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Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a
general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading
and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft
tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint
models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling
are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the
knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load
response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and
joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study
the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced
at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete
model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore,
model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model
verifications at the joint level are still crucial for the accuracy of the modeling.

1. Introduction Method (FEM) has been widely used to investigate the
biomechanics of the knee joint at the cell, tissue, and joint
levels.

The earliest application of FEM in biomechanics goes
back to 1972 [3], only over a decade after FEM was introduced

as a powerful tool in structural analysis. Since then, FEM has

The human knee is the largest joint in the musculoskeletal
system, which supports the body weight and facilitates
locomotion. The knee consists of two distinct articula-
tions, the tibiofemoral and the patellofemoral joints [1]. The

tibiofemoral joint is one of the most complex articulations
of the human body and its main tissues are the femur, tibia,
fibula, articular cartilages, menisci, and ligaments. The tibio-
femoral joint enables the relative motion of the femur
and tibia, which is facilitated through mechanical contacts
between the cartilages and menisci [2]. In order to under-
stand common injuries and development of osteoarthritis
(OA), extensive experimental and computational studies have
been performed on this joint and its individual tissues.
Among the computational approaches, the Finite Element

been used in different areas of bioengineering. In 1983, the
first review paper on the application of FEM in orthopedic
biomechanics was published by Huiskes and Chao [4]. In
1992, Clift reviewed the application of FEM in cartilage
biomechanics and investigation of OA [5]. Later, Goldsmith
and coauthors reviewed stress analysis of articular cartilage
under compressive loading in 1996 [6]. Single-phase and
biphasic analytical models of articular cartilage and their
FE simulations were discussed in their article along with
experimental studies. In a review by Hasler and coauthors,
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the experimental methods and theoretical models of articular
cartilage were discussed, and the material properties for nor-
mal, pathologic, and repaired cartilages were summarized [7].
Knecht and coauthors reviewed the studies on the mechanical
properties of articular cartilage and provided reference data
for the cartilage properties in preosteoarthritis; the data
provided can be used in studies of cartilage degeneration and
diagnosis of osteoarthritis [8].

In the last decade, many reviews targeted the constitutive
modeling of individual tissues of the knee. Wilson and
coauthors reviewed the computational and analytical models
of articular cartilage proposed for the study of mechanical
behavior and damage mechanisms. The models they reviewed
included swelling and chemical expansion [9]. Taylor and
Miller summarized the macroscopic and microstructural
constitutive models of cartilaginous tissues [10]. At the
macroscopic level, as in single-phase and biphasic models,
the bulk mechanical behavior of the cartilage was discussed
with no consideration of the microstructural components
of the tissue (such as collagen fibrils). The microstructural
models include the fibril-reinforced and swelling models,
as discussed in the review. van Donkelaar and Schulz [11]
discussed the patents for mechanical stimulation of cartilage
transplants and chondrocyte-loaded scaffolds using bioreac-
tors. Although the paper does not discuss the constitutive
modeling, it provides useful information for FE modeling
of tissue-engineered cartilages. Woo and coauthors reviewed
the mathematical models of ligament with special focus on
viscoelastic models. In particular, they compared the theory
of quasi-linear viscoelasticity (QLV) with the single integral
finite strain model [12]. Weiss and coauthors evaluated the
computational models of ligament in one-dimensional and
three-dimensional scales with focus on the relationship of
microstructures and the continuum mechanical behavior [13,
14]. Beside the numerical aspects, the experimental studies
to obtain the material properties of ligaments were also
discussed in their work [13]. Provenzano and coauthors
reexamined the nonlinear viscoelastic models of ligaments
based on the existing experimental data and evaluated their
ability to predict the dependency on strain amplitude and
frequency [15].

Despite extensive analytical and computational studies
on the human knee joint, few review papers in this area
are available in the literature. Hefzy et al. reviewed the
analytical models of knee joint used to describe the knee
kinematics and kinetics [16] and later updated the review
[17]. Those analytical models use rigid body mechanics and
usually ignore the deformation of tissues, such as cartilage
and menisci. Pefia and coauthors reviewed the computational
models of human knee and temporomandibular joints with
major focus on the visco-/hyperelastic constitutive behav-
iors of soft tissues, including muscles, ligaments, tendons,
and articular cartilage as single-phase materials [18]. Elias
and Cosgarea reviewed different computational aspects of
the patellofemoral joint including modeling techniques, for
example, patient-specific modeling, and clinical applications
[19]. Mackerle published a bibliography spanning 1998-2005
in modeling and simulations in orthopedics. The bibliogra-
phy provides an extensive list of publications in different areas
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of computational biomechanics including knee and hip joints
[20].

The objective of this paper is to provide a general review of
the computational models of the knee joint proposed for dif-
ferent biomedical/clinical applications. For brevity, the focus
of our paper will be on the FE models of the tibiofemoral
joints, with some examples of the patellofemoral joints. The
constitutive models for soft tissues of the knee are briefly
discussed. The geometry reconstruction procedures as well
as some issues in finite element modeling are also covered. A
comprehensive review of published joint models is presented
thereafter. Representative articles on different aspects of
the knee biomechanics, including general contact behaviors,
ACL and PCL reconstruction, meniscectomy, knee replace-
ment, and experimental validation, are reviewed. Finally, the
remaining challenges and possible future directions in this
area are discussed.

2. Constitutive Modeling of the Tissues

Several constitutive models have been developed to simulate
the mechanical response of individual tissues of the knee in
1D or 2D geometries. These models may provide stress-strain
relationships for 3D studies of the knee. We do not intend
to review the constitutive models of the tissues but provide
a brief summary of constitutive description to facilitate our
review on the computational studies of the knee joint.

Among all soft tissues of the knee, articular cartilage
has been of great interest due to significant impact of OA
on the quality of life. Cartilage is composed of a porous
matrix saturated with water. About 68%-85% of the weight
of cartilage is water [21]. The porous matrix is composed
of chondrocytes, collagen fibers (mainly type II), and neg-
atively charged proteoglycans. Collagen and proteoglycans
form about 50-70% and 30-35% of the matrix dry weight,
respectively. The fiber orientation in mature cartilage varies
with depth: parallel to the articular surface in the superficial
zone, random in the middle zone, and perpendicular to the
bone interface in the deep zone [7, 22].

In the past four decades, extensive studies have been
performed to understand the sophisticated behavior of artic-
ular cartilage and improve constitutive modeling. The early
constitutive models of articular cartilage were single-phase,
that is, only the solid phase of the tissue was considered
[23-28]. These models have limited capabilities in describing
the time-dependent response of cartilage, which is mainly
due to the interstitial fluid flow when the tissue is in
compression. Viscoelasticity was considered in some of these
models to describe the time-dependent response of cartilage
[24, 25, 27]. However, single-phase viscoelastic models do
not describe the fluid flow in the tissue. The effect of fluid
pressure on the tissue stiffness is included in the overall
Young’s modulus, often called the effective modulus, which
is naturally higher than that for the drained tissue [29, 30].
Obtaining the effective modulus is often challenging because
the pressure is time and strain-rate dependent [31-33].

Poroelastic and biphasic models that considered both
solid and fluid phases were the second generation of con-
stitutive models proposed to account for the effects of fluid
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pressurization. The poroelastic models were based on the Biot
theory of soil consolidation [34, 35] and in biomechanics
were first used to simulate the skull and other bony structures
[36-38]. In 1980, the linear biphasic theory was proposed
for articular cartilage [39] and then further developed to
include variable permeability [40] and large deformation
[41, 42]. Although the field equations in the linear biphasic
theory are different from the poroelastic equations, it was
proved that both linear theories are equivalent for the case
of inviscid fluids [43]. However, some inconsistencies were
reported in correlating the material properties defined in
these two theories [44]. Both poroelastic and biphasic models
had limited capabilities in describing the short-term, time-
dependent response when the compressive strain-rate was
high. One of the reasons is because the fluid pressure was
relatively high as compared to the compressive stress in the
tissue matrix [45, 46]. Testing of articular cartilage showed
that the effective modulus at fast compression could be one
order of magnitude higher than that at slow compression [31].

The fibril-reinforced models were proposed to account
for high fluid pressurization in the tissue [47, 48] and may be
considered as the third generation of the constitutive models
for cartilage. In contrast to a nonfibril-reinforced poroelastic/
biphasic model, a fibril-reinforced model could reasonably
predict the stresses in the cartilage under fast compressions
[33]. The fibrillar nonlinearity was an important factor for
modeling high strain-rate compression of articular cartilage;
a linear fibril-reinforced model is not sufficient for the de-
scription of the load response of cartilage at fast compression.

The triphasic models were proposed to account for the
ion phase in the proteoglycan matrix as the third phase in
addition to fluid and solid phases [49]. The overall negative
charges of the proteoglycans contribute to cartilage swelling
and enhance the tissue stiffness [49, 50]. The triphasic theory
was later extended to account for multielectrolytes and poly-
valent ions by Gu and coworkers [51]. Although triphasic
models provide more specific data about cartilage properties,
biphasic and fibril-reinforced models are still widely used in
the literature for cartilage modeling.

Ligaments restrain joint motion to stabilize the joint.
These tissues consist of a proteoglycan matrix reinforced by
collagen fibers (mainly type I) and elastin. Approximately,
60-70% of the ligament weight is water [13]. The collagen
bundles are mainly aligned in the longitudinal direction to
provide high stiffness for the ligaments. The elastin content is
normally about 1% of total ligament weight and provides the
elastic recovery of the tissue [52, 53].

Extensive computational models have been proposed for
ligaments and tendons. Since the ligaments mechanical re-
sponse is dominated by the collagen fibers, the majority
of proposed models focused on the collagen constitutive
behavior to predict the ligament response. Fung proposed a
one-dimensional constitutive model based on an exponential
stress-strain relationship accounting for nonlinear behavior
of ligament under finite deformations [54]. Hildebrandt and
coauthors later extended Fung’s model to biaxial and three-
dimensional cases [55]. Some other models were proposed
assuming strain rate independence and negligible hysteresis
effect; that is, the time-dependent response was neglected

and elasticity was assumed. In these one-dimensional stud-
ies, bundles of linear elastic elements were used to model
ligaments. To capture the nonlinear behavior of the tissue,
individual linear elastic fibers in a ligament were assumed
slack when the ligament was not externally loaded and were
recruited gradually in resisting increased tension [56-61].

Strain energy and hyperelasticity have been used in
studies of ligaments [62-68]. Lanir proposed a strain-energy-
based method to describe the three-dimensional behavior of
the ligament [62]. The matrix response was simplified as
hydrostatic pressure, and the majority of the total strain
energy was resulted from the stretch in collagen fibers. Weiss
and coauthors proposed hyperelastic continuum models of
ligaments based on the incompressibility assumption [64,
67]. In their modeling, collagen fibers, ground substance
matrix, and the fiber-matrix interaction contributed to the
tissue response. Incompressibility was enforced in their mod-
els based on the assumption that fluid is trapped in the tissue
during loading, and therefore no fluid exudation occurs.

Due to intrinsic viscoelasticity of collagen fibers and fluid
exudation from the solid matrix, the ligament response is
time-dependent. Many studies have considered the viscoelas-
ticity of ligaments using spring-dashpot modeling [57, 58,
69, 70], assuming fibers matrix and fiber-fiber friction [71]
or using continuum mechanics approach [72-75]. Among all
proposed models, the quasi-linear viscoelastic theory (QLV)
developed by Fung [54, 72, 76] has been commonly used in
computational studies, probably because of its simplicity. The
fluid flow was incorporated in a few studies using theory of
poroelasticity [77, 78]. The fluid flow and its relevant tissue
response under uniaxial tensile, stress relaxation, and cyclic
loadings have been studied using these models.

Ligaments have been commonly modeled as spring ele-
ments in the 3D models of the knee joint (Table 1). Nonlinear
material behavior (normally quadratic stress-strain relation-
ship) is often used for the toe region up to ~6% tensile strain,
which is twice of the so-called nonlinear spring parameter
[79-81]. The stress-strain relationship for strains greater than
6% is considered linear. The tensile stiffness of the spring
elements can be determined accordingly, provided that the
ligament geometry is known. The compressive stiffness is
taken to be zero, because the ligament does not support load
when it is slack. Some level of prestrain exists in ligaments
before the joint is subjected to external loads (ACL, MCL,
and LCL are in pretension and PCL in precompression)
[79, 82, 83], which are often incorporated into the material
model of the ligaments. In addition to spring elements, some
studies considered 3D representation of the ligaments in
which these tissues were modeled as hyperelastic [84, 85] or
fibril-reinforced poromechanical [86-88].

The menisci are of crescent-like shape and located be-
tween the femoral and tibial cartilages, attaching to the tibia
via ligamentous tissues called menisci horns [1]. The wedge-
shape cross section of the menisci provides the joint congru-
ency and minimizes the direct contact between the femoral
and tibial cartilages [89]. Menisci support and redistribute a
portion of the joint load, improve joint stability, and facilitate
lubrication [90-92]. Some studies also suggest the menisci
act as a shock absorber [91, 93, 94], while others do not
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support this hypothesis [95]. It is estimated that the menisci
are subjected to 45%-75% of the joint load, depending on
the knee loading and health state of the tissue [2]. The
major constituents of the meniscus are fluid, proteoglycan
matrix, and collagen fiber (mostly type I) [21]. Water is the
most abundant constituent and is about 60-70% of the
tissue weight [21]. Collagen fibers weigh about 15-25% and
proteoglycans in the range of 1-2% [21]. The fibers in the
menisci are mostly oriented in the circumferential direction
[96], which redistribute the load in terms of hoop stresses
(92,97, 98].

The mechanical response of meniscus is time-dependent
due to fluid flow and intrinsic viscoelasticity of the collagen
fibers. However, in the early finite element models of the
menisci, these tissues were represented as axisymmetric with
single-phase linear elastic properties in contact with deform-
able bones [99]. In an improved axisymmetric model, non-
linear material behavior in circumferential direction was
considered [100]. Transversely isotropic behavior and axi-
symmetry were considered in some later FE models of the
menisci [101, 102]. In a parametric axisymmetric FE study,
isotropic, orthotropic fiber-reinforced, and poroelastic mod-
els were compared [103]. The fiber reinforcement was con-
cluded in this study to be an essential part of the menisci
modeling. Spilker and coauthors developed a biphasic model
of the menisci with transversely isotropic behavior for the
solid phase of the tissue. Linear biphasic theory was used
in their study [104]. Wilson and coauthors used the con-
solidation theory in ABAQUS for the biphasic modeling of
the menisci with axisymmetric representation. Transversely
isotropic properties were also used in their study [105].
Hyperelastic material properties have been quantified for the
menisci horns in a study by Abraham and coauthors [106]. In
3D models of the knee joint, menisci are generally modeled
as single-phase materials represented by spring elements [81,
107, 108], isotropic solid [84, 109], transversely isotropic solid
[110-112], or fiber-reinforced materials [80, 113-116]. Recently,
fibril-reinforced poromechanical models of the menisci have
been incorporated in 3D modeling of the knee joint [87, 88].
Menisci horns are commonly modeled as spring elements
[112] or the menisci are fixed at the insertion sites [87]. Table 1
includes a full list of different material models for the different
tissues of the knee joint.

3. Computational Models of the Knee Joint

Knee joint models can be classified into analytical and
computational. Analytical models were used to describe the
knee kinematics and extract information about the joint
kinetics. The deformation of tissues except for ligaments
is normally ignored in these models and only rigid body
motions are studied. This methodology is often called inverse
dynamics (rigid-body dynamics) and can be referred as
analytical since only minor numerical work is involved for the
solutions (we refer to it as analytical in this paper, although
some numerical work is involved). Analytical models with
different degrees of accuracy have been published in the
literature. These models were used to describe the joint
motion and kinematics in 2D/3D and to predict the loads

in muscles, tendons, and ligaments [79, 107, 117-128]. In
some of these models (mostly 2D), simple contact algorithms
such as Hertz contact approach were used to describe the
tissue interactions [123, 129, 130]. Some analytical models
considered geometrical nonlinearities [120, 130] and often
included the inertial effects of bones [131, 132]. In some recent
studies, rigid-body musculoskeletal models were combined
with the FE approach to investigate the contact mechanics
of the knee and the role of menisci in the joint functioning
(133, 134].

Validation is a necessary step in the model develop-
ment. Established data may help researchers to validate
their kinematic and rigid body models. The Grand Knee
Challenge project provides a database where in vivo knee
data such as tibia contact force, muscle forces, and ground
reactions are available [135]. Although analytical models
offered robust approaches to determine knee kinematics, they
had limited capacities to describe the stress/strain patterns
of cartilages, menisci, and ligaments in 3D configurations.
Moreover, the nonlinear, anisotropic, and time-dependent
response of the soft tissues could not be captured using these
models. Furthermore, analytical models were not suitable for
the simulation of the highly nonlinear mechanical contact
between articulating surfaces undergoing large deformations.
A more comprehensive review of the analytical models can
be found in the reviews by Hefzy et al. [16, 17]. The present
review is focused on computational joint models.

3.1. Geometry and Mesh Generation of the Knee. The geom-
etry of the knee joint is normally reconstructed from a
stack of images obtained from Magnetic Resonance Imag-
ing (MRI), Computed Tomography (CT), or Micro-CT of
the joint. The MRI images are usually preferred for the
reconstruction of soft tissues, whereas CT images are more
accurate for hard tissues (bones). Image processing software
packages, such as Mimics (Materialise, Leuven, Belgium) and
Simpleware (Exeter, UK), and geometric modeling packages,
such as Rhinoceros 3D (Seattle, WA, USA), can be used to
reconstruct the 3D geometry from 2D images. The essential
process in geometry reconstruction is to precisely select the
boundaries of the tissues from the images. This process is
called segmentation and can be performed automatically or
manually [14]. After the initial geometry is extracted from
the images, based on our experiences, some extra editing is
normally required to improve model accuracy and smooth
the surfaces. This is usually done by eliminating the artifacts,
such as redundant edges/vertices, small gaps, and sharp
edges, that may result in impossible meshing or unnecessary
dense meshing. If necessary, some software packages such as
Geomagic (Morrisville, NC, USA) can be used to improve the
quality of the surface geometry.

The FE mesh can be generated using the built-in functions
of the image processing software. Alternatively, the meshing
process can be performed in FE programs, such as ABAQUS
(Simulia, Providence, USA), or in specialized meshing pro-
grams, such as HyperMesh (Altair, Troy, MI, USA). The
choice between meshing tools of an image processing soft-
ware and a third party meshing program is mainly based on
the required mesh type. The imaging software we have used,
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FE model

FIGURE 1: A schematic representation of geometry reconstruction from MRI data and FE mesh generation.

such as Mimics, provides limited control over meshing. If
one needs pure hexahedral elements, for example, imaging
software may not be able to perform the meshing [14, 136]. If
no specific mesh type (e.g., tetrahedral versus hexahedral) is
required, it is more convenient to use the built-in meshing
tools of the image processing programs to generate an
automatic mesh. It normally yields triangular/tetrahedral
elements or a combination of tetrahedral and hexahedral
elements. Using this approach, the mesh information (nodal
coordinates and element numbers) can be normally exported
to an FE software to perform finite element analysis. However,
since the exported mesh (usually called orphan mesh) does
not include all geometric information of the reconstructed
knee, any major changes in the mesh, or mesh regeneration,
can be only performed in the image processing software.
Therefore, if a structured mesh (mapped mesh) of pure
hexahedral elements is required, or the unmeshed tissue
geometry (in addition to the FE mesh) is needed during
the FE simulations, the reconstructed geometry should be
exported into the FE software or a third-party meshing
program to generate the mesh. Figure 1illustrates a schematic
of knee geometry reconstruction and mesh generation from
MRI data.

3.2. Implementation of Tissue Models. Due to computational
costs and convergence difficulties associated with 3D mod-
eling, simpler constitutive laws have been commonly used
in whole joint simulations as compared to the studies on
the mechanics of a single tissue (see Section 2). For instance,
single-phase material model has been widely used for car-
tilages and menisci in knee joint modeling [80, 81, 108-
111, 113, 137]. Fluid pressurization has not been incorpo-
rated in 3D joint modeling until recently [86-88, 112, 138-
140]. In a majority of joint models, bones were considered
as rigid because of their higher stiffness compared to the
cartilaginous tissues. Articular cartilages were commonly
modeled as single-phase, linear elastic, homogenous, and
isotropic materials with constant stiffness [80, 81, 84, 113, 141].
Due to the high viscoelastic time constant of cartilage [28]
(~1500s), there is no time for fluid flow at the instant of

loading, and thus, the tissue may be considered as a single-
phase material with a large equivalent elastic modulus for
the short-term response. However, if the loading is not fast
or if the time-dependent response of the knee is sought,
the single-phase aclssumption is not satisfactory [32, 87].
Furthermore, a compressible material model may not be used
to predict the instantaneous response of the tissue [32, 87].
Menisci were commonly considered as linear elastic, isotropic
[84, 109, 142], transversely isotropic [110], or linear elastic
solid with fibril reinforcement [80, 113, 137]. Ligaments were
usually modeled by 1D spring/bar elements [80, 81, 110, 113,
137, 143], and in some cases, 3D and hyperelastic elements
[84,109,142]. Table 1 summaries different constitutive models
of knee tissues used in joint mechanical simulations.

3.3. Finite Element Model Developments. One of the first
FE models of the knee joint was proposed by Chand and
coauthors in 1976 [144]. The contact stress between femur
and tibia, in the absence of soft tissues, was investigated. A
2D model of the knee generated from X-rays of a live subject
was used in their simulations. The FE software NASTRAN
(MSC Software Corporation, Santa Ana, CA, USA) was used
to obtain the force-deformation relations, and a numerical
approach based on Wolfe’s algorithm was developed to
solve the nonlinear equations. Brown and coauthors used
a simplified axisymmetric model of articular cartilage and
subchondral bone to study juxta articular stress changes due
to localized subchondral stiffening [145]. Huber-Betzer and
coauthors developed a plane-strain FE model of the knee
including bones and cartilages using ABAQUS and FEAP
(University of California, Berkeley, USA) programs [146].
The model was used to study the contact stress distribution
associated with joint incongruity. The effects of joint surface
curvature, cartilage stiffness, and thickness were investigated
in their study.

Heegaard and coauthors developed a FE model of the
human patellofemoral joint including bones and articu-
lar cartilage and calculated the contact stresses and liga-
ment/tendon forces during passive knee flexion. The patella
geometry was reconstructed using CT images in the sagittal
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plane [152]. Besier and coauthors developed a 3D FE model of
the patellofemoral joint using MRI data. The model included
bones and cartilage and an estimate of muscle forces. The
stresses and strains in the cartilage were calculated and some
of the results such as contact area obtained from simulations
were compared with the experimental data [153]. They further
examined the effect of internal-external knee rotation on
the mechanics of patellofemoral joint, using FE models
reconstructed from MRI of 8 male and 8 female subjects. It
was found that an external femoral rotation of 15° increased
patellar peak shear stress by 10% in more than 75% of the
subjects. The stress in cartilage was reported to change con-
siderably from subject to subject, which could have clinical
implications [154]. Farrokhi and coauthors predicted higher
hydrostatic and octahedral shear stress in the patellofemoral
joint for the subjects with patellofemoral pain, as compared to
the pain-free subjects, supporting stress-reducing treatment
strategies [155]. Fitzpatrick and coauthors compared FE and
rigid-body analyses of the patellofemoral joints of eight
subjects. Parameters of the rigid contact were based on
elastic foundation theory (e.g., [79]). The same geometric
properties, for example, cartilage thickness, were used in both
rigid-body and FE analyses. Obtained results indicated that
the rigid body analysis yields reasonable and yet efficient
solutions in terms of accuracy and computational time [156].

Bendjaballah and coauthors investigated the biomechan-
ics of the tibiofemoral joint using a 3D FE model of the knee
including soft and hard tissues undergoing large deforma-
tions. CT images were used to reconstruct the knee geometry.
An in-house nonlinear FE program was used to perform the
simulations. The contact stresses of the healthy and menis-
cectomy knee joints were studied under compressive loading
[80]. Further studies were performed on the knee contact
mechanics under drawer (anterior posterior) forces as well as
varus-valgus and internal-external rotations [114-116]. Périé
and Hobatho investigated the contact areas/pressures of the
knee joint in full extension using ABAQUS. It was found
that the predicted hydrostatic pressures were higher in the
medial compartment of the joint [157]. (Note: the hydrostatic
pressure here is not the pore fluid pressure. It is the average
of the three normal stress components).

Moglo and Shirazi-Adl studied the screw-home mech-
anism, which is the rotation between the tibia and femur
during knee passive extension/flexion: during knee flexion,
the tibia undergoes internal rotation, whereas during knee
extension tibia undergoes external rotation. They also inves-
tigated the coupling between the cruciate ligament forces
under flexion extension. It was found that ACL transection
and changes in initial strains in ACL affect the screw-home
mechanism. Moreover, a significant coupling was observed
between the ACL and PCL forces in knee flexion [158]. An
increase in the initial strains (or pre-tensions) in the ACL or
PCL resulted in an increase in the forces of both ligaments.
Similarly, when either the ACL or PCL was cut, the forces
in both ligaments were diminished. Mesfar and Shirazi-
Adl further considered both tibiofemoral and patellofemoral
joints. The knee response in flexion under quadriceps forces
was investigated in their study using anatomically accurate
models of the knee [159].

The effects of bone deformations and boundary con-
ditions on the contact mechanics of the knee were also
investigated. Frictionless finite sliding contact was assumed
between the articulating surfaces. It was found that rigid body
assumption for bones changed the contact stresses by less
than 2%, whereas fixing the rotational boundary conditions
other than flexion extension had significant impact on the
results [110]. Haut Donahue and coauthors also investigated
the impact of meniscal material properties on the predicted
contact stresses. They reported a considerable sensitivity
of contact pressures to the circumferential stiffness of the
menisci [97].

An explicit dynamic FE method was used to study gait
biomechanics of the knee [160]. The knee flexion up to 25
degrees was simulated in the study. An FE model of the lower
limb was developed to investigate the in vivo knee response
under impact loading. An explicit FE was employed with
consideration of large deformations [150].

Shirazi and coauthors implemented the depth-dependent
fiber reinforcement in articular cartilages in their knee joint
model. The role of collagen network was investigated in
their study under compressive forces. It was found that deep
vertical fibrils played an important role in the load support
mechanism of cartilage in situ [113]. In all the previously
mentioned studies, spring elements were used for ligaments.
Pefia and coauthors developed a knee model including more
realistic geometries of all ligaments. Transversely isotropic,
hyperelastic properties were considered for ligaments, and
their roles in knee stability and load transmission were
investigated. Eight node hexahedral elements were used
to mesh the ligaments (Figure 2) [84]. Dhaher and coau-
thors investigated the effects of connective tissue material
uncertainties on the joint biomechanics. Probability density
functions with Gaussian distribution were used to alter the
material properties. Based on a multifactorial sensitivity
analysis, they reported a significant effect of ACL properties
on the knee biomechanics during knee flexion [85].

Some researchers predicted the mechanical response of
chondrocytes based on multiscale modeling of the knee joint
[161, 162]. Implementing a multiscale framework, Sibole and
Erdemir [161] determined the cellular microscale parameters
using the results of a macroscale FE model of the knee.
Deformation gradients computed at the joint-level were
used to prescribe the boundary conditions of two cell-level
models, which included one and eleven cells, respectively. The
multiscale modeling was believed to be capable of predicting
the cellular deformation metrics such as change in cell’s
aspect ratio and maximum shear strain resulting from the
joint loading [161].

3.4. Poromechanical Models. Although fluid flow and pres-
surization play an essential role in the mechanical functions
of articular cartilage and meniscus, it has not been con-
sidered in the anatomically accurate knee modeling until
recently [138]. In previous studies, only the elastic behavior
of the knee was investigated, including the static equilibrium
response as well as the instantaneous response of the joint
at which no fluid flow occurs. In most of the studies, a
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FIGURE 2: FE computed maximal principal stress (MPa) in ligaments: ACL (a), PCL (b), LCL (c), and MCL (d). The knee was subjected to a
compressive load of 1150 N and a valgus compression of 10 Nm (reproduced from [84] Elsevier license permission 3020920850913).

large effective modulus and a Poisson’s ratio close to half
were used to approximate the incompressible behavior of the
knee at instantaneous compression. However, only if the fluid
pressurization is implemented, the time-dependent response
of the knee, and in particular, stress relaxation and creep
phenomena may be predicted. For example, a prolonged
standing can be modeled as a creep problem.

Before fluid pressurization was implemented into any
anatomically accurate knee models, it had been considered in
geometrically simplified contact models. Ateshian and coau-
thors developed a finite sliding, frictionless contact algorithm
for porous media that could be used to simulate 3D cartilage
layers in contact [163]. Wilson and coauthors used an axisym-
metric model of the cartilages and menisci for the study of
meniscectomy [105]. Adeeb and coauthors investigated the
effect of joint congruency on the load bearing mechanism
of the knee using axisymmetric cartilaginous tissue layers.
They concluded that the existing natural incongruence of the
joint had a significant impact on the stress and fluid pressure
distributions. Their study suggested an important role of the
meniscus in the load bearing mechanism of the knee joint
[164].

One of the first 3D computer models of the human joints
that included fluid flow was constructed with ABAQUS by
del Palomar and Doblaré for the investigation of the internal
derangement of the temporomandibular joint [140]. Gu and
Li developed the first anatomically accurate tibiofemoral
joint model accounting for fluid pressurization and fibril-
reinforcement in cartilages and menisci [138]. They also
considered the fiber orientations in the femoral cartilage
and menisci. Their results indicated a substantial role of
fluid pressurization in the mechanical functions of the knee.
In a further study, Li and Gu compared the instantaneous
response of the knee predicted by a fibril-reinforced model
with that obtained from a single-phase compressible elastic
model. Substantial differences were found between the two
models [32]. In particular, choosing a constant effective
modulus in the elastic model might not be satisfactory for
different magnitudes of compression.

Kazemi and coauthors investigated the creep behav-
ior of the intact and total meniscectomized knees under
compression (Figure 3). They reported substantially differ-
ent creep behaviors and contact mechanics of the healthy
and meniscectomized knees [87]. In a further study, they
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FIGURE 3: Fluid pressure in femoral cartilage of the meniscectomized (a) and intact (b) knees. The change in fluid pressure of the intact and
meniscectomized joints, with respect to time, is shown in (c) (reproduced from [87]; Elsevier license permission 2927920112090).

investigated the impact of the location and size of partial
meniscectomies on fluid pressurization of articular cartilage
under stress relaxation and creep loading. They observed
a significant increase in fluid pressure and its gradient as
well as substantial alterations in pressure distributions after
partial meniscectomy [86, 88]. Mononen and coauthors used
an axisymmetric, fibril-reinforced model of the cartilages
and menisci to study the impact of OA on the stresses in
the collagen network of cartilage. They predicted decreased
stresses in the superficial zone of cartilage with osteoarthritis.
They speculated that collagen fibrillation increased from the
superficial zone to the deep zone during progression of
osteoarthritis [139]. They also used a fibril-reinforced model
of cartilages in contact with single-phase menisci to study the
effect of superficial collagen patterns with a 3D knee model.
They suggested a significant role of split-line patterns on the
strain and stress patterns but a minimal role on fluid and
contact pressures [112].

4. Verification of the Numerical Modeling

Verification examines the accurate implementation of the
mathematical equations, numerical procedures, and com-
puter codes. A verified computational model is an accurate
representation of the corresponding methodology. How-
ever, a successful thorough verification does not mean that

the computational model accurately mimics the physics of
the problem. Validation is to examine whether the model
reproduces the real-world problem and thus must be done
through measurement (see Section5 for validation). For
general information about verification and validation pro-
cedures, the readers are referred to the guide for verifi-
cation and validation published by the American Society
of Mechanical Engineers [165] and other articles [166-169].
Some specific issues of model verification are presented
here.

The verification of anatomically accurate knee joint mod-
els includes a few aspects of the model construction, includ-
ing image segmentation, geometry reconstruction, finite ele-
ment meshing, initial and boundary conditions, contact def-
inition, and solution procedure. Most of the computational
knee models are constructed using commercial FE software
such as ABAQUS. The numerical procedure of commercial
software packages has been to some extent tested and verified
by the developing teams and independent researchers [14,
170-172]. While the solution procedure of the commercial
software packages is generally verified, especial attention is
required on other aspects of FE modeling such as meshing,
material parameters, and boundary conditions. Moreover, if
a custom code is used for the computational modeling and
solution, a comprehensive verification is required regarding
the numerical implementation and solution procedure.

35US917 SUOLULLOD SAIE8.D 9|qedijdde aLjy Aq pauseno ale sspe YO 'ssn J0 Sa|nJ 4oy AeIqi aUIIUO AS|IAN UO (SUONIPUOI-PUE-SWLIBYWOY"AB 1M AJe g 1]BuJuo//:Sa1y) SUOIPUOD PUe S 1 841 985 *[6202/90/02] U0 Akeiqiauliuo AS|IM ‘SZ¥8T./STOZ/SSTT OT/I0p/WO0d A8 1M Alelq|1)BulUo//:Sdy ol pepeojumod ‘T ‘€T0¢ ‘96€L



10

Stress (MPa)
N w
(92} (98] w

[\S]
!

—_
w
1
\g

1 T T T T T
3 4 5 6 7 8 9 10

Young’s modulus (MPa)

—€— Von Mises stress
-l Contact pressure
—&— Hydrostatic pressure

()

Computational and Mathematical Methods in Medicine

Stress (MPa)

T T
0 0.1 0.2 0.3 0.4 0.5

Poisson’s ratio

—€— Von Mises stress
-l Contact pressure
—&— Hydrostatic pressure

(®)

FIGURE 4: Variations in contact pressure, von Mises stress, and hydrostatic pressure with material properties (reproduced from [143]; ASME

permission 341-346; royalty paid 1074929380).

The sensitivity of FE model to the reconstruction proce-
dure was investigated by generating five knee models of the
same joint using the same set of MR images. Each model
was independently reconstructed by a different researcher
[143]. It was found that the deviations of cartilage thickness
in five models resulted in approximately 10 percent differ-
ence in peak contact pressure. The sensitivity of material
properties was also examined in the study. It was observed
that the results were more sensitive to Poissons ratio than
Young’s modulus. The von Mises stress decreased and the
hydrostatic pressure increased with increased Poison’s ratio
of cartilage (Figure 4). Large deformations were considered.
An optimization approach was developed to determine the
equivalent stiffness of the springs that were used to model
ligaments and menisci. Articular cartilage was considered as
a single-phase material [143].

Two knee models were reconstructed from the CT and
MR images of the same cadaveric knee joint using Analyze
II (Mayo Biodynamics Research Unit). They were com-
pared with measurements obtained from implanted reference
markers using a 3D digitizer machine. Results showed com-
parable accuracy of the reconstructions from the MR and CT
images [173].

With a 3D FE model of the knee joint, Donahue and co-
authors examined the effect of rotation constraint and bone
rigidity. MSC/Patran (MacNeal-Schwendler Corp., Santa
Ana, CA, USA) and TrueGrid (XYZ Scientific Applications
Inc., Livermore, CA) were employed to reconstruct the geo-
metry using data from CT and 3D coordinate digitizing
system. ABAQUS was used for the FE analysis. The FE model
was verified against the mesh size using average element
sizes ranging from 5 by 5mm to 1 by 1mm. The average
element size of 2 by 2 mm yielded a convergent result [110].
Hao and coauthors examined the sensitivity of their knee

model to mesh sizes of 3.0 mm, 2.5mm, and 2.0 mm. They
reported a maximum of 3% change in the contact pressure
when the mesh was refined from 2.5 to 2.0 mm [160]. Penia
and coauthors investigated the convergence of their knee
model by double increasing the mesh density. They found
a maximum of 4% change in peak contact stresses with the
double-dense mesh compared to the original mesh [84].

It was found from a hip FE modeling that errors in
cartilage shear modulus, bulk modulus, and thickness had
higher influence on the peak pressures, as compared to the
average contact pressure and area (+25% compared to £10%).
This study also indicated possible errors of the rigid bone
assumption for simulating certain activities, such as stair
descending. The labrum was not included in the modeling
[174].

5. Validation of the Numerical Modeling

The experimental validation of computational knee models
is challenging due to difficulties in measurements [175-
178]. For example, specialized Fujifilm and Tekscan pressure
sensors may be used to measure the contact pressure in
the joint (Figure 5). However, the insertion of the film or
sensor somehow alters the contact in the joint due to the
thickness and stiffness of the film or sensor. Therefore,
the data measured are more or less compromised. It is
worth mentioning that a complete validation of a compu-
tational model requires multiple data at different levels. For
instance, one may validate the global kinematics/kinetics,
such as femoral displacement/forces, against experimental
data. However, this does not necessarily mean that the stresses
and strains can be accurately predicted by the model. A more
reliable method is a simultaneous validation of the stresses
and joint force, for example. We herein first summarize
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FIGURE 5: Contact pressures at the tibia plateau measured by Tekscan K-scan sensor (a) and computed by finite element analysis (b)

(reproduced from [147] Elsevier license permission 3020921021572).

some experimental techniques that may be or have been
used to validate the numerical models and then review some
experimental validations of joint modeling. Note that some
validations are presented in other sections when the relevant
models are reviewed.

The casting method has been used to measure contact
areas in the joint. This method is based on the formed pattern
of a material such as silicone rubber or polymethylmethacry-
late cast around the joint contact. Based on this method,
Walker and Hajek determined contact areas and locations
of cadaver knee joints under a force applied along tibia, for
different flexion angles, and found larger contact areas in the
medial condyle. Contact areas were decreased as the knee
flexion angle increased [179]. Fukubayashi and Kurosawa
added Prescale sensors (Fuji Film Co., Ltd., Tokyo) to the
casting method to measure the contact pressure and area
of the tibiofemoral joint in full extension. They found that
the removal of the menisci from a healthy knee considerably
increased the contact pressure and decreased the contact
area in the joint. In contrast, the removal of menisci from a
osteoarthritic knee had less impact on the change of contact
pressure and area [180]. Further experiments showed the
average contact stress to increase by 2-3 times when the
menisci were removed [91].

The contact locations in cadaver knees during high flex-
ion were mapped based on the fiducial points on each bone
recorded for the position, by the use of reconstructed bone
geometries [181]. Rhinoceros and Rapidform (Inus Technol-
ogy Inc., Seoul, Republic of Korea) software packages were
used to reconstruct the geometry of each bone from digitized
surface data. The contact areas for a given knee flexion were
derived from the bone surface geometries and the bone
positions corresponding to that knee flexion [181].

Brown and Shaw measured the contact stress in cadav-
eric knee joints at different flexion angles using arrays of

piezoresistive transducers. They studied healthy knees as well
as medial and dual meniscectomy cases. Results showed that
in normal knees the medial femoral condyle supports higher
load compared to the lateral condyle, but after removal of
the medial meniscus the load was transferred slightly to the
lateral condyle. It was found that in the flexion range of 0 to 30
degrees, the size of contact area and the magnitude of contact
stresses were not changed significantly although the contact
location changed during the flexion. Furthermore, compared
to previous experimental studies, they suggested a moderate
decrease in contact areas and increase in contact pressures
following meniscectomy [182].

There is an increasing trend to use imaging technology
to determine tissue deformation under external loading.
Herberhold and coauthors measured the deformation of
femoropatellar articular cartilage from cadaver specimens
using MRI [183]. Segmentation, reconstruction, and image
analyses were performed using an in-house code. Fluid flux
and deformations of femoral and patellar cartilages under
150% of body weight were obtained [183]. Liu and coauthors
used MRI with fluoroscopic system and Rhinoceros imaging
software to determine the knee kinematics during stance
phase of gait. They reported higher contact deformation in
the thicker regions of cartilage and larger contact area in the
medial compartment than the lateral compartment [184]. Li
and coauthors measured contact locations in the knee joint
for different knee flexion angles using fluoroscopic and MR
images [185].

Numerical models have been validated against measure-
ments to some extent. The in situ ligament forces and knee
kinematics obtained from FEM were compared with the
published experimental data [81]. MRIs from the sagittal
plane were used to reconstruct the joint geometry. In this
study, the femoral cartilage was assumed rigid and the tibial
cartilage was deformable. The ligaments and meniscus were
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represented by equivalent spring elements [81]. In another
study, a 2D FE model was constructed for a sagittal plane of
a rabbit knee [186]. The tibia force predicted by the FE model
was matched with the measured force. The study showed
that advancement of calcified cartilage resulted in thinning
of noncalcified cartilage and increased shear strains within
its deepest layer. Small deformation was considered with
absence of menisci [186].

In order to validate a FE hip joint model for walking, stair
ascending and descending, Anderson and coauthors mea-
sured contact pressures and areas using pressure-sensitive
films [174]. CT images were processed using Amira (Mercury
Computer Systems, Boston, MA, USA). TrueGrid was used
for mesh generation, and NIKE3D (Livermore, CA, USA) was
used for the finite element analysis. Cortical and trabecular
bones were assumed as hypoelastic and isotropic. A custom
code, BONEMAT [187], was used to calculate the elastic
modulus of bones from measured data. The FE results were
found to agree with the experimental measurements [174].
Similar validation procedure may be performed on the knee
joint modeling.

A 3D analytical model was used to simulate knee kine-
matics, where the menisci were not included. An elastic
cartilage-cartilage contact was compared to a rigid femur-
tibia contact [121]. The model was also validated against the
laxity characteristics data from the literature. The kinematic
data of knee specimens were used as the objective of an
optimization procedure, and the ligament initial strains were
altered to achieve the optimization, using a least-square solver
[188].

Yao and coauthors used MRI to validate a FE model of
the medial compartment of an ACL-deficient knee subjected
to anterior forces. The differences between FE predictions and
data from imaging were noticeable for changes in curvature
and distortions within anterior and posterior areas of the
meniscus [189]. In a further study, they used the finite element
model of the medial compartment of the ACL-deficient knee
joint to reproduce experimental deformation and motion of
the meniscus by optimization of the mechanical properties
of cartilage, meniscus, and the attachments of meniscus.
This study illustrated the importance of mechanical prop-
erties of meniscal attachments, such as the initial strains
and elastic modulus of the horns, to predict the meniscal
translation and deformation [30]. This is an example of using
imaging technology to validate the modeling at the strain
level.

6. Pathomechanical Modeling and
Clinical Applications

A few of the previously mentioned studies considered some
aspects of knee injuries [80, 86-88, 146, 158]. In fact, many FE
models were developed to investigate the impacts of injuries
and surgical treatments on joint mechanical functioning. In
this section, we review some examples of computer knee
models that were intended for clinical applications, such as
studies on ligament injury and reconstruction, meniscec-
tomy, cartilage injury, and knee replacement.
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6.1. Ligament Injury and Reconstruction. Li and coauthors
studied the effects of ACL injury on joint function under
simulated muscle loads [190]. They modeled a partial ACL
injury by reducing its stiftness. It was found that even with
75% reduction in the ACL stiffness, the tissue could still
support about 58% of the load carried by the intact ACL [190].
Moglo and Shirazi-Adl investigated the load transmission
in ACL-deficient joints under drawer (anterior posterior)
loading. They reported a primary resistance to the drawer
load for ACL in the range of 0-90 degrees of knee flexion
angels [191]. Suggs and coauthors studied the effects of graft
stiffness and its initial strains on ACL-reconstructed knee
joints. Three different grafts with stiffness close to that of
actual ACL were used in their study [108]. Pefia and coauthors
also studied the effect of graft stiffness and tensioning in ACL
reconstruction [192]. They implemented a hyperelastic model
of the ligaments instead of using nonlinear springs but did
not consider cartilages and menisci in their modeling. Three
different grafts, gracilis, patellar tendon, and quadrupled
semitendinosus were considered in the simulations [192].

Ramaniraka and coauthors studied the effects of PCL
reconstruction on knee biomechanics. Ligaments were con-
sidered as hyperelastic. The healthy knee response was com-
pared to that of three repaired knees: resected PCL, recon-
structed single graft PCL, and reconstructed double graft
PCL. The single graft reconstruction yielded better results
compared to the other two cases [193]. In a further study,
they evaluated the intra-articular and extra-articular proce-
dures for ACL reconstruction using a knee model without
cartilages and menisci [194]. Shirazi and Shirazi-Adl studied
the effects of ACL reconstruction and partial meniscectomy
under combined compression and drawer loads. They used a
fibril-reinforced model for cartilages and menisci and spring
elements for the ligaments. It was found that compressive
preloads increased the ACL reaction forces in drawer loading
(Figure 6). Moreover, partial meniscectomy combined with
a slack ACL significantly changed the cartilage contact
pressures [148].

6.2. Total and Partial Meniscectomy. Several FE studies have
been performed to investigate the biomechanics of partial
and total meniscectomy. Bendjaballah and coauthors studied
the knee mechanics after total meniscectomy using a single-
phase material model [80]. Kazemi and coauthors further
considered the fluid pressurization in the cartilaginous tissues
[87]. The impact of partial meniscectomy on fluid pressur-
ization in cartilage was also investigated [88]. The model
predicted significant increases in fluid pressure following
partial meniscectomy. Pefia and coauthors investigated the
contact mechanics of meniscectomized knee joints and pre-
dicted almost double maximal shear stresses as compared
to a healthy knee. They also suggested that a lateral menis-
cectomy was more risky than a medial meniscectomy [109,
142, 195]. Zielinska and Haut Donahue reported significant
increases in contact pressures after meniscectomy using a
linear elastic material model for cartilages and menisci [141].
Yang and coauthors studied the case of partial meniscectomy
combined with frontal plane knee alignment. Increased
contact stresses, with the highest increase in the lateral
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FIGURE 6: Predicted force in ACL under drawer load of 200 N and
compression of 1500 N acting alone or combined. REF: reference
case; PT: patellar tendon properties used for ACL, +4%: 4%
increase/decrease in ACL prestrain in each bundle; PLM/PMM: par-
tial lateral/medial meniscectomy (reproduced from [148]; Elsevier
license permission 2927920331018).

meniscectomy, was reported in their investigation. Cartilages
were assumed as isotropic, and menisci were considered
transversely isotropic in the study [111]. Wilson and coauthors
developed an axisymmetric, poroelastic model of the knee
to study potential cartilage damage after meniscectomy. They
found that the maximum stresses and stress distribution in
cartilage were altered after meniscectomy [105]. Netravali and
coauthors studied the effect of partial meniscectomy on the
meniscus strains during gait. They found that the increase
in the abduction moment escalated the strains in the medial
meniscal horns. Moreover, they suggested that the change
in the external rotation after partial medial meniscectomy
might not increase the chance of further medial meniscal
degeneration [196].

6.3. Cartilage Injury and Degeneration, Osteoarthritis Models.
The onset and progression of osteoarthritis (OA) are related
to the mechanical environment of the tissue [197]. 3D
models of the knee joint have potentially provided useful
tools whereby the mechanics of cartilage degeneration can
be better understood. Papaioannou and coauthors modeled
focal surface injury of articular cartilage using a patient-
specific FE model loaded at 30 degrees of knee flexion. They
studied the size effects of osteochondral defect on contact
pressures and reported a defect size of 10 mm as a threshold
for clinical considerations of focal articular surface injury
repair [136]. Shirazi and Shirazi-Adl investigated the effect
of osteochondral defects on cartilage mechanical response
[198]. In their model, depth-dependent properties of carti-
lage and fibers were considered, and the calcified cartilage
was assumed as linear elastic and isotropic. Four different
cases were considered: localized bone damage, cartilage-bone
interface damage, bone overgrowth, and absence of collagen
fibers in the deep zone. Significant change in joint contact
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mechanics was reported specially in the case of bone damage
combined with cartilage split (which resulted in the absence
of deep collagen fibers). Moreover, the results for cartilage-
bone interface damage indicated increased chance of OA
onset and progression [198]. A subject-specific study on the
size effect of cartilage defect indicated a size threshold of
1.0cm® at which considerable change in cartilage stresses
would occur around the defect rim [199].

Pefia and coauthors examined the effect of cartilage
defects on stress concentration [200]. A hyperelastic trans-
versely isotropic model was used for ligaments. The strain
energy density function consisted of three parts: one repre-
sented the quasi-incompressibility of the tissue, one pertained
to fibers in tension, and the third pertained to the matrix,
which was assumed as Neo-Hookean. They reported that
large cartilage defects produced high stress concentrations
as compared to small defects [200]. Mononen and coauthors
considered healthy, osteoarthritic, and repaired cartilages and
developed a 2D knee joint model [139]. Different material
models were compared for cartilage: isotropic poroelastic,
transversely isotropic proelastic, and fiber-reinforced poro-
viscoelastic (FRPVE). In the FRPVE, the fiber direction and
fluid content fraction were depth dependent, and a Neo-
Hookean hyperelastic model was used for the nonfibrillar
matrix. Their results demonstrated the important role of
collagen fibers in controlling stress and strain distribution
within cartilaginous tissues, which may be used in the design
of artificial cartilages [139]. Later, they developed a 3D knee
model in ABAQUS with four different split-line patterns for
the cartilage. A random function in MATLAB (The Math
Works Inc., Natick, MA, USA) was used for the model
with random fibril orientations. The MRI reconstruction
was performed using Mimics and SolidWorks. They con-
cluded that a local cartilage degeneration in the medial
femoral condyle could lead to alternation in mechanical
response and a potential degeneration in the lateral condyle
[112].

6.4. Knee Replacement. The mechanical performance of knee
prostheses has been extensively investigated computationally.
Godest and coauthors studied the kinematics and stress
distribution of a total knee replacement (TKR) during a
gait cycle using explicit FE code PAM-SAFE (Engineering
Systems International Group, Rungis, France), which was
reported to be computationally of low cost [201]. The gait
cycle was simulated using a knee simulator composed of
four springs. The femoral component of the prosthesis was
assumed as rigid, and the insert was considered as an elastic-
plastic material. The obtained kinematic results were in
agreement with experimental data and were found to be
insensitive to model parameters. The major sources of errors
were reported from neglecting the mass of fixtures in the
simulator, approximation of friction coefficient, and set-up
errors such as relative position of the femoral component and
the tibial insert [201]. Villa and coauthors studied the failure
of aknee prosthesis during gait cycles, as well as fatigue [149].
They used Fuji Prescale films to determine contact areas and
pressures. A standard ISO test with a small number of samples
was used to validate the results for fatigue failure analysis. The
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FIGURE 7: Experimental failure in the tibial tray of a knee implant due to fatigue loading (a) and von Mises stress from FE analysis (b)

(reproduced from [149]; Elsevier license permission 2927920497991).

obtained FE results were in agreement with the experimental
measurements (Figure 7).

Danék and coauthors used FE modeling to determine
contact in TKR based on geometries obtained from X-rays.
According to the results, the outward condyles of the knee
experienced higher pressure [202]. Sharma and coauthors
computed the femoro-polyethylene contact pressure in total
knee arthroplasty (TKA) using fluoroscopic images, CT
scans, and Mechanical Desktop (Autodesk Inc, San Rafael,
CA, USA). The contact pressures were calculated using
forces obtained from kinematic modeling and contact areas
obtained from computer-aided design of implants [203]. As
a comparison, results were obtained for fixed bearing and
mobile bearing TKAs. In both cases, the medial condyle
experienced higher contact pressure. Furthermore, the con-
tact pressure increased with knee flexion. The average lateral
contact pressures for both TKAs were similar. However,
the mobile bearing TKA experienced lower medial contact
pressure compared to the fixed bearing TKA [203].

Au and coauthors examined the effects of material para-
meters and load conditions on stress distribution within
the TKR [204]. They applied contact pressures on the tibia
condyle using data from the literature and included ACL,
PCL and MCL forces in the FE simulations that were per-
formed using Pro/ENGINEER (PTC, Needham, MA, USA)
and ANSYS. They suggested that in the design process of
TKR, attention should be given to both material properties
and loading conditions [204]. Bougherara and coauthors
used ANSYS Workbench to analyze a TK implant made
from CF/PA-12. Results showed that CF/PA-12 led to an
improved load transfer mechanism and therefore reduced
stress shielding, as compared to stainless steel [205].

Baldwin and coauthor validated a 3D dynamic model of
the TKR against experimental data from a knee simulator.
They used SCANIP (Simpleware, Exeter, UK) for MRI recon-
struction, Isight (Simulia, Providence, RI, USA) for strain and
stiffness optimization of ligaments, and ABAQUS/Explicit for
FE simulations. In the modeling, ligaments were represented

as 2D fiber-reinforced structures, and their mechanical prop-
erties were based on optimizations of laxity tests. FE results
were reported to be in general agreement with experimental
measurements [206].

A patient-specific implant design was proposed for uni-
compartmental knee replacement based on a neural network
algorithm called Self-Organizing Map (SOM). The mechan-
ical performance of this design was compared with con-
ventional implant designs using MD Patran (MSC Software
Corp., USA). Mimics, 3-Matic, and MATLAB software were
used to reconstruct the 3D geometry of the samples from CT,
MRI, and 3D laser scanner data. The femoral component was
assumed as isotropic linear elastic, and the material proper-
ties of polyethylene bearings were modeled as nonlinear. A
contact model based on the Hertz theory was used to validate
the FE results. It was reported that the new mobile-bearing
implant resulted in lower contact stresses in the tibiofemoral
joint compared to the fixed-bearing implants. Moreover,
lower stresses at the bone-implant interface were observed
compared to other conventional implants [207]. A mobile
bearing TKR was experimentally tested and numerically
modeled using Patran and ABAQUS [208]. The polyethylene
was considered as a nonlinear material for which the tangent
elastic modulus was a fourth-order function of von Mises
stress. Assessment on the effect of load conditions and
flexion angle on the performance of the TKR demonstrated
appropriate functioning under practical conditions. Large
frictional loads at the mobile interface were reported as a
major restriction on the TKR rotation [208].

6.5. Sports and Gait Modeling. The computational studies of
the knee joint have mostly involved static loading conditions
such as compressive forces and torques. More realistic loading
conditions were indeed incorporated in some studies to
simulate daily life activities.

Penrose and coauthors constructed a 3D FE knee joint
model to investigate the mechanics of the knee during stair
descending, frontal car crash, and pedestrian impact. The
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FIGURE 8: Finite element model of the knee joint included in the simulation of lower extremity. Three time points from the left to right are
impact (t = 0), 10° of flexion (t = 0.02s), and 30° of flexion (t = 0.074 s) (reproduced from [150]; Elsevier license permission 2927920646901).

model was suggested to be used for the design of prostheses
and better understanding of biomechanics of injuries and
locomotion [137]. A 3D leg model was built with the FE code
RADIOSS (Mécalog SA, Antony, France) considering the
entire lower extremity, including femur, tibia, major muscles,
foot, and ankle complex (Figure8). The kinematics and
kinetics data were extracted from a gait analysis on a subject
hopping on one leg. The measured forces and displacements
were applied to the FE model of the knee as the boundary
conditions. An elastic-plastic material law was used for
cancellous and compact bones. Viscoelastic properties and
synovial fluid were not modeled [150].

ANSYS and LS-DYNA were used to develop an FE
contact model of the knee joint in heel strike, single limb
stance, and toe-off phases of a gait cycle. Results showed that
the medial compartment experienced higher contact areas
in comparison to its lateral counterpart. On the other hand,
the lateral meniscus experienced steadier contact pressure
compared to high variations in peak contact pressure in the
medial meniscus. Furthermore, the peak contact pressure in
the joint occurred at almost 45% of the gait cycle [209]. Yang
and coauthors developed a 3D model of the knee joint with
ABAQUS to investigate the effect of abnormal joint alignment
and meniscectomy, during single stance phase of gait (see
also Section 6.2, [111]). Ligaments were modeled as linear or
nonlinear springs, and muscle forces were obtained using a
muscle reduction method. These studies demonstrated the
importance of using realistic loading to determine the knee
joint mechanics [151, 210, 211]. For instance, while a simple
compressive load to the joint produced almost equal contact
forces in the medial and lateral compartments, a combined
varus moment and compression (that occurs during gait)
resulted in a much higher force in the medial compartment.

Furthermore, as compared with a normal subject, a subject
with varus alignment was more vulnerable to medial com-
partment OA, and a subject with valgus alignment was more
vulnerable to lateral compartment OA (Figure 9). However,
only a few subjects were used to obtain these results. The
muscle forces used for the model input were not subject
specific [151, 210, 211].

7. Miscellaneous Joint Models

While the focus of our paper is on the knee joint, some
FE models of other human joints are briefly discussed here.
This is because many features and principles are common in
the computational modeling of different human joints. Some
methodologies developed in other joint modeling may be
applicable to the knee joint modeling and vice versa.

A generic model of distal femur was produced from
five cadaver knees, by reconstructing their CT images using
AutoCAD (AutoDesk, Sausalito, CA, USA). The solid model
was then prototyped using a MasterCAM’s system (CNC
Software, Tolland, CT, USA) controlled three-axis milling
machine. Prosthesis design was mentioned as one of the
potential applications of the generic geometry [212]. Fergu-
son and coauthors studied biomechanics of the acetabular
labrum considering consolidation of cartilage [213]. A 2D
plane strain model was reconstructed for the coronal plane
of hip using MRI. Cartilage and labrum were considered as
isotropic poroelastic materials. Results indicated important
roles of the acetabular labrum in the mechanical function of
the hip joint, for example, it improved the contact and stabil-
ity of the joint [213]. Biichler and coauthors generated shoul-
der FE models of normal and osteoarthritic cadaveric joints
[214]. For the osteoarthritic model, articular cartilage was
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FIGURE 9: FE computed stresses for subjects with knee varus (1), normal subject (2), and with valgus (3) (reproduced from [151]; John Wiley

and Sons license permission 2927360959287).

assumed to be absent from the glenohumeral contact region.
The humerus was modeled as rigid, and the scapula was
considered as linear elastic but nonhomogeneous depending
on the bone density. A custom-made software was used
to determine the bone density from CT data. The muscles
were considered as incompressible hyperelastic. The results
indicated the importance of joint geometry on its contact
mechanics [214]. Wawro and Fathi-Torbaghan developed an
object-oriented FE program to study the motions of the knee
joint. Femur, tibia, ligaments, and articular cartilage were
modeled as elastic solids. The authors presented the frame-
work of their long-term goal to develop a computer model
of the knee joint based on object-oriented programming
[215]. Han and coauthors used TrueGrid to generate a feline
model of patellofemoral joint from laser scanning. Articu-
lar cartilage was considered as biphasic with deformation-
dependent permeability. The geometric nonlinear option in
ABAQUS was chosen for the FE analysis. They concluded that
a small misalignment between patella and femur could lead
to substantial changes in contact mechanics [216].

8. Discussion: Advances, Challenges, and
Future Directions

A general review of the computational studies of the knee
joint mechanics has been presented herein. Finite element
methods have been generally accepted for the determination
of the mechanical response of the knee in different loading
and pathological conditions. The extensive applications of
FE analyses have benefited and will continue to benefit
from increased computational power. However, the computer
power never seems to be sufficient for real-time simulation
of the load response of a knee joint. Improved numerical
procedures or brand-new techniques are still necessary for
better and faster contact solutions. On the other hand, it will
remain challenging to verify and validate a knee joint model.
A few aspects of the computational joint mechanics will be
discussed later.

8.1. Anatomically Accurate Geometry. Constructing an accu-
rate geometry for the knee is an essential step for a successful

modeling. Major progresses have been made in the geometry
modeling. In the early studies, the knee joint was simply
modeled with two pieces of articular cartilage, either axisym-
metrical or plane-stress/strain. Meniscus was considered
in some of these two dimensional models, for example,
assuming one axisymmetric meniscus [164]. The actual knee,
of course, is three dimensional with multiple gliding surfaces
and interfaces. Patient-specific modeling presents realistic
joint contact; however, it increases numerical difficulties and
computational time by a few levels. Therefore, certain sim-
plifications are often necessary in the anatomically accurate
or patient-specific modeling. For example, in one of the
pioneering studies, the femoral cartilage was modeled as rigid
and menisci were modeled as springs [81].

Accurate segmentation is still challenging. First, even
with 3T MRIs, some tissue boundaries, for example, part of
meniscus, are still difficult to identify from a computer screen.
Secondly, even with advanced image processing software
such as Mimics, enormous manual input is still needed.
Thirdly, it often requires surface refinement before the geom-
etry can be meshed with finite elements. We found limited
tools and controls over the surface refinement. Artifacts and
errors are difficult to determine with the currently available
software.

A good finite element mesh should preserve the recon-
structed surface geometry, which is assumed to represent
the original tissue geometry. This is particularly difficult
for the meniscus meshing due to large thickness variation.
Inaccurate surface approximation with element meshing
will alter the contact in the joint and cause convergence
difficulties. Future meshing software should provide better
control and estimation of the surface errors produced during
meshing.

8.2. Use of Constitutive Models. Elastic models with com-
pressible material properties were generally used for the car-
tilaginous tissues in the early patient-specific joint modeling.
A Poisson’s ratio close to half was used to approximate the
incompressibility of the tissue at instantaneous compression.
An effective Young’s modulus, which was at least one order
higher than the actual modulus obtained at equilibrium,
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must be used in order to match the predicted force with
the measurement at fast knee compression. Although this
effective modulus method might be used to determine certain
stresses, it was not recommended for the deformation [32].
The incompressibility can never be approached within a com-
pressible material model, not to mention the uncertainties
encountered in determining the effective modulus. If only the
solid phase is to be considered, an incompressible material
model should be employed, as was done in a recent study
[148].

Another major progress in the course of model develop-
ment was to incorporate the collagen fiber orientations in car-
tilage and menisci in the 3D model [198]. Since these tissues
are anisotropic, it is important to determine the directions of
the stresses and strains using the fiber orientation as a frame
of reference: a smaller tensile stress in the direction perpen-
dicular to the fibers may be more risky to tissue integrity than
a larger tensile stress in the fiber direction. The von Mises
stress is not a useful measure in the mechanics of anisotropic
materials, because it does not discriminate the stress direc-
tions. In spite of this, use of the von Mises stress is still justified
in the case of isotropic material modeling, when simplicity is
desired.

It is certainly challenging to incorporate fluid pressur-
ization in the cartilaginous tissues into the 3D modeling.
It is worth our efforts to work on it though. The fluid
pressurization clearly plays important roles in the mechanical
functioning of the joint. We may not understand OA onset
and progression if the fluid mechanism in the tissues is
overlooked. Nonlinear fibril reinforcement, however, must
be incorporated in the material model in the meantime or
the fluid pressure predicted for fast compression will be one
order too low in magnitude. This is because the interplay
of fibril reinforcement and fluid pressurization determines
the load response of the tissue [33]. A material model that
considers the fluid phase but no fibril reinforcement has
been proven unable to describe great fluid pressurization in
articular cartilage [45-48]. If fibril reinforcement were not
modeled, the effective modulus method would have to be
used in conjunction with the inclusion of fluid pressure, in
order to match the load response measured for fast knee
compression. The load response predicted for subsequent
equilibrium state, however, did not match the measurement
because the modulus used was greater than the actual
modulus. In other words, such a model would not be able
to predict both short-term and long-term load responses.
This can be easily understood using creep as an example.
When the body force is quickly applied to the knee, a great
fluid pressure will be produced in articular cartilage, which
cannot be described by a model with no fibril reinforcement.
Using a large effective modulus in the FEA, however, one
can still match the small short-term displacement associ-
ated with great fluid pressure. The displacement will later
increase substantially when fluid pressure essentially disap-
pears at equilibrium. This displacement obviously can only
be described by the actual modulus, which is obtained by
tissue testing at equilibrium. The use of effective modulus
will predict a smaller displacement than the one observed at
equilibrium.
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The computation of fluid pressurization in the joint is
extremely time consuming. One simulation often takes days
even weeks of computer time. An obvious reason is the
necessity to calculate the results for hundreds or thousands
of time increments, because every unknown is a function
of time. The main obstacle, however, is the convergence dif-
ficulties associated with the contact problem of porous media,
which is even worse with the multiple contacts in the knee
joint. As the menisci are in double contacts with cartilages—
sandwiched by the femoral and tibial cartilages, the contact
convergence is particularly slow. Wilson and coauthors used
a thin flexible membrane between the menisci and cartilage
surfaces to avoid numerical difficulties in an axisymmetric
model of the knee. Mononen and coauthors considered the
fluid flow in cartilages in a 3D model of the knee undergoing
large deformation, with the menisci modeled as a single-
phase transversely isotropic material [112]. In our research
group, we initially examined the 3D knee modeling with small
deformation problems following the implementation of the
fluid flow and collagen orientation in cartilages and menisci
[86-88, 138, 217].

The accuracy of constitutive models is ultimately deter-
mined by the material properties of the tissue. Several
studies have indicated the importance of reliable material
properties in the modeling and the sensitivity of results to
the properties [7, 23, 30, 32, 65, 67, 85, 204]. Clearly, it is still
challenging to adequately measure and quantify the material
properties. For instance, the inhomogeneous, anisotropic,
and time-dependent nature of articular cartilages, menisci,
and ligaments requires several material parameters at the
joint, tissue, and cell levels. These aspects must be considered
in order to establish computational modeling as a robust tool
for predicting the load response of the knee joint.

8.3. Physiological Loadings and Contact Conditions. No
mathematical modeling is possible without simplifications
associated with assumptions, even with future advances
in computational hardware, software, and numerical tech-
niques. A few common simplifications are often made in the
3D knee joint modeling, such as the use of static compressive
loadings, passive muscle forces only, or omission of muscles
and tendons. In addition to the simplifications associated
with the geometry and constitutive laws discussed previously,
another major simplification is the consideration of one
contact state corresponding to a single stance of a gait cycle,
other than a dynamic contact in which the contact region
moves with knee flexion. Current gait modeling is typically
limited to the kinematics of the knee or the total forces and
moments in the joint without much concerns over the contact
and fluid pressures in the joint.

For a quasistatic problem, where the fluid pressurization
is considered but the inertia is neglected, the pressure
gradients in the tissues will critically influence the rate of
convergence [87]. A fast loading will result in slow numerical
convergence. Even with the simplest knee compression in
the femoral tibial direction with no rotation or flexion, a
compression applied within a realistic time, which is nor-
mally less than one second, will cause very slow convergence
[87, 88]. In a dynamic contact, for example, with knee flexion
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as a function of time, part of the surfaces that are currently in
contact may separate milliseconds later. This will change the
boundary conditions of fluid pressure, since a zero pressure
condition must be imposed on the free articulating surface,
which is not in contact with the mating surface. Such changes
may also slow down the numerical convergence, not to
mention the technical difficulties in applying the free surface
boundary conditions using a numerical procedure.

There are at least two major causes with the slow compu-
tation of the fluid pressure modeling in the patient-specific
knee joint. First, the response as a function of time requires
hundreds and thousands of time increments in the time
discretization, while no time variable is involved in a static
analysis with an elastic modeling. Second, when ABAQUS
(version 6.10 or older) is used, the contact convergence with
20-node hexahedral elements is very slow, which is indicated
in the manual. However, this type of elements is needed for
better pressure distribution. We are not sure whether the
same problem exists with other commercial FE packages.

The numerical convergence for a problem of walking can
be incredibly challenging, if fluid and contact pressures are
to be determined. A typical remedy is still to avoid modeling
fluid pressure and adopt an incompressible elastic constitu-
tive behavior for the cartilaginous tissues [93, 148]. The fluid
pressure dissipation during a gait cycle should be negligible,
because the loading cycle is in the order of a second [93],
while creep takes thousands of seconds to complete. However,
the material incompressibility must be explicitly formulated,
other than using an effective modulus and a Poisson’s ratio
close to half to approximate the incompressibility [32].

With all the difficulties discussed so far, it would be
hard to imagine the endeavors required to simulate cyclical
loadings when fluid pressure is considered. We have per-
formed some preliminary investigations to simulate a person
standing on a vibration plate, so no knee flexion needs to
be considered. This test condition made it possible to run
the computations (results not published yet). Frequency-
dependent load response has been investigated using carti-
lage explants [218-220]; it would be interesting to understand
the relevant behavior with the knee joint.

8.4. Future Directions. Although major progresses have been
made in the last two decades, much work remains to be
done in the computational knee joint mechanics, for example,
streaming potentials in the knee have not been modeled so
far. However, we will not attempt to discuss detailed research
topics here, because they are related to variety research
interests and goals of individual research groups. Instead, we
would like to discuss some general issues with the model
development.

8.4.1. Model Verifications. Model verification has probably
not been paid as much attention as model validation. Verifi-
cations are particularly important when limited experimental
data are available for the validation of the joint modeling.
If the material model is valid, geometry reconstruction is
right, and every aspect of the numerical procedures has been
proven to be correct, then the joint model is likely valid even
without experimental validation. A knee joint model should
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be acceptable, after complete verifications have been done.
A few additional aspects are deliberated here, besides the
validation of geometry reconstruction discussed previously.

Verification of the contact approach for the particular
problem is very important because mechanical contact is a
key issue over the numerical convergence. The verification
can be performed with simpler contact geometry and loading
conditions, with which the numerical results can be more
easily understood. Contact definitions and parameters should
all be tested before they are used in an anatomically accurate
joint model. The contact approach can also be validated using
a simple indentation testing, if the material model for the
specimen has been validated.

The analysis procedure must also be tested for the desired
bioengineering application. Since the majority of commercial
FE packages were originally developed for structural analysis
or traditional engineering applications, the solution proce-
dure may not be optimized for any biomechanical analysis. A
few parameters are usually provided in a commercial software
for the customer control of the analysis. It must be noted that
the default values set by the software may not be the best
for the contact mechanics of the knee, although they may be
the best for the structural analysis of a robot. For example,
the Soil Consolidation procedure from ABAQUS has been
widely used to simulate the quasistatic response of articular
cartilage. When using this analysis procedure, we should
first note that the elastic material model in ABAQUS does
not include the feature of fibril reinforcement observed in
cartilage. Therefore, a user-defined stress-strain relationship
is recommended for the tissue matrix. In addition, the
definition of permeability in ABAQUS complies with the
practice in civil engineering, which must be adapted to the
usage in biomechanics. Finally, the control over convergence
and accuracy is quite tricky. One must choose the right com-
bination of maximum allowable time and pore pressure
increments for each step. Otherwise, the convergence can be
very slow or may never be achieved.

Recently, an open source nonlinear, implicit FE program
called FEBio has been introduced that is designed and
tailored for biomechanical simulations (http://mrl.sci.utah
.edu/software/febio). The software currently supports com-
putational solid biomechanics and as an open source package
has the potential to expand by the users for particular
problems. The software is based on C++ computer language,
supports parallel processing, and has its own pre- and post-
processors called PREVIEW and POSTVIEW, respectively
[221]. A feature of the program is to allow fluid flow across
the contact interface, although this feature becomes available
in the two new versions of ABAQUS (v6.11 & v6.12).

Inappropriate finite element meshing may produce incor-
rect results. It is known that the numerical solution must
converge with the mesh refinement. However, the issue
with knee joint meshing is over the distorted elements
generated by automatic meshing to fit the complex tissue
geometry. These elements should not be further refined, but
be manually adjusted to speed up numerical convergence. The
selection of tetrahedral versus hexahedral elements for mesh
generation may also affect the accuracy of the results. While
the discretization of a complex domain is much easier using
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tetrahedral or a combination of tetrahedral and hexahedral
elements, such a mesh might not be suitable for some simula-
tions. For instance, if porous elements in ABAQUS are used
to model the fluid pressure, quadratic hexahedral elements
yield better results. Moreover, the contact convergence is
generally slower when triangular/tetrahedral elements are
used as compared to quadrilateral/hexahedral elements.

The verification of the joint model should also be per-
formed with various loadings corresponding to the mechan-
ical functions of the joint.

8.4.2. Model Validations. Model validation is probably still
weak in the computational modeling of the knee joint. Many
validations in the past were limited to match partial measure-
ment, for example, the total force in the joint, by choosing
model parameters, such as contact conditions, geometric
constraints, and material properties. Such matches may
indicate certain procedures in the modeling have been done
correctly but do not really demonstrate sufficient proof for
the model validity. There are two issues with this type of
validations. First, the material properties may not be in the
right range, or the parameters are not physically correct at
all. Secondly, only partial measurement is matched, which is
often possible by adjusting multiple parameters at a reason-
able range, even the modeling is not completely right. The real
question is whether the model can be used to match multiple
measurements simultaneously, for example, the use of one
set of parameters predicts the total force, as well as maxi-
mum stresses and strains at various loadings. Since multiple
measurements are currently difficult, this type of validation
should be complemented with other types of validations. In
vivo MRI measurement of soft tissue deformation may be
promising in this regard.

The validation of joint modeling should be focused on
the choice of validated material models (constitutive laws),
before new reliable techniques are further available for precise
measurement of multiple mechanical parameters of the knee.
Using articular cartilage as an example, a valid material model
should be able to describe at least the load responses of
both unconfined compression and tensile testing at different
loadings. The unconfined compression testing is used to
demonstrate the mechanism of fluid pressurization in the
load support of the tissue, whereas the tensile testing is used
to observe the intrinsic viscoelastic properties of the tissue.
Successful simulation of the two types of testing indicates
some capability of the proposed constitutive law in describing
the two key mechanical mechanisms of articular cartilage.
A confined compression testing can be further considered
because it reveals the compressive properties of the tissue
independent of the tensile properties. Mathematically speak-
ing, the multiple material properties of a model can only
be determined by multiple testing. Indentation testing, on
the other hand, may not be as effective as the other types
of testing for the validation of a material law, because
the contact modeling itself for the indenter and specimen
requires validation as well. One may also suggest 2D tensile
tests for the validation of a material model [222].

The validation of a material model must be performed
for various loading magnitudes and loading rates, since
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tissues like cartilage and ligaments are well known for their
nonlinear behavior and strain rate sensitivity [31-33]. It is
noteworthy that multistep ramp loading and relaxation or
creep tests well demonstrate the nonlinearity at both loading
phase and equilibrium. These multistep tests may be best
used to validate the constitutive law of a viscoleastic material
(45, 47].

8.5. Concluding Remarks. A good knee joint model should
be at least extensively verified. The validation may be focused
on the constitutive laws of the tissues, because tissue testing
is more developed and effective than whole joint testing.
Joint measurements should also be performed to validate
the numerical solutions whenever possible. Recent works in
whole joint testing may provide data to validate the compu-
tational models in terms of kinematics/kinetics. For instance,
joint simulator robots are capable of reproducing joint kinetic
data when in vivo kinematics data are provided as inputs,
or they can generate kinematic data emulating biological
motions if kinetics data are given [223-225]. However, one
should be aware of the limitation of all validations: limited
experimental data are not sufficient for the validation of
the joint model. Extensive verification of the model is still
necessary, even the numerical results match the data well.
Naturally, the model verification should be done prior to the
validation of the joint model.

A single run of FEA on the knee takes days or weeks,
if the time-dependent response is sought, for example, the
determination of the fluid pressurization in articular carti-
lages and menisci. In particular, creep takes a much longer
time to reach equilibrium than stress relaxation [88]. If a
valid material model is used, the creep response can be
qualitatively derived from the relaxation testing. Therefore,
we suggest to examine the stress relaxation of the knee
first; even creep is considered as a more realistic loading.
The simulation of creep is necessary only when quantitative
results for creep are needed. Another major factor that slows
down the computation is the use of actual fast loading, which
is necessary for the prediction of realistic load response
that is highly compression rate dependent. On the other
hand, one may use a slightly slower loading to obtain much
quicker convergence and yet acceptable results, since the rate
dependence is asymptotic [226]. This method is effective only
when the load response is close to the asymptote, which is the
instantaneous response.

The choice of a knee model depends on the research
questions to be answered. A rigid-body model may serve
the purpose of gait analysis of healthy knees. However, a
FE model is required to determine the contact pressures
in the knee in order to understand an abnormal gait. An
FE knee model with a single-phase incompressible material
law may be sufficient for the analysis of gait cycles but will
not provide any information on the nutrient transport in
articular cartilage that is performed by fluid flow in the
tissue. A fibril-reinforced poromechanical model may also
help understand the load share between the solid matrix
and fluid pressurization, as well as the stress in the collagen
network.
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The choice between implicit and explicit solution tech-
niques is another factor that should be considered for numer-
ical simulations. Implicit methods are preferred for static and
quasistatic problems, while explicit methods are usually used
for impact and fast loading problems [150, 201, 206]. Since
explicit methods are conditionally stable, the criteria must be
set carefully to ensure numerical stability and convergence
[150]. Implicit methods are usually unconditionally stable,
but as discussed earlier, the selection of convergence criteria
is a critical aspect to ensure the numerical accuracy. It is
noteworthy that most of the knee joint models cited in this
review employ implicit methods. Another challenge, for a
computationally demanding simulation, is the efficiency of
parallel processing: explicit simulations are normally more
efficient when the number of CPUs increases as compared
to the implicit methods. In addition, when a commercial
FE package is used, the number of licenses is a practical
restriction on the number of CPUs recruited for a parallel
computing. Finally, GPU supercomputing may be a future
solution for real-time simulation of the knee joint mechanical
response, which is beyond the scope of this paper.

Acknowledgments

The authors gratefully acknowledge the financial support
from the Natural Sciences and Engineering Research Council
of Canada (NSERC) and the NSERC Create Training Pro-
gram directed by Dr. Walter Herzog. The authors also thank
Dr. Leonard V. Hills for his constructive comments.

References

[1] D. M. Daniels, Knee Ligaments: Structure, Function, Injury and
Repair, Raven Press, New York, NY, USA, 1990.

[2] N. G. Shrive, J. J. OConnor, and J. W. Goodfellow, “Load-
bearing in the knee joint,” Clinical Orthopaedics and Related
Research, vol. 131, pp. 279-287, 1978.

[3] W. A. Brekelmans, H. W. Poort, and T. J. Slooff, “A new method
to analyse the mechanical behaviour of skeletal parts,” Acta
Orthopaedica Scandinavica, vol. 43, no. 5, pp. 301-317, 1972.

[4] R.Huiskes and E. Y. S. Chao, “A survey of finite element analysis
in orthopedic biomechanics: the first decade,” Journal of Biome-
chanics, vol. 16, no. 6, pp. 385-409, 1983.

[5] S. E. Clift, “Finite-element analysis in cartilage biomechanics,”
Journal of Biomedical Engineering, vol. 14, no. 3, pp. 217-221,
1992.

[6] A. A. J. Goldsmith, A. Hayes, and S. E. Clift, “Application
of finite elements to the stress analysis of articular cartilage;”
Medical Engineering and Physics, vol. 18, no. 2, pp. 89-98, 1996.

[7] E. M. Hasler, W. Herzog, J. Z. Wu et al., “Articular cartilage
biomechanics: theoretical models, material properties, and
biosynthetic response,” Critical Reviews in Biomedical Engineer-
ing, vol. 27, no. 6, pp. 415-488,1999.

[8] S. Knecht, B. Vanwanseele, and E. Stiissi, “A review on the
mechanical quality of articular cartilage-implications for the
diagnosis of osteoarthritis;,” Clinical Biomechanics, vol. 21, no.
10, pp. 999-1012, 2006.

[9] W. Wilson, C. C. Van Donkelaar, R. Van Rietbergen, and R.
Huiskes, “The role of computational models in the search for

Computational and Mathematical Methods in Medicine

the mechanical behavior and damage mechanisms of articular
cartilage,” Medical Engineering and Physics, vol. 27, no. 10, pp.
810-826, 2005.

[10] Z. A. Taylor and K. Miller, “Constitutive modeling of cartilagi-
nous tissues: a review; Journal of Biomechanics, vol. 22, no. 3,
pp. 212-229, 2006.

[11] C. C. van Donkelaar and R. M. Schulz, “Review on patents for
mechanical stimulation of articular cartilage,” Recent Patents on
Biomedical Engineering, vol. 1, pp. 1-12, 2008.

[12] S. L. Woo, G. A. Johnson, and B. A. Smith, “Mathematical
modeling of ligaments and tendons,” Journal of Biomechanical
Engineering, vol. 115, no. 4, pp. 468-473, 1993.

[13] J. A. Weiss and J. C. Gardiner, “Computational modeling of lig-
ament mechanics,” Critical Reviews in Biomedical Engineering,
vol. 29, no. 3, pp. 303-371, 2001.

[14] J. A. Weiss, J. C. Gardiner, B. J. Ellis et al., “Three-dimensional
finite element modeling of ligaments: technical aspects,” Medi-
cal Engineering & Physics, vol. 27, no. 10, pp. 845-861, 2005.

[15] P. P. Provenzano, R. S. Lakes, D. T. Corr, and R. R, “Application
of nonlinear viscoelastic models to describe ligament behavior,”
Biomechanics and modeling in mechanobiology, vol. 1, no. 1, pp.
45-57,2002.

[16] M. S. Hefzy and E. S. Grood, “Review of knee models,” Applied
Mechanics Reviews, vol. 41, no. 1, pp. 1-13, 1988.

[17] M. S. Hefzy and T. D. V. Cooke, “Review of knee models: 1996
update,” Applied Mechanics Reviews, vol. 49, no. 10, pp. S187-
S193, 1996.

[18] E. Pena, A. Pérez Del Palomar, B. Calvo, M. A. Martinez, and
M. Doblaré, “Computational modelling of diarthrodial joints.
Physiological, pathological and pos-surgery simulations,”
Archives of Computational Methods in Engineering, vol. 14, no.
1, pp. 47-91, 2007.

[19] J. J. Elias and A. J. Cosgarea, “Computational modeling: an
alternative approach for investigating patellofemoral mechan-
ics,” Sports Medicine and Arthroscopy Review, vol. 15, no. 2, pp.
89-94, 2007.

[20] J. Mackerle, “Finite element modeling and simulations in ortho-
pedics: a bibliography 1998-2005,” Computer Methods in Biome-
chanics and Biomedical Engineering, vol. 9, no. 3, pp. 149-199,
2006.

[21] V. C. Mow and A. Ratclifte, Biomechanics of Diarthrodial Joints,
Springer, New York, NY, USA, 1990.

[22] D. Heinegard and A. Oldberg, “Structure and biology of carti-
lage and bone matrix noncollagenous macromolecules,” FASEB
Journal, vol. 3, no. 9, pp. 2042-2051, 1989.

[23] G. E. Kempson, M. A. R. Freeman, and S. A. V. Swanson,
“The determination of a creep modulus for articular cartilage
from indentation tests on the human femoral head,” Journal of
Biomechanics, vol. 4, no. 4, pp. 239-250, 1971.

[24] J. M. Coletti, W. H. Akeson, and S. L. Woo, “A comparison
of the physical behavior of normal articular cartilage and the
arthroplasty surface,” Journal of Bone and Joint Surgery A, vol.
54, no. 1, pp. 147-160, 1972.

[25] W. C. Hayes and L. E. Mockros, “Viscoelastic properties of
human articular cartilage,” Journal of Applied Physiology , vol.
31, no. 4, pp. 562-568, 1971.

[26] W. C. Hayes, L. M. Keer, G. Herrmann, and L. E. Mockros,
“A mathematical analysis for indentation tests of articular
cartilage” Journal of Biomechanics, vol. 5, no. 5, pp. 541-551,
1972.

35US917 SUOLULLOD SAIE8.D 9|qedijdde aLjy Aq pauseno ale sspe YO 'ssn J0 Sa|nJ 4oy AeIqi aUIIUO AS|IAN UO (SUONIPUOI-PUE-SWLIBYWOY"AB 1M AJe g 1]BuJuo//:Sa1y) SUOIPUOD PUe S 1 841 985 *[6202/90/02] U0 Akeiqiauliuo AS|IM ‘SZ¥8T./STOZ/SSTT OT/I0p/WO0d A8 1M Alelq|1)BulUo//:Sdy ol pepeojumod ‘T ‘€T0¢ ‘96€L



Computational and Mathematical Methods in Medicine

[27] J. R. Parsons and J. Black, “The viscoelastic shear behavior of
normal rabbit articular cartilage,” Journal of Biomechanics, vol.
10, no. 1, pp. 21-29, 1977.

[28] C. G. Armstrong, A. S. Bahrani, and D. L. Gardner, “Changes
in the deformational behavior of human hip cartilage with age,”
Journal of Biomechanical Engineering, vol. 102, no. 3, pp. 214-
220, 1980.

[29] C.G. Armstrong, W. M. Lai, and V. C. Mow, “An analysis of the
unconfined compression of articular cartilage,” Journal of Bio-
mechanical Engineering, vol. 106, no. 2, pp. 165-173,1984.

[30] J. Yao, P. D. Funkenbusch, J. Snibbe, M. Maloney, and A. L.

Lerner, “Sensitivities of medial meniscal motion and deforma-

tion to material properties of articular cartilage, meniscus and

meniscal attachments using design of experiments methods,”

Journal of Biomechanical Engineering, vol. 128, no. 3, pp. 399-

408, 2006.

A. Oloyede, R. Flachsmann, and N. D. Broom, “The dramatic

influence of loading velocity on the compressive response of

articular cartilage,” Connective Tissue Research, vol. 27, no. 4, pp.

211-224,1992.

[32] L. P. Li and K. B. Gu, “Reconsideration on the use of elastic
models to predict the instantaneous load response of the knee
joint,” Proceedings of the Institution of Mechanical Engineers H,
vol. 225, no. 9, pp- 888-896, 2011.

[33] L. P. Li, M. D. Buschmann, and A. Shirazi-Adl, “Strain-rate
dependent stiffness of articular cartilage in unconfined com-
pression,” Journal of Biomechanical Engineering, vol. 125, no. 2,
pp. 161-168, 2003.

[34] M. A. Biot, “General theory of three-dimensional consolida-
tion,” Journal of Applied Physics, vol. 12, no. 2, pp. 155-164, 1941.

[35] M. A. Biot, “Theory of elasticity and consolidation for a porous
anisotropic solid,” Journal of Applied Physics, vol. 26, no. 2, pp.
182-185, 1955.

[36] J. L. Nowinski and C. E. Davis, “A model of the human skull
as a poroelastic spherical shell subjected to a quasistatic load,”
Mathematical Biosciences, vol. 8, no. 3-4, pp. 397-416, 1970.

[37] J. Nowinski, “Bone articulations as systems of poroelastic bodies
in contact,” AIAA Journal, vol. 9, no. 1, pp. 62-67, 1971.

[38] J. L. Nowinski, “Stress concentration around a cylindrical cavity
in a bone treated as a poroelastic body;,” Acta Mechanica, vol. 13,
no. 3-4, pp. 281-292,1972.

[39] V.C.Mow, S. C. Kuei, W. M. Lai, and C. G. Armstrong, “Biphasic
creep and stress relaxation of articular cartilage in compression:
theory and experiments,” Journal of Biomechanical Engineering,
vol. 102, no. 1, pp. 73-84, 1980.

[40] W. M. Lai, V. C. Mow, and V. Roth, “Effects of non-linear
strain-dependent permeability and rate of compression on the
stress behaviour of articular cartilage,” Journal of Biomechanical
Engineering, vol. 103, no. 2, pp. 61-66, 1981.

[41] J. K. Suh, R. L. Spilker, and V. C. Mow, “Finite element analysis
of the indentation problem for articular cartilage using a finite
deformation biphasic model,” in Winter Annual Meeting of
the American Society of Mechanical Engineers, pp. 215-218,
November 1990.

[42] J. K. Suh, R. L. Spilker, and M. H. Holmes, “Penalty finite
element analysis for non-linear mechanics of biphasic hydrated
soft tissue under large deformation,” International Journal for
Numerical Methods in Engineering, vol. 32, no. 7, pp. 1411-1439,
1991.

[43] B.R. Simon, “Multiphase poroelastic finite element models for
soft tissue structures,” Applied Mechanics Reviews, vol. 45, no. 6,
pp. 191-218, 1992.

[31

21

[44] M. Schanz and S. Diebels, “A comparative study of Biot’s theory
and the linear theory of porous media for wave propagation
problems,” Acta Mechanica, vol. 161, no. 3-4, pp. 213-235, 2003.

[45] T.D. Brown and R. J. Singerman, “Experimental determination
of the linear biphasic constitutive coefficients of human fetal
proximal femoral chondroepiphysis,” Journal of Biomechanics,
vol. 19, no. 8, pp- 597-605, 1986.

[46] D. K. Miller, “Technical note: modelling soft tissue using bi-
phasic theory-a word of caution,” Computer Methods in Biome-
chanics and Biomedical Engineering, vol. 1, no. 3, pp. 261-263,
1998.

[47] L.P.Li,J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl, “Non-
linear analysis of cartilage in unconfined ramp compression
using a fibril reinforced poroelastic model;” Clinical Biomechan-
ics, vol. 14, no. 9, pp. 673-682, 1999.

[48] J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl, “A fibril-
network-reinforced biphasic model of cartilage in unconfined
compression,” Journal of Biomechanical Engineering, vol. 121, no.
3, pp. 340-347,1999.

[49] W. M. Lai, J. S. Hou, and V. C. Mow, “A triphasic theory for
the swelling and deformation behaviors of articular cartilage,”
Journal of Biomechanical Engineering, vol. 113, no. 3, pp. 245-
258, 1991.

[50] G. A. Ateshian, N. O. Chahine, I. M. Basalo, and C. T.
Hung, “The correspondence between equilibrium biphasic and
triphasic material properties in mixture models of articular
cartilage,” Journal of Biomechanics, vol. 37, no. 3, pp. 391-400,
2004.

[51] W. Y. Gu, W. M. Lai, and V. C. Mow, “A mixture theory for
charged-hydrated soft tissues containing multi- electrolytes:
passive transport and swelling behaviors,” Journal of Biome-
chanical Engineering, vol. 120, no. 2, pp. 169-180, 1998.

[52] M. C. Kirby, T. A. Sikoryn, D. W. L. Hukins, and R. M. Asp-
den, “Structure and mechanical properties of the longitudinal
ligaments and ligamentum flavum of the spine,” Journal of
Biomedical Engineering, vol. 11, no. 3, pp. 192-196, 1989.

[53] R.J. Minns, P. D. Soden, and D. S. Jackson, “The role of the
fibrous components and ground substance in the mechanical
properties of biological tissues: a preliminary investigation,”
Journal of Biomechanics, vol. 6, no. 2, pp. 153-165, 1973.

[54] Y. C. Fung, “Elasticity of soft tissues in simple elongation,”
American Journal of Physiology, vol. 213, no. 6, pp. 1532-1544,
1967.

J. Hildebrandt, H. Fukaya, and C. J. Martin, “Simple uniaxial
and uniform biaxial deformation of nearly isotropic incom-
pressible tissues,” Biophysical Journal, vol. 9, no. 6, pp. 781-791,
1969.

[56] T.T.Soongand W. N. Huang, “A stochastic model for biological

tissue elasticity in simple elongation,” Journal of Biomechanics,
vol. 6, no. 5, pp. 451-458, 1973.

A. Viidik, “A rheological model for uncalcified parallel-fibred
collagenous tissue,” Journal of Biomechanics, vol. 1, no. 1, pp. 3-
11, 1968.

[58] M. Frisén, M. Migi, L. Sonnerup, and A. Viidik, “Rheological
analysis of soft collagenous tissue. Part I: theoretical considera-
tions,” Journal of Biomechanics, vol. 2, no. 1, pp. 13-20, 1969.

[59] W. E Decraemer, M. A. Maes, and V. J. Vanhuyse, “An elastic
stress-strain relation for soft biological tissues based on a
structural model,” Journal of Biomechanics, vol. 13, no. 6, pp.
463-468, 1980.

(55

(57

35US917 SUOLULLOD SAIE8.D 9|qedijdde aLjy Aq pauseno ale sspe YO 'ssn J0 Sa|nJ 4oy AeIqi aUIIUO AS|IAN UO (SUONIPUOI-PUE-SWLIBYWOY"AB 1M AJe g 1]BuJuo//:Sa1y) SUOIPUOD PUe S 1 841 985 *[6202/90/02] U0 Akeiqiauliuo AS|IM ‘SZ¥8T./STOZ/SSTT OT/I0p/WO0d A8 1M Alelq|1)BulUo//:Sdy ol pepeojumod ‘T ‘€T0¢ ‘96€L



22

[60] M.K.KwanandS. L. Y. Woo, “A structural model to describe the
nonlinear stress-strain behavior for parallel-fibered collagenous
tissues,” Journal of Biomechanical Engineering, vol. 111, no. 4, pp.
361-363, 1989.

[61] Y. Lanir, “A microstructure model for the rheology of mam-
malian tendon,” Journal of Biomechanical Engineering, vol. 102,
no. 4, pp. 332-339, 1980.

[62] Y. Lanir, “Constitutive equations for fibrous connective tissues,”
Journal of Biomechanics, vol. 16, no. 1, pp. 1-12, 1983.

[63] C.Hurschler, B. Loitz-Ramage, and R. Vanderby, “A structurally
based stress-stretch relationship for tendon and ligament,” Jour-
nal of Biomechanical Engineering, vol. 119, no. 4, pp. 392-399,
1997.

[64] J. A. Weiss, B. N. Maker, and S. Govindjee, “Finite ele-
ment implementation of incompressible, transversely isotropic
hyperelasticity,” Computer Methods in Applied Mechanics and
Engineering, vol. 135, no. 1-2, pp. 107-128, 1996.

[65] K. M. Quapp and J. A. Weiss, “Material characterization of
human medial collateral ligament,” Journal of Biomechanical
Engineering, vol. 120, no. 6, pp- 757-763, 1998.

[66] J. C. Gardiner and J. A. Weiss, “Simple shear testing of parallel-
fibered planar soft tissues,” Journal of Biomechanical Engineer-
ing, vol. 123, no. 2, pp. 170-175, 2001.

[67] J. A. Weiss, J. C. Gardiner, and C. Bonifasi-Lista, “Ligament
material behavior is nonlinear, viscoelastic and rate-indep-
endent under shear loading,” Journal of Biomechanics, vol. 35,
no. 7, pp. 943-950, 2002.

[68] J. C. Gardiner and J. A. Weiss, “Subject-specific finite element
analysis of the human medial collateral ligament during valgus
knee loading,” Journal of Orthopaedic Research, vol. 21, no. 6, pp.
1098-1106, 2003.

[69] R. Sanjeevi, “A viscoelastic model for the mechanical properties
of biological materials,” Journal of Biomechanics, vol. 15, no. 2,
pp- 107-109, 1982.

[70] R. Sanjeevi, N. Somanathan, and D. Ramaswamy, “Viscoelastic
model for collagen fibres,” Journal of Biomechanics, vol. 15, no.
3, pp. 181-183, 1982.

[71] W. E Decraemer, M. A. Maes, V.]. Vanhuyse, and P. Vanpeper-
straete, “A non-linear viscoelastic constitutive equation for soft
biological tissues, based upon a structural model,” Journal of
Biomechanics, vol. 13, no. 7, pp. 559-564, 1980.

[72] Y. C. Fung, Biomechanics: Mechanical Properties of Living Tis-
sues, Springer-Verlag, New York, NY, USA, 1993.

[73] P. H. Dehoff, “On the nonlinear viscoelastic behavior of soft
biological tissues,” Journal of Biomechanics, vol. 11, no. 1-2, pp.
35-40, 1978.

[74] D. P. Pioletti, L. R. Rakotomanana, J. F. Benvenuti, and P. F.
Leyvraz, “Viscoelastic constitutive law in large deformations:
application to human knee ligaments and tendons,” Journal of
Biomechanics, vol. 31, no. 8, pp. 753-757,1998.

[75] G. A.]Johnson, G. A. Livesay, S. L. Y. Woo, and K. R. Rajagopal,
“A single integral finite strain viscoelastic model of ligaments
and tendons,” Journal of Biomechanical Engineering, vol. 118, no.
2, pp. 221-226, 1996.

[76] Y. C. Fung, “Stress-strain history relations of soft tissues in sim-
ple elongation,” in Biomechanics: Its Foundations and Objectives,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1972.

[77] T.S. Atkinson, R. C. Haut, and N. J. Altiero, “A poroelastic model
that predicts some phenomenological responses of ligaments
and tendons,” Journal of Biomechanical Engineering, vol. 119, no.
4, pp. 400-405, 1997,

Computational and Mathematical Methods in Medicine

[78] L. Yin and D. M. Elliott, “A biphasic and transversely isotropic
mechanical model for tendon: application to mouse tail fascicles
in uniaxial tension,” Journal of Biomechanics, vol. 37, no. 6, pp.
907-916, 2004.

[79] L.Blankevoort and R. Huiskes, “Ligament-bone interaction in a

three-dimensional model of the knee,” Journal of Biomechanical

Engineering, vol. 113, no. 3, pp. 263-269, 1991.

M. Z. Bendjaballah, A. Shirazi, and D. J. Zukor, “Biomechanics

of the human knee joint in compression: reconstruction, mesh

generation and finite element analysis,” The Knee, vol. 2, no. 2,

pp. 69-79, 1995.

[81] G. Li,J. Gil, A. Kanamori, and S. L. Y. Woo, “A validated three-
dimensional computational model of a human knee joint;
Journal of Biomechanical Engineering, vol. 121, no. 6, pp. 657-
662, 1999.

[82] D. L. Butler, M. D. Kay, and D. C. Stouffer, “Comparison of
material properties in fascicle-bone units from human patellar
tendon and knee ligaments,” Journal of Biomechanics, vol. 19, no.
6, pp. 425-432, 1986.

[83] A. M. Ahmed, D. L. Burke, N. A. Duncan, and K. H. Chan,
“Ligament tension pattern in the flexed knee in combined
passive anterior translation and axial rotation,” Journal of
Orthopaedic Research, vol. 10, no. 6, pp. 854-867, 1992.

[84] E. Pena, B. Calvo, M. A. Martinez, and M. Doblaré, “A three-
dimensional finite element analysis of the combined behavior of
ligaments and menisci in the healthy human knee joint,” Journal
of Biomechanics, vol. 39, no. 9, pp. 1686-1701, 2006.

[85] Y.Y.Dhaher, T. H. Kwon, and M. Barry, “The effect of connective
tissue material uncertainties on knee joint mechanics under
isolated loading conditions,” Journal of Biomechanics, vol. 43,
no. 16, pp. 3118-3125, 2010.

[86] L. P. Li and M. Kazemi, “Fluid pressurization in cartilages and
menisci in the normal and repaired human knees,” in Modeling
and Simulation in Engineering, C. Alexandru, Ed., pp. 277-298,
InTech, New York, NY, USA, 2012.

[87] M. Kazemi, L. P. Li, P. Savard, and M. D. Buschmann, “Creep
behavior of the intact and meniscectomy knee joints,” Journal
of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 7,
pp. 13511358, 2011.

[88] M. Kazemi, L. P. Li, M. D. Buschmann, and P. Savard, “Partial
meniscectomy changes fluid pressurization in articular cartilage
in human knees,” Journal of Biomechanical Engineering, vol. 134,
no. 2, Article ID 021001, 2012.

[89] P.S. Walker and M. J. Erkman, “The role of the menisci in force
transmission across the knee;” Clinical Orthopaedics and Related
Research, vol. 109, pp. 184-192, 1975.

[90] P.S. Walker and J. V. Hajek, “The load-bearing area in the knee
joint,” Journal of Biomechanics, vol. 5, no. 6, pp. 581-589, 1972.

[91] H. Kurosawa, T. Fukubayashi, and H. Nakajima, “Load-bearing
mode of the knee joint: physical behavior of the knee joint with
or without menisci,” Clinical Orthopaedics and Related Research,
no. 149, pp. 283-290, 1980.

[92] D. C. Fithian, M. A. Kelly, and V. C. Mow, “Material properties
and structure-function relationships in the menisci,” Clinical
Orthopaedics and Related Research, no. 252, pp. 19-31, 1990.

[93] W. R. Krause, M. H. Pope, R. J. Johnson, and D. G. Wilder,
“Mechanical changes in the knee after meniscectomy,” Journal
of Bone and Joint Surgery A, vol. 58, no. 5, pp. 599-604, 1976.

[94] 1. D. McDermott, S. D. Masouros, and A. A. Amis, “Biomechan-
ics of the menisci of the knee,” Current Orthopaedics, vol. 22, no.
3, pp. 193-201, 2008.

[80

35US917 SUOLULLOD SAIE8.D 9|qedijdde aLjy Aq pauseno ale sspe YO 'ssn J0 Sa|nJ 4oy AeIqi aUIIUO AS|IAN UO (SUONIPUOI-PUE-SWLIBYWOY"AB 1M AJe g 1]BuJuo//:Sa1y) SUOIPUOD PUe S 1 841 985 *[6202/90/02] U0 Akeiqiauliuo AS|IM ‘SZ¥8T./STOZ/SSTT OT/I0p/WO0d A8 1M Alelq|1)BulUo//:Sdy ol pepeojumod ‘T ‘€T0¢ ‘96€L



Computational and Mathematical Methods in Medicine

[95]

(96]

(97]

(98]

[99]

(100]

[101]

[102

(103

[104]

[105]

[106]

[107]

(108]

[109]

[110]

S. Andrews, N. Shrive, and J. Ronsky, “The shocking truth about
meniscus,” Journal of Biomechanics, vol. 44, no. 16, pp. 2737-
2740, 2011.

R. M. Aspden, Y. E. Yarker, and D. W. L. Hukins, “Collagen
orientations in the meniscus of the knee joint,” Journal of
Anatomy, vol. 140, no. 3, pp. 371-380, 1985.

T. L. Haut Donahue, M. L. Hull, M. M. Rashid, and C. R. Jacobs,
“How the stiffness of meniscal attachments and meniscal mate-
rial properties affect tibio-femoral contact pressure computed
using a validated finite element model of the human knee joint,”
Journal of Biomechanics, vol. 36, no. 1, pp. 19-34, 2003.

J. H. Lai and M. E. Levenston, “Meniscus and cartilage exhibit
distinct intra-tissue strain distributions under unconfined com-
pression,” Osteoarthritis and Cartilage, vol. 18, no. 10, pp. 1291-
1299, 2010.

A. A.H.J. Sauren, A. Huson, and R. Y. Schouten, “An axisym-
metric finite element analysis of the mechanical function of the
meniscus,” International Journal of Sports Medicine, vol. 5, pp.
93-95,1984.

R. M. Aspden, “A model for the function and failure of the
meniscus,” Engineering in Medicine, vol. 14, no. 3, pp. 119-122,
1985.

G. J. M. A. Schreppers, A. A. H. J. Sauren, and A. Huson,
“Numerical model of the load transmission in the tibio-femoral
contact area,” Proceedings of the Institution of Mechanical Engi-
neers H, vol. 204, no. 1, pp. 53-59, 1990.

J. R. Meakin, N. G. Shrive, C. B. Frank, and D. A. Hart, “Finite
element analysis of the meniscus: the influence of geometry and
material properties on its behaviour;” Knee, vol. 10, no. 1, pp. 33—
41, 2003.

M. Tissakht and A. M. Ahmed, “Parametric study using differ-
ent elastic and poroelastic axisymmetric models of the femur-
meniscus-tibia unit,” in Winter Annual Meeting of the American
Society of Mechanical Engineers, pp. 241-243, November 1992.

R. L. Spilker, P. S. Donzelli, and V. C. Mow, “A transversely
isotropic biphasic finite element model of the meniscus,” Journal
of Biomechanics, vol. 25, no. 9, pp. 1027-1045, 1992.

W. Wilson, B. Van Rietbergen, C. C. Van Donkelaar, and R.
Huiskes, “Pathways of load-induced cartilage damage causing
cartilage degeneration in the knee after meniscectomy,” Journal
of Biomechanics, vol. 36, no. 6, pp. 845-851, 2003.

A. C. Abraham, J. T. Moyer, D. E Villegas, G. M. Odegard, and T.
L. Haut Donahue, “Hyperelastic properties of human meniscal
attachments,” Journal of Biomechanics, vol. 44, no. 3, pp. 413-
418, 2011.

J. Wismans, E. Veldpaus, and J. Janssen, “A three-dimensioal
mathematical model of the knee-joint,” Journal of Biomechanics,
vol. 13, no. 8, pp. 677-686, 1980.

J. Suggs, C. Wang, and G. Li, “The effect of graft stiffness on
knee joint biomechanics after ACL reconstruction-a 3D com-
putational simulation,” Clinical Biomechanics, vol. 18, no. 1, pp.
35-43, 2003.

E. Penia, B. Calvo, M. A. Martinez, D. Palanca, and M. Doblaré,
“Finite element analysis of the effect of meniscal tears and
meniscectomies on human knee biomechanics,” Clinical Biome-
chanics, vol. 20, no. 5, pp. 498-507, 2005.

T. L. H. Donahue, M. L. Hull, M. M. Rashid, and C. R. Jacobs,
“A finite element model of the human knee joint for the study
of tibio-femoral contact,” Journal of Biomechanical Engineering,
vol. 124, no. 3, pp. 273-280, 2002.

[111]

[112]

[113]

(114

[115]

[116]

[117]

(18]

[119]

[120]

[121]

(122]

[123]

[124]

[125]

(126]

[127]

[128]

23

N. Yang, H. Nayeb-Hashemi, and P. K. Canavan, “The combined
effect of frontal plane tibiofemoral knee angle and meniscec-
tomy on the cartilage contact stresses and strains,” Annals of
Biomedical Engineering, vol. 37, no. 11, pp. 2360-2372, 2009.

M. E. Mononen, M. T. Mikkola, P. Julkunen et al., “Effect of
superficial collagen patterns and fibrillation of femoral articular
cartilage on knee joint mechanics-a 3D finite element analysis,”
Journal of Biomechanics, vol. 45, no. 3, pp. 579-587, 2012.

R. Shirazi, A. Shirazi-Adl, and M. Hurtig, “Role of cartilage
collagen fibrils networks in knee joint biomechanics under
compression,” Journal of Biomechanics, vol. 41, no. 16, pp. 3340-
3348, 2008.

A.Jilani, A. Shirazi-Adl, and M. Z. Bendjaballah, “Biomechanics
of human tibio-femoral joint in axial rotation,” Knee, vol. 4, no.
4, pp. 203-213, 1997,

M. Z. Bendjaballah, A. Shirazi-Adl, and D. J. Zukor, “Biome-
chanical response of the passive human knee joint under
anterior-posterior forces,” Clinical Biomechanics, vol. 13, no. 8,
pp. 625-633,1998.

M. Z. Bendjaballah, A. Shirazi-Adl, and D. J. Zukor, “Finite
element analysis of human knee joint in varus-valgus,” Clinical
Biomechanics, vol. 12, no. 3, pp. 139-148, 1997.

R. Crowninshield, M. H. Pope, and R. J. Johnson, “An analytical
model of the knee,” Journal of Biomechanics, vol. 9, no. 6, pp.
397-405, 1976.

L. S. Matthews, D. A. Sonstegard, and J. A. Henke, “Load bearing
characteristics of the patello-femoral joint,” Acta Orthopaedica
Scandinavica, vol. 48, no. 5, pp. 511-516, 1977.

E.S. Grood and M. S. Hefzy, “An analytical technique for mod-
eling knee joint stiffness. Part I: ligamentous forces,” Journal of
Biomechanical Engineering, vol. 104, no. 4, pp. 330-337, 1982.
M. S. Hefzy and E. S. Grood, “An analytical technique for
modeling knee joint stiffness—part II: ligamentous geometric
nonlinearities,” Journal of Biomechanical Engineering, vol. 105,
no. 2, pp. 145-153, 1983.

L. Blankevoort, J. H. Kuiper, R. Huiskes, and H. J. Grootenboer,
“Articular contact in a three-dimensional model of the knee,”
Journal of Biomechanics, vol. 24, no. 11, pp. 1019-1031, 1991.

S. Hirokawa, “Three-dimensional mathematical model analysis
of the patellofemoral joint,” Journal of Biomechanics, vol. 24, no.
8, pp. 659671, 1991.

T. M. G. J. van Eijden, E. Kouwenhoven, J. Verburg, and W.
A. Weijs, “A mathematical model of the patellofemoral joint,”
Journal of Biomechanics, vol. 19, no. 3, pp. 219-229, 1986.

T. P. Andriacchi, R. P. Mikosz, S. ]. Hampton, and J. O. Galante,
“Model studies of the stiffness characteristics of the human knee
joint,” Journal of Biomechanics, vol. 16, no. 1, pp. 23-29, 1983.

S. T Tiamer and A. E. Engin, “Three-body segment dynamic
model of the human knee,” Journal of Biomechanical Engineer-
ing, vol. 115, no. 4, pp. 350-356, 1993.

B. Beynnon, J. Yu, D. Huston et al., “A sagittal plane model of
the knee and cruciate ligaments with application of a sensitivity
analysis,” Journal of Biomechanical Engineering, vol. 118, no. 2,
pp. 227-238, 1996.

M. S. Hefzy and H. Yang, “A three-dimensional anatomical
model of the human patello-femoral joint, for the determina-
tion of patello-femoral motions and contact characteristics,”
Journal of Biomedical Engineering, vol. 15, no. 4, pp. 289-302,
1993.

J. Apkarian, S. Naumann, and B. Cairns, “A three-dimensional
kinematic and dynamic model of the lower limb,” Journal of
Biomechanics, vol. 22, no. 2, pp. 143-155, 1989.

35US917 SUOLULLOD SAIE8.D 9|qedijdde aLjy Aq pauseno ale sspe YO 'ssn J0 Sa|nJ 4oy AeIqi aUIIUO AS|IAN UO (SUONIPUOI-PUE-SWLIBYWOY"AB 1M AJe g 1]BuJuo//:Sa1y) SUOIPUOD PUe S 1 841 985 *[6202/90/02] U0 Akeiqiauliuo AS|IM ‘SZ¥8T./STOZ/SSTT OT/I0p/WO0d A8 1M Alelq|1)BulUo//:Sdy ol pepeojumod ‘T ‘€T0¢ ‘96€L



24

[129]

[130]

(131]

(132]

[133]

[134]

[135

(136]

(137]

[138]

(139]

[140]

[141)

(142]

(143

[144]

(145]

A. W. Eberhardt, J. L. Lewis, and L. M. Keer, “Contact of layered
elastic spheres as a model of joint contact: effect of tangential
load and friction,” Journal of Biomechanical Engineering, vol. 113,
no. 1, pp. 107-108, 1991.

M. H. Moeinzadeh, A. E. Engin, and N. Akkas, “Two-dimen-
sional dynamic modelling of human knee joint, Journal of
Biomechanics, vol. 16, no. 4, pp. 253-264, 1983.

J. R. Essinger, P. F. Leyvraz, J. H. Heegard, and D. D. Robertson,
“A mathematical model for the evaluation of the behaviour
during flexion of condylar-type knee prostheses,” Journal of
Biomechanics, vol. 22, no. 11-12, pp. 1229-1241, 1989.

E. Abdel-Rahman and M. S. Hefzy, “A two-dimensional dy-
namic anatomical model of the human knee joint,” Journal of
Biomechanical Engineering, vol. 115, no. 4, pp. 357-365, 1993.

T. M. Guess, G. Thiagarajan, M. Kia, and M. Mishra, “A subject
specific multibody model of the knee with menisci,” Medical
Engineering and Physics, vol. 32, no. 5, pp. 505-515, 2010.

T. M. Guess, H. Liu, S. Bhashyam, and G. Thiagarajan, “A
multibody knee model with discrete cartilage prediction of
tibio-femoral contact mechanics,” Computer Methods in Biome-
chanics and Biomedical Engineering, pp. 1-15, 2011.

B.J. Fregly, T. . Besier, D. G. Lloyd et al., “Grand challenge com-
petition to predict in vivo knee loads,” Journal of Orthopaedic
Research, vol. 30, no. 4, pp. 503-513, 2012.

G. Papaioannou, C. K. Demetropoulos, and Y. H. King, “Pre-
dicting the effects of knee focal articular surface injury with a
patient-specific finite element model,” Knee, vol. 17, no. 1, pp. 61-
68, 2010.

J. M. Penrose, G. M. Holt, M. Beaugonin, and D. R. Hose,
“Development of an accurate three-dimensional finite element
knee model,” Computer methods in biomechanics and biomedical
engineering, vol. 5, no. 4, pp. 291-300, 2002.

K. B. Gu and L. P. Li, “A human knee joint model considering
fluid pressure and fiber orientation in cartilages and menisci,’
Medical Engineering and Physics, vol. 33, no. 4, pp. 497-503, 2011.
M. E. Mononen, P. Julkunen, J. T6yris, J. S. Jurvelin, I. Kiviranta,
and R. K. Korhonen, “Alterations in structure and properties
of collagen network of osteoarthritic and repaired cartilage
modify knee joint stresses,” Biomechanics and Modeling in
Mechanobiology , vol. 10, no. 3, pp. 357-369, 2011.

A. P. del Palomar and M. Doblaré, “An accurate simulation
model of anteriorly displaced TMJ discs with and without
reduction,” Medical Engineering & Physics, vol. 29, no. 2, pp. 216-
226, 2007.

B. Zielinska and T. L. Haut Donahue, “3D finite element model
of meniscectomy: changes in joint contact behavior,” Journal of
Biomechanical Engineering, vol. 128, no. 1, pp. 115-123, 2006.

E. Pefa, B. Calvo, M. A. Martinez, and M. Doblaré, “Computer
simulation of damage on distal femoral articular cartilage after
meniscectomies,” Computers in Biology and Medicine, vol. 38,
no. 1, pp. 69-81, 2008.

G. Li, O. Lopez, and H. Rubash, “Variability of a three-
dimensional finite element model constructed using magnetic
resonance images of a knee for joint contact stress analysis,”
Journal of Biomechanical Engineering, vol. 123, no. 4, pp. 341-
346, 2001.

R. Chand, E. Haug, and K. Rim, “Stresses in the human knee
joint,” Journal of Biomechanics, vol. 9, no. 6, pp. 417-422, 1976.
T. D. Brown, E. L. Radin, R. B. Martin, and D. B. Burr, “Finite
element studies of some juxtarticular stress changes due to
localized subchondral stiffening,” Journal of Biomechanics, vol.
17, no. 1, pp. 11-24, 1984.

(146]

[147]

(148

(149]

(150

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

(159]

[160]

Computational and Mathematical Methods in Medicine

H. Huber-Betzer, T. D. Brown, and C. Mattheck, “Some effects
of global joint morphology on local stress aberrations near
imprecisely reduced intra-articular fractures,” Journal of Biome-
chanics, vol. 23, no. 8, pp. 811-822, 1990.

G. Papaioannou, G. Nianios, C. Mitrogiannis, D. Fyhrie, S.
Tashman, and K. H. Yang, “Patient-specific knee joint finite
element model validation with high-accuracy kinematics from
biplane dynamic Roentgen stereogrammetric analysis,” Journal
of Biomechanics, vol. 41, no. 12, pp. 2633-2638, 2008.

R. Shirazi and A. Shirazi-Adl, “Analysis of partial meniscectomy
and ACL reconstruction in knee joint biomechanics under a
combined loading,” Clinical Biomechanics, vol. 24, no. 9, pp.
755-761, 2009.

T. Villa, E Migliavacca, D. Gastaldi, M. Colombo, and R. Pietra-
bissa, “Contact stresses and fatigue life in a knee prosthesis:
comparison between in vitro measurements and computational
simulations,” Journal of Biomechanics, vol. 37, no. 1, pp. 45-53,
2004.

P. Beillas, G. Papaioannou, S. Tashman, and K. H. Yang, ‘A
new method to investigate in vivo knee behavior using a finite
element model of the lower limb,” Journal of Biomechanics, vol.
37, no. 7, pp. 1019-1030, 2004.

N. H. Yang, H. Nayeb-Hashemi, P. K. Canavan, and A. Vaziri,
“Effect of frontal plane tibiofemoral angle on the stress and
strain at the knee cartilage during the stance phase of gait,
Journal of Orthopaedic Research, vol. 28, no. 12, pp. 1539-1547,
2010.

J. Heegaard, P. E. Leyvraz, A. Curnier, L. Rakotomananaa, and
R. Huiskes, “The biomechanics of the human patella during
passive knee flexion,” Journal of Biomechanics, vol. 28, no. 11, pp.
1265-1279,1995.

T. E Besier, G. E. Gold, G. S. Beaupré, and S. L. Delp, ‘A
modeling framework to estimate patellofemoral joint cartilage
stress in vivo,” Medicine and Science in Sports and Exercise, vol.
37,no. 11, pp. 1924-1930, 2005.

T. E Besier, G. E. Gold, S. L. Delp, M. Fredericson, and G.
S. Beaupré, “The influence of femoral internal and external
rotation on cartilage stresses within the patellofemoral joint,”
Journal of Orthopaedic Research, vol. 26, no. 12, pp. 1627-1635,
2008.

S. Farrokhi, J. H. Keyak, and C. M. Powers, “Individuals with
patellofemoral pain exhibit greater patellofemoral joint stress: a
finite element analysis study;” Osteoarthritis and Cartilage, vol.
19, no. 3, pp. 287-294, 2011.

C. K. Fitzpatrick, M. A. Baldwin, and P. ]. Rullkoetter, “Com-
putationally efficient finite element evaluation of natural patel-
lofemoral mechanics,” Journal of Biomechanical Engineering,
vol. 132, no. 12, Article ID 121013, 2010.

D. Périé and M. C. Hobatho, “In vivo determination of contact
areas and pressure of the femorotibial joint using non-linear
finite element analysis,” Clinical Biomechanics, vol. 13, no. 6, pp.
394-402, 1998.

K. E. Moglo and A. Shirazi-Adl, “Cruciate coupling and screw-
home mechanism in passive knee joint during extension-
flexion,” Journal of Biomechanics, vol. 38, no. 5, pp. 1075-1083,
2005.

W. Mesfar and A. Shirazi-Adl, “Biomechanics of the knee joint
in flexion under various quadriceps forces,” Knee, vol. 12, no. 6,
pp. 424-434, 2005.

Z. Hao, D. Jin, Y. Zhang, and J. Zhang, “A finite element 3D
model of in vivo human knee joint based on MRI for the

35US917 SUOLULLOD SAIE8.D 9|qedijdde aLjy Aq pauseno ale sspe YO 'ssn J0 Sa|nJ 4oy AeIqi aUIIUO AS|IAN UO (SUONIPUOI-PUE-SWLIBYWOY"AB 1M AJe g 1]BuJuo//:Sa1y) SUOIPUOD PUe S 1 841 985 *[6202/90/02] U0 Akeiqiauliuo AS|IM ‘SZ¥8T./STOZ/SSTT OT/I0p/WO0d A8 1M Alelq|1)BulUo//:Sdy ol pepeojumod ‘T ‘€T0¢ ‘96€L



Computational and Mathematical Methods in Medicine

[161]

[162]

[163]

[164]

(165]

(166

[167]

[168]

[169]

(170]

[171]

[172]

(173]

[174]

[175]

tibiofemoral joint contact analysis,” in Proceedings of the Ist
international conference on Digital human modeling, pp. 616-
622, Beijing, China, 2007.

S. C. Sibole and A. Erdemir, “Chondrocyte deformations as a
function of tibiofemoral jointloading predicted by a generalized
high-throughput pipeline of multi-scale simulations,” PLoS
One, vol. 7, no. 5, Article ID e37538, 2012.

J. P. Halloran, S. Sibole, C. C. van Donkelaar et al., “Multiscale
mechanics of articular cartilage: potentials and challenges of
coupling musculoskeletal, joint, and microscale computational
models,” Annals of Biomedical Engineering, vol. 40, no. 11, pp.
2456-2474, 2012.

G. A. Ateshian, S. Maas, and J. A. Weiss, “Finite element algo-
rithm for frictionless contact of porous permeable media under
finite deformation and sliding,” Journal of Biomechanical Engi-
neering, vol. 132, no. 6, 2010.

S. M. Adeeb, E. Y. Sayed Ahmed, J. Matyas, D. A. Hart, C. B.
Frank, and N. G. Shrive, “Congruency effects on load bearing
in diarthrodial joints,” Computer Methods in Biomechanics and
Biomedical Engineering, vol. 7, no. 3, pp. 147-157, 2004.

ASME, Guide For Verification and Validation in Computa-
tional Solid Mechanics, Transmitted by L.E. Schwer, Chair
PTC60/V&V 10, American Society of Mechanical Engineers,
New York, NY, USA, 2006.

I. Babuska and J. T. Oden, “Verification and validation in com-
putational engineering and science: basic concepts,” Computer
Methods in Applied Mechanics and Engineering, vol. 193, no. 36—
38, pp. 4057-4066, 2004.

A. E. Anderson, B. J. Ellis, and J. A. Weiss, “Verification, vali-
dation and sensitivity studies in computational biomechanics,”
Computer Methods in Biomechanics and Biomedical Engineer-
ing, vol. 10, no. 3, pp. 171-184, 2007.

A. Erdemir, T. M. Guess, J. Halloran, S. C. Tadepalli, and T. M.
Morrison, “Considerations for reporting finite element analysis
studies in biomechanics,” Journal of Biomechanics, vol. 45, no. 4,
pp. 625-633, 2012.

H. B. Henninger, S. P. Reese, A. E. Anderson, and J. A. Weiss,
“Validation of computational models in biomechanics,” Pro-
ceedings of the Institution of Mechanical Engineers H, vol. 224,
no. 7, pp. 801-812, 2010.

J. Z. Wu, W. Herzog, and M. Epstein, “Evaluation of the finite
element software ABAQUS for biomechanical modelling of
biphasic tissues,” Journal of Biomechanics, vol. 31, no. 2, pp. 165—
169, 1997.

A. E van der Voet, Finite element modelling of load transfer
through articular cartilage [Ph.D. thesis], University of Calgary,
Alberta, Canada, 1992.

P. J. Prendergast, W. D. Van Driel, and J. H. Kuiper, “A com-
parison of finite element codes for the solution of biphasic
poroelastic problems,” Proceedings of the Institution of Mechan-
ical Engineers H, vol. 210, no. 2, pp. 131-136, 1996.

D. K. Smith, T. H. Berquist, K. N. An, R. A. Robb, and E. Y. S.
Chao, “Validation of three-dimensional reconstructions of knee
anatomy: CT versus MR imaging,” Journal of Computer Assisted
Tomography, vol. 13, no. 2, pp. 294-301, 1989.

A. E. Anderson, B. J. Ellis, S. A. Maas, C. L. Peters, and J. A.
Weiss, “Validation of finite element predictions of cartilage con-
tact pressure in the human hip joint,” Journal of Biomechanical
Engineering, vol. 130, no. 5, Article ID 051008, 2008.

A. M. Ahmed and D. L. Burke, “In-vitro measurement of static
pressure distribution in synovial joints-Part I: tibial surface of

[176]

(177]

[178]

(179]

[180]

[181]

[182]

(183]

[184]

[185]

(186]

(187]

(188]

(189

[190]

[191]

25

the knee,” Journal of Biomechanical Engineering, vol. 105, no. 3,
pp. 216-225,1983.

G. A. Ateshian, “A stereophotogrammetric method for deter-
mining in situ contact areas in diarthrodial joints, and a
comparison with other methods,” Journal of Biomechanics, vol.
27, no. 1, pp. 111-124, 1994.

J. A. Szivek, L. Cutignola, and R. G. Volz, “Tibiofemoral
contact stress and stress distribution evaluation of total knee
arthroplasties,” Journal of Arthroplasty, vol. 10, no. 4, pp. 480-
491, 1995.

M. L. Harris, P. Morberg, W. J. M. Bruce, and W. R. Walsh, “An
improved method for measuring tibiofemoral contact areas in
total knee arthroplasty: a comparison of K-scan sensor and Fuji
film,” Journal of Biomechanics, vol. 32, no. 9, pp. 951-958, 1999.
P. S. Walker and J. V. Hajek, “The load-bearing area in the knee
joint,” Journal of Biomechanics, vol. 5, no. 6, pp. 581-IN3, 1972.
T. Fukubayashi and H. Kurosawa, “The contact area and pres-
sure distribution pattern of the knee. A study of normal and
osteoarthrotic knee joints,” Acta Orthopaedica Scandinavica,
vol. 51, no. 6, pp. 871-879, 1980.

G. Yildirim, P. S. Walker, J. Sussman-Fort, G. Aggarwal, B.
White, and G. R. Klein, “The contact locations in the knee
during high flexion,” Knee, vol. 14, no. 5, pp. 379-384, 2007.

T. D. Brown and D. T. Shaw, “In vitro contact stress distribution
on the femoral condyles,” Journal of Orthopaedic Research, vol.
2, n0. 2, pp. 190-199, 1984.

C. Herberhold, S. Faber, T. Stammberger et al., “In situ measure-
ment of articular cartilage deformation in intact femoropatellar
joints under static loading,” Journal of Biomechanics, vol. 32, no.
12, pp. 1287-1295, 1999

E Liu, M. Kozanek, A. Hosseini et al., “In vivo tibiofemoral
cartilage deformation during the stance phase of gait,” Journal
of biomechanics, vol. 43, no. 4, pp. 658-665, 2010.

G. Li, L. E. DeFrate, E. P. Sang, T. J. Gill, and H. E. Rubash,
“In vivo articular cartilage contact kinematics of the knee: an
investigation using dual-orthogonal fluoroscopy and magnetic
resonance image-based computer models,” American Journal of
Sports Medicine, vol. 33, no. 1, pp. 102-107, 2005.

D. D. Anderson, T. D. Brown, and E. L. Radin, “The influence
of basal cartilage calcification on dynamic juxtaarticular stress
transmission,” Clinical Orthopaedics and Related Research, no.
286, pp. 298-307,1993.

C. Zannoni, R. Mantovani, and M. Viceconti, “Material prop-
erties assignment to finite element models of bone structures: a
new method,” Medical Engineering and Physics, vol. 20, no. 10,
pp. 735740, 1999,

L. Blankevoort and R. Huiskes, “Validation of a three-dimen-
sional model of the knee;” Journal of Biomechanics, vol. 29, no.
7, pp. 955-961, 1996.

J. Yao, J. Snibbe, M. Maloney, and A. L. Lerner, “Stresses and
strains in the medial meniscus of an ACL deficient knee under
anterior loading: a finite element analysis with image-based
experipmental validation,” Journal of Biomechanical Engineer-
ing, vol. 128, no. 1, pp- 135-141, 2006.

G. Li, J. Suggs, and T. Gill, “The effect of anterior cruciate lig-
ament injury on knee joint function under a simulated muscle
load: a three-dimensional computational simulation,” Annals of
Biomedical Engineering, vol. 30, no. 5, pp. 713-720, 2002.

K. E. Moglo and A. Shirazi-Adl, “Biomechanics of passive knee
joint in drawer: load transmission in intact and ACL-deficient
joints,” Knee, vol. 10, no. 3, pp. 265-276, 2003.

35US917 SUOLULLOD SAIE8.D 9|qedijdde aLjy Aq pauseno ale sspe YO 'ssn J0 Sa|nJ 4oy AeIqi aUIIUO AS|IAN UO (SUONIPUOI-PUE-SWLIBYWOY"AB 1M AJe g 1]BuJuo//:Sa1y) SUOIPUOD PUe S 1 841 985 *[6202/90/02] U0 Akeiqiauliuo AS|IM ‘SZ¥8T./STOZ/SSTT OT/I0p/WO0d A8 1M Alelq|1)BulUo//:Sdy ol pepeojumod ‘T ‘€T0¢ ‘96€L



26

[192]

[193]

[194]

(195]

(196]

[197]

(198]

[199]

[200

[201]

[202

[203]

[204]

[205]

[206]

E. Penia, M. A. Martinez, B. Calvo, D. Palanca, and M. Doblaré,
“A finite element simulation of the effect of graft stiffness and
graft tensioning in ACL reconstruction,” Clinical Biomechanics,
vol. 20, no. 6, pp. 636-644, 2005.

N. A. Ramaniraka, A. Terrier, N. Theumann, and O. Siegrist,
“Effects of the posterior cruciate ligament reconstruction on
the biomechanics of the knee joint: a finite element analysis,”
Clinical Biomechanics, vol. 20, no. 4, pp. 434-442, 2005.

N. A.Ramaniraka, P. Saunier, O. Siegrist, and D. P. Pioletti, “Bio-
mechanical evaluation of intra-articular and extra-articular
procedures in anterior cruciate ligament reconstruction: a finite
element analysis,” Clinical Biomechanics, vol. 22, no. 3, pp. 336-
343, 2007.

E. Pefa, B. Calvo, M. A. Martinez, D. Palanca, and M. Doblaré,
“Why lateral meniscectomy is more dangerous than medial
meniscectomy. A finite element study;” Journal of Orthopaedic
Research, vol. 24, no. 5, pp. 1001-1010, 2006.

N. A. Netravali, S. Koo, N. J. Giori, and T. P. Andriacchi, “The
effect of kinematic and kinetic changes on meniscal strains
during gait,” Journal of Biomechanical Engineering, vol. 133, no.
1, p. 011006, 2011.

T. M. Griffin and F. Guilak, “The role of mechanical loading in
the onset and progression of osteoarthritis,” Exercise and Sport
Sciences Reviews, vol. 33, no. 4, pp. 195-200, 2005.

R. Shirazi and A. Shirazi-Adl, “Computational biomechanics of
articular cartilage of human knee joint: effect of osteochondral
defects,” Journal of Biomechanics, vol. 42, no. 15, pp. 2458-2465,
2009.

Y. E Dong, G. H. Hu, L. L. Zhang, Y. Hu, Y. H. Dong, and
Q. R. Xu, “Accurate 3D reconstruction of subject-specific knee
finite element model to simulate the articular cartilage defects,”
Journal of Shanghai Jiaotong University, vol. 16, no. 5, pp. 620-
627, 2011.

E. Pefia, B. Calvo, M. A. Martinez, and M. Doblaré, “Effect of
the size and location of osteochondral defects in degenerative
arthritis. A finite element simulation,” Computers in Biology and
Medicine, vol. 37, no. 3, pp. 376-387, 2007.

A. C. Godest, M. Beaugonin, E. Haug, M. Taylor, and P. J.
Gregson, “Simulation of a knee joint replacement during a
gait cycle using explicit finite element analysis,” Journal of
Biomechanics, vol. 35, no. 2, pp. 267-275, 2002.

J. Danék, J. Nedoma, I. Hlavacek, P. Vaviik, and F Denk,
“Numerical modelling of the weight-bearing total knee joint
replacement and usage in practice;” Mathematics and Computers
in Simulation, vol. 76, no. 1-3, pp. 49-56, 2007.

A. Sharma, R. D. Komistek, C. S. Ranawat, D. A. Dennis, and
M. R. Mahfouz, “In vivo contact pressures in total knee arthro-
plasty,” Journal of Arthroplasty, vol. 22, no. 3, pp. 404-416, 2007.

A. G. Au, V. James Raso, A. B. Liggins, and A. Amirfazli,
“Contribution of loading conditions and material properties
to stress shielding near the tibial component of total knee
replacements,” Journal of Biomechanics, vol. 40, no. 6, pp. 1410-
1416, 2007.

H. Bougherara, Z. Mahboob, M. Miric, and M. Youssef, “Finite
element investigation of hybrid and conventional knee im-
plants,” International Journal of Engineering, vol. 3, no. 3, pp.
257-266, 2009.

M. A. Baldwin, C. W. Clary, C. K. Fitzpatrick, J. S. Deacy,
L. P. Maletsky, and P. J. Rullkoetter, “Dynamic finite element
knee simulation for evaluation of knee replacement mechanics,”
Journal of Biomechanics, vol. 45, no. 3, pp. 474-483, 2012.

[207]

[208]

[209]

[210]

[211]

[212]

(213

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

Computational and Mathematical Methods in Medicine

D. J. van den Heever, C. Scheffer, P. Erasmus, and E. Dillon,
“Contact stresses in a patient-specific unicompartmental knee
replacement,” Clinical Biomechanics, vol. 26, no. 2, pp. 159-166,
2011.

J. K. Otto, J. J. Callaghan, and T. D. Brown, “The Coventry
award paper: mobility and contact mechanics of a rotating
platform total knee replacement,” Clinical Orthopaedics and
Related Research, no. 392, pp. 24-37, 2001.

Y. Guo, X. Zhang, and W. Chen, “Three-dimensional finite
element simulation of total knee joint in gait cycle, Acta
Mechanica Solida Sinica, vol. 22, no. 4, pp. 347-351, 2009.

N. H. Yang, P. K. Canavan, and H. Nayeb-Hashemi, “The effect
of the frontal plane tibiofemoral angle and varus knee moment
on the contact stress and strain at the knee cartilage,” Journal of
Applied Biomechanics, vol. 26, no. 4, pp. 432-443, 2010.

N. H. Yang, P. K. Canavan, H. Nayeb-Hashemi, B. Najafi, and A.
Vaziri, “Protocol for constructing subject-specific biomechani-
cal models of knee joint,” Computer Methods in Biomechanics
and Biomedical Engineering, vol. 13, no. 5, pp. 589-603, 2010.

D. Siu, J. Rudan, H. W. Wevers, and P. Griffiths, “Femoral artic-
ular shape and geometry: a three-dimensional computerized
analysis of the knee;” Journal of Arthroplasty, vol. 11, no. 2, pp.
166-173, 1996.

S.J. Ferguson, J. T. Bryant, R. Ganz, and K. Ito, “The influence
of the acetabular labrum on hip joint cartilage consolidation: a
poroelastic finite element model,” Journal of Biomechanics, vol.
33, no. 8, pp. 953-960, 2000.

P. Biichler, N. A. Ramaniraka, L. R. Rakotomanana, J. P.
Iannotti, and A. Farron, “A finite element model of the shoulder:
application to the comparison of normal and osteoarthritic
joints,” Clinical Biomechanics, vol. 17, no. 9-10, pp. 630-639,
2002.

M. Wawro and M. Fathi-Torbaghan, “A parallel framework for
the FE-based simulation of knee joint motion,” IEEE Trans-
actions on Biomedical Engineering, vol. 51, no. 8, pp. 1490-1494,
2004.

S.K. Han, S. Federico, M. Epstein, and W. Herzog, “An articular
cartilage contact model based on real surface geometry; Journal
of Biomechanics, vol. 38, no. 1, pp. 179-184, 2005.

K. B. Gu and L. P. Li, “Mechanics of collagen fiber network
and fluid pressurization in articular cartilage of knee joint,” in
Transactions of the 56th Annual Meeting of Orthopaedic Research
Society, vol. 35, p. 911, 2010.

M. A. Soltz and G. A. Ateshian, “Interstitial fluid pressurization
during confined compression cyclical loading of articular carti-
lage,” Annals of Biomedical Engineering, vol. 28, no. 2, pp. 150-
159, 2000.

J. K. Suh, Z. Li, and S. L. Y. Woo, “Dynamic behavior of a
biphasic cartilage model under cyclic compressive loading,”
Journal of Biomechanics, vol. 28, no. 4, pp. 357-364, 1995.

M. D. Warner, W. R. Taylor, and S. E. Clift, “Cyclic loading
moves the peak stress to the cartilage surface in a biphasic model
with isotropic solid phase properties,” Medical Engineering and
Physics, vol. 26, no. 3, pp. 247-249, 2004.

S. A. Maas, B. J. Ellis, G. A. Ateshian, and J. A. Weiss, “FEBio:
finite elements for biomechanics,” Journal of Biomechanical
Engineering, vol. 134, no. 1, Article ID 011005, 2012.

N. D. Broom and D. B. Myers, “A study of the structural
response of wet hyaline cartilage to various loading situations,”
Connective Tissue Research, vol. 7, no. 4, pp. 227-237, 1980.

35US917 SUOLULLOD SAIE8.D 9|qedijdde aLjy Aq pauseno ale sspe YO 'ssn J0 Sa|nJ 4oy AeIqi aUIIUO AS|IAN UO (SUONIPUOI-PUE-SWLIBYWOY"AB 1M AJe g 1]BuJuo//:Sa1y) SUOIPUOD PUe S 1 841 985 *[6202/90/02] U0 Akeiqiauliuo AS|IM ‘SZ¥8T./STOZ/SSTT OT/I0p/WO0d A8 1M Alelq|1)BulUo//:Sdy ol pepeojumod ‘T ‘€T0¢ ‘96€L



Computational and Mathematical Methods in Medicine

[223]

[224]

[225]

[226]

J. M. Rosvold, S. P. Darcy, R. C. Peterson et al.,, “Technical
issues in using robots to reproduce joint specific gait,” Journal
of Biomechanical Engineering, vol. 133, no. 5, Article ID 054501,
2011.

L. D. Noble, R. W. Colbrunn, D. G. Lee, A. J. Van Den Bogert,
and B. L. Davis, “Design and validation of a general purpose
robotic testing system for musculoskeletal applications,” Journal
of Biomechanical Engineering, vol. 132, no. 2, p. 025001, 2010.

S. L. Y. Woo and M. B. Fisher, “Evaluation of knee stability with
use of a robotic system,” Journal of Bone and Joint Surgery A, vol.
91, supplement 1, pp. 78-84, 20009.

L. P.Liand W. Herzog, “Strain-rate dependence of cartilage stiff-
ness in unconfined compression: the role of fibril reinforcement
versus tissue volume change in fluid pressurization,” Journal of
Biomechanics, vol. 37, no. 3, pp. 375-382, 2004.

27

85UBD |7 SUOWILLIOD BAIeaID 8|qeol|dde 8y} Aq paueAoh aJe sajoe YO ‘SN J0 Sa|nJ 0} ARIqIT 8UIIUO /B UO (SUOIPUOD-PUR-SWBILI00 A8 | 1M AReuq)| U1 |UO;/SO1Y) SUOIPUOD PUe Swid | 8y} 88S *[5202/90/02] Uo Areiqiauliuo A8|IM ‘€Zv8T./ET0Z/SSTT OT/I0P/W00 A8 1M ARIq1jeulUO//SANRY WOl4 papeojumoq ‘T ‘€T0Z ‘96EL



