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Abstract

This paper proposes a nonlinear regression model to predict soft tissue deformation after 

maxillofacial surgery. The feature which served as input in the model is extracted with Finite 

Element Model (FEM). The output in the model is the facial deformation calculated from the 

preoperative and postoperative 3D data. After finding the relevance between feature and facial 

deformation by using the regression model, we establish a general relationship which can be 

applied to all the patients. As a new patient comes, we predict his/her facial deformation by 

combining the general relationship and the new patient’s biomechanical properties. Thus, our 

model is biomechanical relevant and statistical relevant. Validation on eleven patients 

demonstrates the effectiveness and efficiency of our method.
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1 Introduction

Craniomaxillofacial (CMF) deformities affect human’s head and facial appearance. CMF 

surgery is designed to reconstruct such condition. This type of the surgery usually requires 

extensive presurgical planning. Currently we are able to accurately simulate osteotomies. 

However, soft-tissue-change simulation still remains a challenge. The most widely used 

method to simulate soft tissue change is biomechanical relevant Finite Element Model 

(FEM) [1] and its improvements [2–5]. However, a major disadvantage of FEM methods is 

that they are individually-based. Population-based statistical information was not 

considered. On the other hand, a statistical based method [6] is efficient but does not 

consider the biomechanical properties and thus it is less-than-accurate. To this end, we 

hypothesized that the soft tissue change could be accurately simulated if we could combine 

the FEM and statistical model into one model.
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This integrated model should not only maintain the integrity of biomechanical information, 

but also be computational efficient. In this study, we developed an Incremental Kernel Ridge 

Regression (IKRR) model to effectively utilize the biomechanical information and statistical 

information. Kernel Ridge Regression (KRR) model was first established from the training 

data which consisted of a set of preoperative and postoperative 3D images. When a new 

patient arrived, the KRR model was adjusted incrementally to incorporate the new patient’s 

biomechanical information. Compared to [6], our method combined different information, 

the statistical information and biomechanical information, into one model. Eleven patients 

were used for validation. The average prediction error of IKRR was found to be lower than 

other evaluated algorithms. Comparison of running time revealed that IKRR was more 

efficient than KRR.

2 Methodology

2.1 Data Acquisition and Pre-processing

Eleven sets of patient’s preoperative and postoperative CT scans and facial surface scans, 

obtained from a 3D surface camera, were acquired. The only reason of using facial surface 

scans was to prevent any unintended soft tissue strain during the CT scanning. The 3D 

camera was operated by a doctor who ensured the patient’s facial expression was neutral. 

During the computation, the CT soft tissues were replaced with the 3D surface scans. Both 

preoperative and postoperative surface scans were rigidly registered to the preoperative CT 

images with the Mimics software (Materialise, Belgium). The bones of preoperative and 

postoperative CT images were segmented in Mimics which would be further used to 

determine surgical plan.

2.2 Feature Extraction

Biomechanical properties, including stress, strain and displacement, were computed from 

FEM. We used stress as a feature. In order to execute FEM, the following two components 

were utilized: the mesh and the surgical plan.

Mesh Generation—A Visible Human Female Dataset was used to generate an anatomic 

detailed mesh as a template. From the CT data, the following muscles contributed in facial 

soft tissue deformation were segmented from the dataset: Buccinator, Depressor anguli oris, 

Depressor labii, Levator anguli oris, Levator labii, Levator labii alaeque nasi, Mentalis, 

Orbicularis oris, Zygomaticus major, Zygomaticus minor and Masseter [7]. The remaining 

soft tissue tissues between the skin and mucosa were considered as a homogenous material. 

In order to generate a mesh structure applicable to all the patients, the segmented structures 

were then export as Stereolithography (STL) files and subsequently imported into TrueGrid 

(XYZ Scientific Applications, Inc., Livermore, CA). Finally, a hexahedral block mesh of 

this dataset was generated. It served as a template to map the detailed anatomic structures to 

real patients.

For real patient data, the segmented CT bones and registered 3D surface scan were imported 

into TrueGrid as facial geometries. The facial landmarks of each patient were manually 

Pan et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2013 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



marked. A surface projection technique of TrueGrid can change the template shape into 

patient shape by matching the corresponding landmarks.

Determination of Surgical Plan—The postoperative skull was firstly manually 

registered to the preoperative one based on an unaltered part at cranium. Afterwards, the 

preoperative skull was osteotomized into pieces according to the postoperative CT. Then, 

the bony segments were separately aligned to the postoperative counterparts. The Iterative 

Closest Point (ICP) algorithm [8] was used to compute the displacement between the 

preoperative and postoperative skull parts. After finding the displacement of all skull parts, 

we get surgical plan.

Calculation of Stress with FEM—For each node, it had the following quantity:

(1)

Linear FEM (LFEM), based on linear elasticity to characterize the deformation behavior of 

soft tissues, was used to calculate the stress of the node [9]. Since we were interested in 

facial appearance, only the nodes lying on the outer skin were selected. There were totally 

2652 nodes, and each node had a stress vector of length six. We stacked the stress of the 

selected 2652 nodes together to form a vector σi ∈ ℜ15912 for the ith patient, i = 1, …, n. We 

called σi the feature of the ith patient.

2.3 Training Kernel Ridge Regression Model

The feature was served as input in regression model. The true displacement of the selected 

2652 nodes was calculated from the preoperative and postoperative meshes. These nodal 

displacements were stacked together to form a vector ui of length 7956. Given input-output 

pairs (σi, ui) ∈ ℜ15912 × ℜ7956, i = 1, …, n, we could learn a prediction function f such that 

f(σi) ≈ ui for each i .

KRR model was adopted [10]. This was a nonlinear regression model. The input was first 

embedded into a higher dimensional space H via a nonlinear mapping ϕ. Space H induced a 

kernel function which characterized the inner product in H and was given by the relation 

k(x, y) = ϕT (x) · ϕ(y), where x and y were in the input space. The kernel function adopted 

here was the widely used Gaussian kernel

(2)

with the width ω > 0. KRR performed linear regression in H which was equivalent to 

performing nonlinear regression in input space. KRR assumed that the prediction function 

was of the form f (σ) = WTϕ(σ), where W was the coefficients to be determined. By 

minimizing an objective function
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(3)

where λ > 0, we could find solution

(4)

with Φ = (ϕ(σ1), …, ϕ (σn)) and U = (u1, …, un)T.

For any σ, the prediction of KRR model could be expressed as

(5)

where k(σ) = (k(σ1, σ), …, k(σn, σ))T, K = (k(σi, σj))i,j, i, j = 1, …, n. In (5), the kernel 

function was sufficient for calculating the prediction. Therefore, it was not necessary to 

know the nonlinear mapping ϕ. This could reduce the computational complexity since we 

could avoid the operations in high dimensional space.

2.4 Prediction of Soft-Tissue Deformations with Incremental KRR Model

We incrementally modified KRR model by adding pair (σ̃, ũFEM) to the training set, where 

σ̃ was the stress for the new patient and ũFEM was the displacement computed from linear 

FEM. Compared with KRR, our method predicted the output with biomechanical 

information ũFEM. We called it Incremental KRR (IKRR).

From (5), we could compute the prediction of IKRR as

(6)

where the prediction of KRR ũKRR = UT (K + λIn)−1k(σ̃), t = (e − λ)/e, e = k(σ̃, σ̃) + λ − kT 

(σ̃)(K + λIn)−1k(σ̃). By using the positive semi-definiteness of K, we could proof that t ∈ [0, 

1).

Equation (6) showed that the prediction of IKRR was a convex combination of the 

prediction of KRR and prediction of FEM. There were three major advantages in IKRR. 

First, IKRR was more general. It contained KRR as a special case by setting t = 0. Second, 

IKRR was more flexible. It combined two parts together, one from the KRR, the other from 

the FEM. The contribution of each part could be tuned by changing t. Finally, IKRR was 

more efficient. It did not need repetitive training when adding new training data. The 

computational complexity of KRR for training n+1 data was O(n3) (See (5)). However, the 

complexity of IKKR reduced to O(n2) by updating the results of KRR (See (6)).

2.5 Implementation Issues

One key point in statistical model was the corresponding relationship amongst all the data. 

Since all the meshes were generated from the same template, a natural corresponding 
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relationship was established. The input of statistical model was normalized to have a zero 

mean and one standard deviation for each feature. The computations of FEM and statistical 

analysis were implemented in Matlab on a 64 bit Windows PC with 1.6GHz CPU and 24GB 

RAM. The regularization parameter λ and the width of Gaussian kernel ω were selected via 

grid search. The best values of the parameters were those that gave the best performance.

3 Results

3.1 Predictions with Different Number of Training Data

We tested different number of training data, from 6 to 10, to generate IKRR models. The 

prediction accuracy of these five IKRR was recorded. The difference between the prediction 

and ground truth was calculated as

(7)

where di was the true displacement of the ith node, d̃
i was the predicted displacement of the 

ith node. Table 1 showed the results.

The above table clearly showed that the prediction was improved when more training data 

were available. The statistical information gained from the added training data was 

beneficial to the prediction of soft-tissue deformations.

3.2 Empirical Comparisons

We carried out leave-one-out cross-validation using eleven patients’ datasets. The 

algorithms to be evaluated included LFEM [9], KRR and IKRR. Table 2 tabulated the 

prediction difference as defined in (7).

KRR underperformed LFEM because of its lack of the new patient’s biomechanical 

information. As a biomechanical based model, LFEM provided accurate predictions [9]. 

However, IKRR method outperformed all other algorithms by combining the statistical 

information learned from the training data and the test patient’s biomechanical information. 

The results indicated that the test patient’s biomechanical information was critical to the 

prediction performance.

The visualization was achieved by using inverse distance weighted interpolation [11] 

(Figure 1). This patient underwent a surgery to setback the mandible (bilateral sagittal split 

osteotomies) and advance the maxilla (Le Fort I osteotomy). As shown in Fig. 1, IKRR 

produced more accurate visualization than LFEM. The lower lip was prominent in LFEM 

prediction. While the lower lip was aligned with upper lip in IKRR prediction, which 

accorded with the postoperative image.

3.3 Computation Time

We compared the computational time of IKRR and KRR side by side. Once an initial KRR 

model was generated, re-training process could be achieved by two methods. The first was 

to recompute KRR entirely when a new patient was added as shown in (5). The running time 
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of repetitive KRR was the elapsed time for the computation of (5) by replacing n with n+1. 

The second method was IKRR approach in which it only incrementally updated the existing 

KRR model as shown in (6). The running time of IKRR was the elapsed time for the 

computation of (6). The larger the n is, the more meaningful the comparison is. The 

experimental results in Table 3 clearly showed that IKRR was much more efficient than 

KRR for large number of training data.

4 Conclusions and Discussions

We applied IKRR for the soft-tissue-change simulation after maxillofacial surgery. Unlike 

previous purly biomechanical based FEM [9] and statistical based model [6], our model 

integrated the statistical information and biomechanical information together. The results 

empirically showed our method outperformed the others.

Possible future work is discussed. The IKRR approach is still in the experimental stage. In 

the future, a varity of preoperative and postoperative data with different types of deformities 

should be included in the training model. The limitation for the application is the deficiency 

of postoperative images. In contrast, the preoperative images is easier to obtain. To this end, 

we will investigate a semi-supervised learning approach to use two types of data: paired pre- 

and postoperative data, and purely preoperatively data. The statistical model learnt from 

both types of the data will be compared with the model which is only learned with the first 

type of the data. We will finally determine whether the performance would be improved by 

adding the second type of data into the training model.
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Fig. 1. 
(a) preoperative image (b) postoperative image (c) prediction of LFEM (d) prediction of 

IKRR
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