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ABSTRACT

The Time Domain Vector Finite Element Method is a promising new approach for solving Maxwell’s
equations on unstructured triangular grids. This method is sensitive to the quality, or condition, of the grid.
In this study grid pre-conditioning techniques, such as edge swapping, Laplacian smoothing, and energy
minimization, are shown to improve the accuracy of the solution and also reduce the overall computational
effort. © 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Maxwell’s equations are a coupled set of linear Partial Differential Equations (PDE’s) that
describe the time evolution of classical electromagnetic fields. Typically it is desired to solve
Maxwell’s equations in an inhomogeneous volume consisting of several dielectric, magnetic and
metallic regions. Electromagnetic design and analysis problems can be roughly categorized into
static problems and dynamic problems. Dynamic problems can again be roughly categorized into
those that are best solved in the frequency domain, and those that are best solved directly in the
time domain. This study focuses on solution of Maxwell’s equations directly in the time domain.

The most popular approach for such problems is the Finite Difference Time Domain
method.!* Usually this method is implemented using dual Cartesian grids, with the electric field
components known on the primary grid and the magnetic field components known on the dual
grid, with the curl operator approximated by the 2nd order central difference formula. The
electric field is updated at even time steps, the magnetic field at odd time steps, by 2nd order
central difference in time (leapfrog). An alternative method combines the two curl operators and
solves the wave equation for either the electric or magnetic field on a single grid. Both approaches
yield a conditionally stable and consistent method for solving Maxwell’s equations in the time
domain. The disadvantage of these finite difference methods is that they are only defined for
Cartesian grids, and it has been shown that approximating curved boundaries by a ‘stair step’
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3816 D. WHITE AND G. RODRIGUE

approximation can give poor results.*> Nevertheless the FDTD is extremely efficient and it is
often used as a benchmark to which new methods are compared.

Whereas FDTD methods are defined on Cartesian grids, Finite Element Methods (FEM) are
designed to solve partial differential equations on unstructured grids. Typically curved bound-
aries are approximated as piecewise linear, and an unstructured mesh is used within each region.
The classic FEM using nodal elements has been quite successful in solving static electromagnetic
problems where the continuous electrostatic potential can be employed.® 8 Historically the use of
nodal finite elements has been less successful for solving for the electric and/or magnetic fields
directly. The use of nodal elements for solving frequency domain Maxwell’s equations can lead to
spurious modes,’ 1 or numerical solutions that do not satisfy the divergence properties of the
fields. Inclusion of divergence conditions into the variational problem can reduce these spurious
modes, this is an area of current research.!! Time domain finite element methods!?-13 may have
similar difficulties with spurious modes. If the divergence conditions are neglected, then the
divergence of the fields may grow with time, even if the source terms are divergence free. In this
case the method does not conserve charge, and is not ‘divergence preserving’. In addition nodal
finite element methods are not appropriate for inhomogeneous volumes because the electric and
magnetic fields are not continuous across a material interface, and it is difficult to correctly model
this discontinuity using nodal elements.

Recently developed vector elements, also known as edge elements, Whitney 1-forms, or H(curl)
elements,'* '8 have been used to solve Maxwell’s equations for the electric and/or magnetic fields
directly. These elements have degrees of freedom along the edges of the grid. Since there are in general
more edges than nodes, the use of vector finite elements is slightly more expensive than nodal
elements for the same grid. However the use of these elements eliminates spurious modes. These
elements enforce tangential continuity of the fields but allow for jump discontinuity in the normal
component of the fields, which is a requirement for accurate modelling of fields in inhomogeneous
volumes. Vector finite element methods have been successfully used in the frequency domain to
analyse resonant cavities, compute waveguide modes, and perform scattering calculations.!® 2!

The Time Domain Vector Finite Element Method (TDVFEM), which is derived in Section 2,
uses vector finite elements as basis functions in a Galerkin approximation of the vector wave
equation. The leapfrog method is used to advance the fields in time. This approach is similar to
that developed in Reference 22. It is reasonable to assume that the grid will have some effect on
the accuracy of the solution, due to numerical dispersion of the method. The TDVFEM requires
that a sparse linear system be solved at every time step. Naturally iterative or approximate
methods will be used to solve this system. The computation effort required will depend upon how
well conditioned the linear system is, and it is reasonable to assume that this also will depend
upon the grid. In this paper a good, or well conditioned, grid will be defined in terms of both
numerical dispersion and computational effort required to solve the linear system. The efficacy of
pre-conditioning the grid will be examined both analytically and computationally. This study will
be limited to two-dimensional grids.

2. THE TIME DOMAIN VECTOR FINITE ELEMENT METHOD

2.1. Vector wave equation

In two dimensions, solutions to Maxwell’s equations can be decomposed into transverse
electric (TE) fields with the electric field in the x, y plane and the magnetic field aligned in the
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IMPROVED VECTOR FEM SOLUTIONS OF MAXWELL’S EQUATIONS 3817

z direction, and transverse magnetic fields with the magnetic field in the x, y plane and the electric
field aligned in the z direction. Both TE and TM fields can be analysed using the TDVFEM, the
only difference between the two is the boundary condition. This study was limited to TE fields for
simplicity. In this case the two-dimensional Maxwell’s equations, (1)—(3), consist of two curl
equations that relate the vector electric field E = [E;, E, ] and the scalar magnetic field H and
a divergence condition.

0B
E=" 1
V x o (1)
vxH=SD 2)
ot
V-D=0 3)
where
) ) t
vxp=| 8 N g g OE E )
ay 0x 0x 0y

For simplicity it is assumed there is no current density in the region of interest. Two constitutive
relations are required to close Maxwell’s equations. For this study the dielectric permittivity ¢ and
the magnetic permeability u will be considered simple scalar functions of position,

D=¢E, B=uH (5)

The magnetic field is eliminated by applying the operation V x to equation (1) and applying the
identities in equations (2) and (5), we obtain the vector wave equation for the electric field

2

e
ot?

E=—Vle><E (6)
u

2.2. Vector finite elements

The Galerkin procedure will be used to solve equation (6) on a two-dimensional triangular grid
using linear vector finite elements. More precisely, consider an arbitrary triangle with nodes
numbered 1, 2, 3 in a counter clockwise fashion, and let edge [i, j ] be the edge connecting nodes
iand j= (i + 1)mod 3. If N; is the linear nodal basis function associated with node i, then the
linear vector finite elements are defined as

Using the linearity and piecewise smoothness of the nodal basis functions N;, we readily get the
following important properties of the vector elements W;:

1. V- W,; =0, i.e. the vector basis functions are divergence free.

2. If t; is the vector from node i to j, then t;- W,(x;) = dj.

3. The tangential components t;- W, are continuous across element boundaries while the
normal components 1; - W, are discontinuous.

Property 1 assures that any linear combination of vector finite elements is divergence free within
every triangle. Of course the field may be divergent along an edge joining two triangles and is
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3818 D. WHITE AND G. RODRIGUE

consistent with a jump in the normal component of the field across a material interface.
Property 2 assures the vector finite elements are linearly independent.

Taking the scalar product of both sides of equation (6) with one of the basis functions W; and
integrating over the domain Q we get

2

1
chzE-Wde:—f Vx-VxE-W,dQ
o Ot Q u

= f —VXE-VxW,;dQ (8)
ol

where the second equality follows from Green’s second vector theorem with nx E = 0 on the
domain boundary.
We now assume

E =§:Wiei )

to be a member of W = span[ W;] where N is the number of internal edges in the grid. Then on
substituting equation (9) into equation (8) we get a square system of equations

Z(JQSW Wd9>52 Z—ZU SV X W, VdoQ) (10)

i

This leads to a system of ordinary differential equations
0%e

where e 1s the N-dimensional vector of Galerkin coefficients. Here,

(1) A is symmetric and positive definite (since ¢ > 1);
(2) C is symmetric and negative semidefinite.

In practice it is not necessary to calculate the magnetic field, however we introduce a definition of
magnetic field in order to prove stability and conservation of energy. If the magnetic flux density
is defined as

1, inside triangle i

B:ZbiTi’ Tl:{o

and then applying equation (1) and the Galerkin procedure we get

Z(Ly‘lTi-Tde> Z([ HV X W))- T,.dQ>e,. (13)

which again leads to a system of ordinary differential equations

db
F—=G 14
3 = e (14)

12
otherwise (12)

The matrices in equations (11) and (14) are extremely sparse, in fact each row has at most five
non-zero entries, since each edge in the grid interacts with at most four other edges. Matrices with
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IMPROVED VECTOR FEM SOLUTIONS OF MAXWELL’S EQUATIONS 3819

elements of the form
Q

are referred to as Gram matrices in the mathematics literature, and mass matrices in the
continuum mechanics literature. In our case, the matrices 4 and F are related to capacitance and
inductance, respectively.

3. TIME DIFFERENCING

Equation (11) is integrated in time using second-order central differences to yield the leapfrog
scheme which upon rearrangement is

"t =02l + AP AT C)e" — ! (16)
Equation (14) is then differenced
b2 =pn 12 4 At F~ 1 Ge" (17)

This can be written in two-step form as

et QI +A*A7'C) 0 -1 O e
bt | AtF~'G I o ol )
e I 0 0 0] et
pn=1/2 0 0 AtFT'G 1] [b 32

The matrix in equation (18) is called the amplification matrix of the difference method defined by
equations (16) and (17).

3.1. Stability
The eigenvalues of the amplification matrix are

—J1+J72—4
;VZA—— (19)

2

where 7 are the eigenvalues of 21 4+ At> A~ C. If At satisfies
At <2/(/p(471C) (20)

then because of the fact that the eigenvalues of 4~ 'C are negative we see that the discriminant of
equation (19) is negative. It follows that under the condition in equation (20) we have |A| = 1 and
the method is non-dissipative. A method is dissipative in the sense that if | 1] < 1 the fields would
decrease (dissipate) with increasing time. Consider the time evolution of electromagnetic fields in
a closed perfectly conducting cavity. In this case the initial fields simply oscillate in time forever,
neither growing nor decreasing in amplitude. If a dissipative time integration method with |4] < 1
were used, the fields would decrease in time, which is very non-physical.
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Poynting’s theorem of energy conservation?® states that the time rate of change of stored
electromagnetic energy in a given volume equals the power supplied to the volume by indepen-
dent sources, minus the power radiated away from the volume, minus the power dissipated in the
volume by conductivity. In a closed cavity without sources to supply power or conductivity to
dissipate power, the total energy must remain constant. The total energy in an electromagnetic
field is defined as

J (E-E + uH-H)dQ 1)

which in our case can also be expressed in terms of the degrees of freedom as
(e)"Ae + (b)"Fb (22)

However in the TDVFEM the electric and magnetic fields are staggered in time, hence energy is
not conserved in the traditional sense. A straight-forward, but tedious, calculation shows that the
total energy is conserved in a time-average sense, i.c.

(€n+1)TAen+1 _,’_(bn+1/2)Tan+1/2+(en)TAen_{_(bnfl/Z)Tanfl/z (23)

is a constant for all n.

3.2. Dispersion
Let ¢ and u be constant and consider free space solutions of equation (6) of the form
E = Eoel(k-x*wt) (24)

where o, k = [ky, k, ] = k[cos 0, sin §] are independent of x and ¢, and E, is independent of t.
Then equation (24) is a solution of equation (6) whenever the dispersion relation

w? = c2k? (25)
holds, where ¢ = 1/(\/&). The phase velocity is defined as
v=wlk (26)

which equals the speed of light ¢. In many media ¢ and p are not constant, thus the phase velocity
v is not constant. A medium in which the phase velocity of a wave depends upon k is called
dispersive. A narrow pulse propagating in such a medium will spread out, or disperse, because
each Fourier component of the pulse propagates at a slightly different frequency. A medium in
which the phase velocity depends upon the direction of propagation 0 is called anisotropic. Some
media are both dispersive and anisotropic. As stated in Section 2.1 we are only interested in
problems in which ¢ and u are constants. However the TDVFEM, like other time domain
numerical methods, exhibits numerical dispersion due to the finite grid and the finite time
sampling. Thus numerical solutions do not obey equation (25), but rather a much more
complicated grid-dependent dispersion relation.

We now determine a numerical dispersion relation that relates w to k when implemented on
a periodic triangular grid. The grid used for this analysis is obtained by perturbing a grid of
equilateral triangles with sides of length Ax by an amount ¢ in the horizontal direction, see

Int. J. Numer. Meth. Engng., 40, 3815-3837 (1997) © 1997 John Wiley & Sons, Ltd.



IMPROVED VECTOR FEM SOLUTIONS OF MAXWELL’S EQUATIONS 3821
Figure 1. If we substitute equation (24) into equation (9), we see that

ei(t) = (Eg ;) e 570 (27)

where X; is the midpoint of the edge corresponding to e;, see Figure 1.
Clearly,

Q=26+ e = yel, = 2(cos(wAr) — 1),

Moreover, if ; is parallel to t;, then e;(1) = e;()e’™ ** where Ax = x; — x; so that equation (16)

allows us to write a homogeneous system of equations for eq, . .., e¢
- o -
€s
1 A es
F———G =0 28
(w A ) A (28)
€s
L €6
where
I I‘Tu 1‘112 1113 0 A15371b 1‘1166 ]
Ay A, 123(1 +e 1) Ayue ' 0 0
Fo Ay As(1 4 € Ass Ay 0 0
a 0 A4261u 1‘143 1‘144 1‘145 1‘146 el
Aspe' 0 0 Asy Ass Ase(1 + ')
| Agre™ 0 0 Agae™ Ags(1 4+ e 19 Ass i
i Ciy 612 613 0 615€_Ib 6166_“7 ]
Ca Cs Cos(1+e71) Chye™ ' 0 0
G- Cii Ca(1 46" Cs; Csa 0 0
B 0 642€Ia 643 644 645 646 el
Csye' 0 0 Csa Css Cso(1 + ')
_661 elb 0 O 6646_1‘1 665(1 + e—Ia) 666 _

and 4 = A/e Ax?, C = uC. That is, equation (27) will be a solution to the difference equation in

equation (16) if e = [ey,...,eq]" is an eigenvector of the symmetric generalized eigenvalue
problem (G — yF)e = 0.

Using Mathematica (or any other symbolic math package) it is possible to evaluate the six
roots 1 of the equation

det(F — nG) =0 (29)
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ey e e

Figure 1. Perturbed grid (a = kAxcos6, b = k\/g Ax sin 0)

as functions of @ and b. Although this yields six dispersion relations, only one is consistent in the
sense that it approaches the relation in equation (25) as At and Ax approach zero. If a Taylor
series expansion about w At = k Ax = 0 is performed on the consistent dispersion relation, then it
can be written as

w?a(w At) = c2k?ps(k Ax) (30)

where o(w At) represents the isotropic part of the relation and ps(k Ax) the anisotropic part.

4. EQUILATERAL GRIDS

We now show that certain properties of the TDVFEM are significantly changed when the
triangles in a triangular grid are almost equilateral.

4.1. Dispersion
The dispersion relations for ¢ = 0 corresponding to an equilateral grid are listed in the

appendix where we see that the consistent dispersion relation is

A= — 1 + 1—12 (@ A1) (@ AD* + O((w A1)®) (31)

360
ps=o(kAx) = — 1 + K, (kAx)* + O((k Ax)°)

and

1 1 1
K, = 11570 sin® 0 —ﬁsin“ﬂcoszﬁ +ﬁsin20cos40 +mcos60

Note that the relation is second-order accurate in time and fourth-order accurate in space.
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Table I. Anisotropic dispersion coefficients vs. ¢

0 g1 g2 g3 ga gs Je g7
3/4 — 003906 —0-07031 0-16015 — — — —
1/2 — 001736 — 003125 0-09722 — — — —
1/4 — 000434 — 000781 0-02821 — — — —
1/8 —0-00108 —0-00195 0-00730 — — — —
1/16 — 000027 —0-00049 0-:00194 — — — —
0 0-0 0-0 0-0 —0-00026 — 0-00061 —0-00391 0-00130

The numerical dispersion relation was computed for the general case using various perturba-
tions of . The general form of the dispersion relation is given by equations (31) and (32). The
coefficients for the anisotropic part are listed in Table 1.

pa(kAx) = — 1 + K, (kAx)? + K3(kAx)* + O(k Ax)°
K, = g; cos*0 + g, sin* 0 + g3 cos? Osin 0 (32)
K5 = g4c0s°0 4 g5sin® 0 + g¢sin? 0 cos* O + g, sin* 0 cos? 0

Clearly, the coefficients g4, ¢g,, and g3 in Table I decrease as § goes to zero. In fact, a simple
least-square curve fit indicates that these coefficients are second order in ¢ indicating that
substantial improvement in the computed solution can be gained by conditioning the grid such
that the triangular elements are nearly equilateral.

The numerical phase velocity is given by

. o ps(k Ax)

TR a(w At) (33)
Figure 2 shows plots of the numerical anisotropy versus theta, i.e. plots of the numerical phase
velocity when At =0. A value of Ax =//5 was used for each plot where 1 =2n/k is the
wavelength. This is generally considered a coarse grid for wave propagation experiments.
However, these plots indicate that the numerical anisotropy is quite small even for this grid. The
phase velocity error for an equilateral grid is 0-33 per cent. It should be noted that on a Cartesian
grid with the same Ax = /5, the FDTD algorithm has a phase velocity error of approximately
7-54 per cent. Figure 3 shows the numerical anisotropy versus theta using a grid spacing of
Ax = 7/10. This time the equilateral grid has a phase velocity error of 0-0245 per cent.

The fact that the numerical dispersion relation is fourth-order accurate in space for an
equilateral grid has been reported by other researchers.?*2> This result suggests that an
equilateral grid should be used for wave propagation experiments where it is desired to keep the
numerical anisotropy low. However many electromagnetic design and analysis problems involve
complicated boundaries; this was the motivation for an unstructured grid finite element method
in the first place. Thus for real problems it may not be possible to use a grid composed entirely of
equilateral triangles. The goal of grid preconditioning is to make a grid that conforms to
a piecewise linear boundary and is also nearly equilateral. The tables and plots above indicate
that a nearly equilateral grid results in a significant improvement in the reduction of numerical
anisotropy, thus providing motivation for the application of grid pre-conditioning.

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3815-3837 (1997)
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Figure 2. Phase velocity for 6 =%, 4,%, 0 and Ax = /5
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4.2. Diagonal dominance

The TDVFEM described in equation (16) requires the solution of a linear system Ax = b at
every time step. Since the matrix is symmetric and positive-definite, the system can be solved by
s fixed point iteration or preconditioned conjugate gradient. In either
case, convergence rates of these methods are greatly improved if the matrix A is diagonally
dominant. In this section we show that the nearer the grid is to being equilateral, the more

iterative methods such a

Figure 3. Phase velocity for 6 =%, 4,4, 0 and Ax = 1/10

diagonally dominant the matrix 4 becomes.

Consider edge i of a

Int. J. Numer. Meth. Engng., 40, 3815-3837 (1997)

grid with edge angles « and f defined in Figure 4. Row i of matrix
A consists of the values <W;, W; >, <W;, W, >, <W;, W, >, {<W;, W, ) and <W,;, W, >, where

(o, Wy =f W, W, Q.
Q
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Figure 4. Triangular element with angles o and f

The dominance of row i is defined by the quantity

. (Wi, Wi 5 + KW, Wi + KW, W0 + KW, W ) (34)
’ 2(W Wiy
Figure 5 is a plot of r; versus element angles o and f5. The contours are in 0-1 increments. Note
that the minimum occurs for the pair o = f# = 60° which is an equilateral grid. The minimum
value in this case is 0-4. For angles 45 < o, f < 90 the matrix A4 is still very diagonally dominant.
There are some combinations of («, ) such that r; > 1, thus not every grid will yield a diagonally
dominant matrix A.

5. GRID PRECONDITIONING

The idea of optimizing a grid to improve the accuracy of a finite element calculation has been
studied in the context of structural analysis.?®2® However the optimal grid for solving Maxwell’s
equations with the TDVFEM may be quite different than the optimal grid for structural analysis.
The previous section provided motivation for using equilateral grids in conjunction with the
TDVFEM. There are a variety of commercial and non-profit software packages available for
scientists and engineers to use to generate grids. While these grids may be ideal for a variety of
different applications, they are not ideal for the TDVFEM in the equilateral sense. Rather than
develop a new grid generation method from scratch, we examine different techniques for altering
or ‘preconditioning’ a given grid so as to make it as equilateral as possible while still conforming
to a curved boundary.

5.1. Laplace smoothing

Consider a grid of N nodes V = {vy,v,,v3, ..., vy} having N; internal nodes, V;, and Ny
boundary nodes, V. Each node v; is connected to a set of M; adjacent nodes C; =
{Vi1,Vi2, . . ., vin,}. The Laplace matrix of the grid is defined as the N;x N; matrix L = [I;;]

where
l _ Mia l:]
Yl -1, vieCiny

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3815-3837 (1997)
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Figure 5. Contour plot of r; versus element angles (c, f)

A grid is said to be Laplacian smooth if

M,
vk=<2vjk>/Mk, k=1,2,...,N; (33)
j=1

or equivalently, the co-ordinates (x;, y;) of the nodes satisfy Lx; = b, and Ly; = b,, where x;, y;
are the vector of internal co-ordinates and b,, b, represent combinations of boundary co-
ordinates. Since the matrix L is consistently ordered, symmetric and weakly diagonally dominant,
it is non-singular. Consequently, given a set of nodes on the boundary and a connectivity pattern,
there exists a unique set of nodes that is Laplace smooth. In this section the boundary nodes and
the connectivity pattern is determined by a given computational grid.

Figure 6 illustrates the effect of Laplace smoothing on several triangular discretizations of
a circle. Grid l1a consists of a Delaunay triangulation of semi-random points, grid 2a was
generated using a divide and conquer approach,?® and grid 3a was generated using a commercial
projection approach.® The grids on the right are Laplace smoothed versions of the grids on the
left. Figure 7 shows histograms of the edge angles for each of the grids. The vertical axis is the

Int. J. Numer. Meth. Engng., 40, 38153837 (1997) © 1997 John Wiley & Sons, Ltd.
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Grid la

Grid 3a

Figure 6. Effect of Laplace smoothing on three different grids

factor of total angles and the horizontal axis is the angle degree divided by 10. The histograms
clearly indicate that Laplace smoothing did in fact make the grids closer to equilateral.

5.2. Edge swapping

Laplace smoothing tends to make all the angles associated with a node equal, see Figure 7. If
a given node is connected to only four nodes, there must be at least one angle « > 90 degrees.
Likewise if a given node is connected to eight other nodes, there must be at least one angle
o < 45°. Consequently, an ideal grid for Laplace smoothing contains internal nodes that are
connected to only six other nodes. Since Laplace smoothing does not change the connectivity of
the nodes, edge swapping might be employed to improve the connectivity before Laplace
smoothing is applied.

Edge swapping was proposed in Reference 31 for the improvement of triangular grids.
Consider the example grid shown in Figure 8. The degree of a node is the number of adjacent
nodes M. Nodes a and b are of degree 7, while nodes ¢ and d are of degree 5. If the edge
connecting nodes a and b is ‘swapped’ to connect nodes ¢ and d, all nodes a, b, ¢, d will be of
degree 6.

© 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 3815-3837 (1997)
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Figure 7. Edge angle histogram demonstrate the effectiveness of Laplace smoothing

Figure 8. Illustration of edge swapping

The basic algorithm is as follows. The degree of each node is computed, then a swap index is
computed for each internal edge in the grid. The swap index for edge i is

swap; = deg(a;) + deg(b;) — deg(c;) — deg(d;) (36)

where deg ( ) denotes the degree of the node. If the swap index of the edge is greater than 2 then it
is advantageous to swap this edge. The edges with the greatest swap index are swapped first. The

Int. J. Numer. Meth. Engng., 40, 3815-3837 (1997) © 1997 John Wiley & Sons, Ltd.
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Grid 4a Grid 4b

Figure 9. Illustration of grid pre-conditioning via energy minimization for a rectangular cavity

process is repeated until all edges have a swap index of 2 or less. In some situations it is not
possible to achieve a swap index of 2 for every edge and an alternative stopping criteria is
necessary.>?

5.3. Grid energy minimization

It is important to note the in some situations neither Laplace smoothing or edge swapping have
any effect on the grid. Consider grid 4a in Figure 9 which is a simple triangulation of a Cartesian
grid stretched by a factor of three in the x-direction. The internal nodes are already in the centre
of their adjacent nodes, thus the equations Lx; = b, and Ly; = b, are already satisfied and the
grid is already smooth in the Laplace sense. Also note that each internal nodes are of degree 6,
thus there is no benefit to edge swapping. Thus a more radical grid preconditioning approach is
required for this type of grid.

Consider defining a grid potential energy function

N M; o 12
b= 0=3(2) 7
i i \Tij
where N is the number of internal nodes, M; is the number of nodes adjacent to node i, and r;; is
the distance between nodes i and j. The parameter ¢ is arbitrary constant.

This potential energy function is the repulsive part of the Leonard—Jones potential that is often
used in computational molecular dynamics.3? This is an extremely steep potential function; if the
force on node i is defined to be f; = — V¢, then node i is essentially pushed away from its nearest
neighbour. The exponent of 12 in equation (37) is somewhat arbitrary, the idea is for a given node
to only feel a force from its immediate neighbours, and not from nodes two or three connections
away. Obviously an exponent of only 2 or 3 would not suffice in this regard. Consider grid 4a
which is at a local minimum of ¢ since — V¢ = 0 and thus there is no net force on any of the
nodes. However it is not a global minimum, there are other grids which will have a lower
potential energy. Experience indicates that minimum energy grids will be very nearly equilateral.
While the absolute global minimum of equation (37) is quite difficult to find, it is possible to
perturb the grid and move to the next local minimum by repeatedly moving each node a small
amount in the direction of the force. It is essential to re-triangulate the grid after the nodes are
moved. Table II lists the grid preconditioning algorithm that is used in the numerical results of
the next section.

This algorithm was used to generate grid 4b from grid 4a in Figure 9. The boundary nodes were
fixed. The parameters used were § = 09, 0 =7, 6 = i/10, where 7 is the initial average distance
between adjacent nodes. The algorithm was iterated twenty times. Laplace smoothing was
applied as the final step. The resulting grid is significantly better conditioned than the original
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Table II. Grid preconditioning algorithm

perturb initial grid
re-triangulate
compute initial potential energy ¢
compute initial step size 0
begin loop
compute gradient v= — V¢
compute displacement d = 6(v/(/V*V))
move the nodes x =x +d
re-triangulate
swap edges
compute new ¢
compute new é = f0
end loop
Laplace smooth

grid, as is demonstrated via computer examples in Section 6. This same procedure was used to
generate grid 5b from grid 5a. The initial grid 5a was generated using a divide and conquer
approach.?® This grid represents coaxial cylindrical cylinders, the inner cylinder has a dielectric
constant of ¢ =5 and the outer cylinder has a dielectric constant of ¢ = 1. The nodes on the
boundary between the two media were constrained.

6. NUMERICAL EXAMPLES

In order to validate the above analyses it is necessary to compare TDVFEM solutions to exact
solutions of Maxwell’s equations. Consider a two dimensional 1m x 1/3m rectangular cavity with
perfectly conducting walls. The electric field vector is confined to the x—y plane and the magnetic
field vector is transverse to this plane. This is often referred to as a TE mode. The speed of light is
set to unity for convenience. The electric field inside this cavity can be decomposed into an infinite
number of modes,

E =) exp(— I t)(ay,X cosk,xsink,y + b,,J sink;x cos k,,)

n,m

(33)
Opm = k2 + k%, k,=mn, k,=23mm

where X, § are the unit vectors in the x and y directions, respectively. The coefficients a,,, and
b, depend upon the initial conditions. The TDVFEM can be used to compute the resonant
frequencies of a cavity by starting with a random initial electric field and evolving this field in
time. The amplitude of the electric field along a selected edge of the grid is stored for every time
step. This signal can then be multiplied by a suitable window function and then Fourier
transformed to yield the power spectrum. The peaks in the power spectrum are the resonant
frequencies of the cavity.

Figure 10 shows the computed power spectrum for grids 4a and 4b. The electric field was
updated every 0-017 s for 8000 time steps. The time signal for a selected edge was then multiplied
by a Hamming window, and the signal was padded to 16 384 prior to the Fourier transform. As
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Grid 4a Grid 4b

Figure 10. Illustration of grid pre-conditioning via energy minimization for a cylindrical cavity

expected the lower frequencies, which correspond to smaller w At and k Ax, are more accurate
than the higher frequencies.

The same time step and the same Fourier transform process were used for both plots. Note that
the computed resonant frequencies for grid 4b are closer to the exact resonant frequencies. There
are two modes that resonate at 1-5 Hz, the n = 3, m = 0 mode and the n = 0, m = 1 mode. When
using grid 4a these two modes oscillate at two different frequencies, one slightly lower than 1-5 Hz
and one slightly higher than 1-5 Hz. This is due to the numerical anisotropy of grid 4a. When
using grid 4b both modes oscillate at the same frequency. On the interval 0 < f < 2 the rms error
was 0-01376 for grid 4a and 0-00333 for grid 4b, thus grid 4b yields a result over four times more
accurate than that obtained using grid 4a (Figure 9).

Not only does grid 4b give rise to a more accurate field calculation, it also required less
computer time on an HP-750. The conjugate gradient method was used to solve equation (11) to
within an error of 10~ ° at every time step. The calculation on grid 4b required fewer iterations
because the resulting matrix 4 is better conditioned in the sense that it is more diagonally
dominant. An even greater reduction in computer time was achieved using adaptive successive
over-relaxation. The relaxation parameter was initially set to 1-0 and it was updated at every time
step; it quickly converged to an optimal value of 1-07.

The same error criteria of 10™° was used for both the conjugate gradient and the successive
over-relaxation methods. The pre-conditioning process required 9-7 s on the HP-750, which is
about 9 per cent of the total time required to generate the solution (see Table III).

As a second example consider the coaxial cylinders illustrated in Figure 10. The inner cylinder
has a radius of b = 0-5m and dielectric constant ¢; = 5-0, the outer has radius a = 1-0m and
dielectric constant ¢, = 1-0. Using cylindrical co-ordinates the exact solution can be expressed as
an infinite number of modes, each mode consisting of Bessel functions of the first and second kind.
Each mode oscillates at a resonant frequency. The resonant frequencies are solutions of a com-
plicated transcendental equation that can be solved using a standard root-finding algorithm.
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power (dB)
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Power spectrum computed from Grid 4a
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Power spectrum computed from Grid 4b
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Figure 11. Computed power spectrum using TDVFEM for a 1 x 1/3 rectangular cavity

Table III. Computer time required for grids 4a and 4b

Grid CG ASOR Pre-Conditioning
4a 3382s 2109s 0
4b 232-5s 110-0s 9-7s
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The exact solution is a linear combination of modes

E,(n,m)= — Ii(A,,mJ,,(pw,,m\/g) + B,,mYn(pw,,m\/E))e_I”"’
(39)

wnm

Nz

where E, and E, denote the cylindrical components of each mode, J, and Y, represent Bessel
functions of order n of the first and second kind, and the prime denotes differentiation. The

Ey(n,m) = =7 (A o pOunn/2) + Bun ¥ 1(pyr /)€™
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Figure 12. Computed power spectra for coaxial cylindrical cylinder
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Table IV. Computer time required for grids 5a and 5b

Grid CG ASOR  Pre-conditioning
5a 5488s 1120s 0
5b 4082s 1113s 67s

constants A,,, and B,,, are given by

f T (bOn/€1)T0(bOunn/22) — Tn(BOyin/€2) T (bOumr /1)
Bom = (40)

n bwnm\/g Yn(bwnm\/;z - ;l(bwnm\/;Z)Yn(bwnm\/;)

J,,(bwnmﬁ

The resonant frequency w,,, is the mth root of

A (0 82) + By Yolaeo/e5) = 0 (42)

The resonant frequencies for the coaxial cylindrical cylinder were computed using the TDVFEM
in the same manner as in the rectangular cavity example. A random initial electric field was
generated, the field was updated every 0-017 s for 8000 time steps. The time signal for a selected
edge was then multiplied by a Hamming window, and the signal was padded to 16 384 prior to the
Fourier transform. The resulting power spectra are shown in Figure 12. The rms error between
the computed resonant frequencies and the exact resonant frequencies on the interval 0 < f< 1
was 0-011544 for grid 5a and 0-001259 for grid 5b, thus grid 5b yields a result over nine times more
accurate than that obtained using grid 5a. In this example both grids 5a and 5b required
comparable computer time. The time required to pre-condition the grid was 67 s, which is about
6 per cent of the total time required to generate the solution (see Table 1V).

7. CONCLUSION

Electromagnetic field calculations using the TDVFEM can be improved by various grid pre-
conditioning techniques. It was established that an equilateral grid was ideal, but there are
advantages towards achieving a nearly equilateral grid. The numerical anisotropy inherent in the
TDVFEM is reduced as the grid becomes more equilateral. This was established by an analytical
dispersion analysis and verified via two computational experiments. The matrix A, which is
similar to the mass matrix in continuum mechanics, becomes very well conditioned as the grid
becomes more equilateral. This reduces the computational effort required to update the field.
Laplace smoothing consists of moving each internal node to the average of the adjacent nodes;
this tends to produce a better conditioned grid in the sense that triangles become more
equilateral. Edge swapping can be employed to improve the connectivity of a grid prior to
performing Laplace smoothing. In some circumstances a given grid may be smooth in the
Laplace sense, but still be rather poorly conditioned. We introduced a new grid pre-conditioning
method based on energy minimization principles. This method iteratively moves internal nodes
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according to an empirical force law and re-triangulates the grid. Laplace smoothing is then
applied as the final step. The resulting grid is much better conditioned than the original.

APPENDIX

The diagonal terms of 4 are equal to 10/ (12\/5 ), the non-zero off-diagonal terms are all equal to
-1/ (12\/3). Every non-zero element C is equal to 4/ (\/5 ). The six solutions to equation (29) are

1.
¥Y=0

¥Y=0

AX? 4., 1 19
W et )= — 48 42 b2 4 b* be + O(b
<”€ At2> T30 736" Tagsset T O

1, s 127
4 — — 2 R N
+< 6" 864" 933120

+<112234 287

b® + 0(b7)>a2

2196 “3am” T 12929920

+<7 103, 50, 11027

b® + O(b7)>a4

- _ 6 7
480 ~103680° T 1105927 ~ 33747712000 T O )>
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W2 )= —2a - Tpr g Topt o 2 ey o
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20480 163840 31457280 7549747200
xa® 4+ 0(a”)

57257 735007 T 20000
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25 250" ~20000” T 800000 T O )>“
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N 3 N 1029 , 70061 N 225263
500 © 2000 1600000 7680000

b + 0(b7)>a4

7 0287 ,  ST0113 ., 12343327
B bS + O(b”
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xa® +0(a’)
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Of the six solutions only the last equation makes sense physically.
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