and tolerancing recommendations. Align references are
nearly impossible to define from datums; we believe align references to be a “crutch”
that supports inadequate geometric reasoning in the feature engine, and recommend
investigating feature-based approaches that don’t require align references.
Avoiding blends to a point or blends between contours with different numbers of
edges.

27

Design in 23D wherever possible, as fully 3D geometry is profoundly more difficult to
mesh with hexahedral elements.

We presented these suggestions to a group of designers, and they met a mixed response.
Designers have a difficult job to perform, and our recommendations were viewed as
potentially adding yet more difficulties and restrictions to the job.

28

Results
Both the ProEngineer- and ACIS-based simplification approaches were tested in
production-like settings.

The ProBngineer-based tools were used to prepare models for surface meshing with
CUBIT. When we began using CUBIT in this fashion, failures were much more common
than successes. Production use of the tool was impossible because it was impossible to
estimate how long a given job would take. There were simply too many show-stopping
errors in the data (especially surface degeneracies and geometric closure problems), and no
mechanisms for diagnosing problems.

Experience with ProEngineer-based tools shows that the most useful tools were those that
detected problems with the data. Degeneracies and invisible topologies become easy to
detect. After detection, eradication is ordinarily rather straightforward. A seasoned
ProEngineer user was ordinarily capable of eliminating most causes of problems, and the
process of performing the simplification was an excellent way to educate the designer in the
problems that are created by certain design practices. Figure 10 shows a manually-
performed simplification that eliminated a previously show-stopping degeneracy. Figure
100 shows a model that was radically simplified with the help of automated parentkhild
inferencing.

The ability to see and eliminate problem areas has increased the analysis capability to
approach production-worthiness. In terms of our quality metric, we have made great
strides in increasing our ability to deal with new, unknown data. The prototype is still
incomplete, but it addresses an important class of problems encountered in real data.

Figure 10: Manual simplification to remove automatically detected degeneracies at
pointed ends.

29

. A difficult fillet.
Parentlchild reiationships
prevent suppression.

Figure 11: A part simplified using the J?ro/Engineer-based tools. Only a few
stubborn details remain, and the part is proven free of degenerate surfaces.

The ACIS based tools were used to operate on a complex 24D assembly in an attempt to
use CUBIT to produce a mesh. Figure 12 shows a simple example of geometry processed
by these tools to produce decomposable, meshable geometry. The tools significantly
increased the degree of success in meshing the assembly, but were somewhat incomplete.
Simultaneous with this activity, a more manual approach was being attempted. The manual
approach was chosen over the automated route because many of the automatic tools were
under development. However, our ability to attack complex data sets grew significantly.

30

Figure 12: A decomposed, meshable assembly. Foam was produced and assembly
gaps were corrected automatically.

Our most effective development activities involved a reasonably tight coupling between
developers and analysts. The ACIS-based code was, in fact, developed by an analyst (the
“user” was the “developer”). Close communication between analyst and developer ensures
that the right modules are built, and with a reasonable priority. Testing the results on real
production problems is the most effective way to guarantee that the tools will be genuinely
effective.

Future Directions
Both toolsets would be very useful in a production environment. In order to become
production worthy, a number of enhancements are required, as described below.

We note that the prototype software needs to be more robust. All of the modules built for
this work were developed to test theories of simplification, so are rather lacking in the
software engineering required of production code.

ProEngineer-Based Simplification Tools
The ProEngineer geometry search capability should be expanded to provide more thorough
search coverage. More extensive attribute-driven search and search for features and parts
based on visibility are priorities.

The ability to reroute features is important to any suppression-based scheme. The
ProRoolkit environment claims to provide the requisite functionality, so should be
investigated.

31

A diagram showing feature precedence (parenvchild interactions) would be very useful in
planning a simplification strategy, and could help designers prevent awkward feature
definitions. The model tree window, new in ProEngineer 18, can provide an excellent
basis for such functionality.

ACIS-Based Tools
The acis-checker module should be enhanced to check for degenerate surfaces, and
for assembly-level problems, including gaps between parts.

Software to recognize that parts are meshable by currently available techniques (e.g. pave-
and-sweep) would be a significant help in finding peculiar geometries.

To extend the work from 2 i D to 3D, it is necessary to deal with gaps between parts. One
approach recognizes gaps and overlaps and adjusts the solids for precise coincidence. A
different approach would modify the imprinting algorithm to imprint based on imprecise
coincidence, and adjust mesh coordinates to achieve closure. The first approach is much
more difficult to implement, but is more general in supporting ancillary meshing
requirements, such as decomposition.

Further testing of regeneration based feature abstraction is warranted. Our testing was
limited to rather simple parts, with no NURBS surfaces. Automation of the process would
permit significantly improved testing, and would provide a basis for a production
capability. The translation infrastructure (modeler accuracy, ProE to ACIS translation)
must be enhanced to create a production capability.

32

References
[11 ProEngineer Fundamentals, Release 16, Parametric Technology Corporation,

Waltham, MA, 1995.
[2] ProDevelop Reference Guide, Release 16, Parametric Technology Corporation,

Waltham, MA, 1995.
[3] ACIS Geometric Modeler Application Guide, Version 2.0, Spatial Technology

Corporation, Boulder, CO, 1996.
[4] Recognizing Shape Features in Solid Models”, H. Sakurai and D. Gossard, IEEE

Computer Graphics and Applications, Sept. 1990.
[5] TrueGrid Manual Version 1.4.0 XYZ Scientific Applications, Inc., 1997
[6] Jones, R.E., et al, “Constraint-based Interactive Assembly Planning”, Proceedings

IEEE International Conference on Robotics and Automation, 1997.

.1

[7] Ames, A.L., et al, “Liaison Based Assembly Design”, Sandia Report SAND96-3004,
1996.

33

Distribution
Internal Distribution:

1
1
1
1
10
1
1
1
1
1
1
1
1
1
1
1

MS0151
MS1165
MS 1002
MS 1010
MS 1010
MS 1010
MS 0105
MS 0312
MS 0835
MS 0835
MS 0316
MS 0441
MS 0625
MS 0625
MS 0624
MS 0624

G. Yonas, 9000
J. Polito, 9300
P. J. Eicker, 9600
M. E. Olson, 9622
A. L. Ames, 9622
J. J. Rivera, 9622
R. E. Asher, 2435
A. Webb, 2435
T. C. Bickel, 9113
D. M. Hensinger, 91 13
P. F. Chavez, 9204
T. Tautges, 9226
L. Grube, 9783
E. Eager, 9783
C. Neugebauer, 9784
M. R. Ashby, 9784

MS 0188 LDRD Office, 4523
MS 9018
MS 0899 Technical Library, 4916
MS 0619 Review & Approval Desk, 12690 For DOWOSTI

Central Technical Files, 8940-2

34

	Introduction
	Problem Statement
	Technical Problem
	Technical Approach
	Technical Issues
	Quality Metric
	Representations
	Feature-Based Modeling
	Parts and Assemblies
	Range of Downstream Applications
	Topological Query
	Geometric Query
	Geometry Modification
	Geometric Interaction
	Identifying Problem Areas in Parts
	Degenerate Surfaces
	Unnecessary Topology
	Unanticipated Topologies
	Excessive Detail
	Interactions in the Object Interior
	Identifying Problem Areas in Assemblies
	Positioning Errors
	Assembly Definition Errors
	Approaches to Part Simplification
	Feature Suppression
	Editing the Boundary Representation
	Constructing New Models
	Design Rules
	Approaches to Assembly Simplification
	Part Elimination
	Providing Matching Parts
	Combining Parts
	Modeling Missing Geometry
	ProEngineer Based Simplification
	Degenerate Surface Detection
	Detection of Details
	Simplification Algorithms
	Inquiry and Summarizing
	Application-Driven Simplification
	Feature Reroutin-
	ACIS Based Simplification
	Assembly Level Tools
	Part Simplification
	Design Rules
	Results
	Future Directions
	Pro/Engineer-Based Simplification Tools
	ACIS-Based Tools
	Distribution
	Figure 1: Degenerate NURBS surface and a torus with zero major radius
	Figure 2: Minimal and non-minimal topologies
	Figure 3: Detailed and simplified representations of a part with comparative sizes
	Figure 4: A block with ribs cannot be conveniently simplified to remove the slot
	Figure 5: Automatic detection of degenerate surfaces
	Figure 6: Size-based geometric search
	void between the case and lid and subtracting the two buttons

	Figure 8: The feature history of a part
	variants than feature suppression

	Figure 10: Manual simplification to remove automatically detected degeneracies at pointed ends
	the part is proven free of degenerate surfaces
	automatically

