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ABSTRACT

This research project serves as exploratory work in the field of computational human
biomechanics. A connection between muscular force and intramuscular pressure (IMP) has been
uncovered that could prove invaluable in medical diagnostics as a method to circumvent the use

of electromyography.

Preliminary finite element simulations were conducted to model the human tibialis anterior
muscle in passive lengthening and active contraction. These simulations, totaling over 50 unique
runs, utilized a novel constitutive model developed within the IMP research group. Volumetric
strain, reaction forces, and pressure gradients were compared to data acquired from ongoing in
vivo human experiments. A mechanism for passive stretching and active contraction was

theorized, with the aponeuroses bearing the majority of the load due to their high stiffness.

Though the model will require future iterations to make adjustments, several promising
conclusions were drawn during analysis. Fluid pressure distributions mimic those of the
volumetric strain, and provide a better prediction of IMP than hydrostatic pressure. Reaction
forces and pressure readings can be iterated to a reasonable level of accuracy. A thorough list of
recommendations was compiled in order to guide the future direction of the model. Fluid
pressures for the active contractile simulations were higher than the expected IMP values, likely
owing to the stiffness of the aponeuroses being greater than necessary. Several options for
addressing this issue were proposed, such as decreased aponeurosis length and graduated

thickness and stiffness of the elements in the extremes of the parts.



1. INTRODUCTION

This master’s report summarizes the initial exploratory efforts in creating a functional finite
element model of passive and active behavior of the human tibialis anterior muscle (TA). A
provided finite element mesh and constitutive material model were used to simulate passive
lengthening and active contraction of the TA. This report describes the methods used, simulation
protocol and initial results. It provides potential causes of the disparity between simulation

results and human data, and lists improvements to be made in future iterations of the model.

1.1 MOTIVATION

Computational modeling in human biomechanics is a promising field. Creating functional

computer models of human tissue can prove invaluable to researchers and engineers alike.

A research group of engineers and scientists from Michigan Technological University, Colorado
State University, and the Mayo Clinic in Rochester, MN, have spent the past decade studying the
correlation between intramuscular pressure (IMP) and muscular force during passive and active
behavior. Previous work within this group has modeled a rabbit (lapine) tibialis anterior using
the finite element method and a hyper-poro-viscoelastic constitutive model (described in Section
3) to create material parameters for the muscular tissue and surrounding connective tissue, called
aponeuroses. These simulations have had some success in matching selected in vivo data

collected from Giant Flemish rabbits [1].

Concurrently, researchers at the Mayo Clinic have conducted in vivo human trials to gather data
for the human tibialis anterior in both passive and active situations. Given the success of the
material model and FEM simulations matching the lapine data, the group elected to analyze the
effectiveness of the material model in a human muscle by simulating these passive and active
experiments in a computational setting. This report summarizes the efforts to mimic these
experiments computationally. The results were analyzed, roadblocks to success identified, and

recommendations given for improvements in the next iteration of the human model.



1.2 INTRAMUSCULAR PRESSURE

The IMP research group is testing a theory that IMP provides a better picture of muscular
behavior than the electrical impulses collected through electromyography (EMG). This is
because EMG only monitors neural impulses sent to the muscle tissue; it does not actually
measure what the muscle is doing [2]. A physically damaged or diseased muscle may still
receive neural impulses, but not generate force according to the intensity of the signal. A further
advantage of studying IMP involves the observation of passive muscular behavior such as
stretching, in which no impulses may be recorded by the EMG in the muscle since it is not

active.

However, the similarities between IMP and muscular behavior seen in previous research are
unique. In informal work conducted by the IMP research group, IMP has shown to have a direct
correlation with both muscle lengthening (passive tension) and muscle contraction. This is
interesting because it means IMP increases with both a passive length increase and an active
length decrease. Because of this, the relationship between IMP and computational pressure
measurements seems to fall somewhere between the hydrostatic and fluid pressure measurements
from FEM programs. IMP is also known to increase with muscle depth and near stiffer

structures such as bone and connective tissue [3].

1.3 RABBIT MODEL

The muscular material model has been applied to an FEM simulation of a lapine TA. These
simulations were conducted to mimic the experimental work of Davis, et al [4], in which a lapine
TA was transected near the insertion and lengthened using an apparatus in order to isolate

reaction forces generated by the muscle.

The rabbit model, created by Mr. Benjamin Wheatley, a Ph.D. student at Colorado State

University, has been optimized through the testing of small strips of lapine TA tissue in the
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longitudinal and transverse directions. Wheatley was able to successfully model whole-muscle
simulations of passive stretching in the isolated lapine TA, mimicking that of [4]. However, the
model was not as transferrable to data collected in an identical manner by researchers at the

University of California — San Diego.

This epitomizes the inherent difficulty in fitting finite element method (FEM) models to real-
world data. As such, it is acknowledged that this attempt to transfer muscle parameters from a
lapine to human model will encompass its own challenges. Iteration to an accurate model will

undoubtedly take some time.

1.4  GOALS AND TASKS

This is a first attempt to combine the constitutive model used by the IMP research group with a
human muscle simulation. In fact, there is very limited evidence of previous work to simulate
the behavior of the human TA using FEM. A literature search of ProQuest and PubMed was
conducted to search for existing studies. This search is discussed in Section 3.3. As such, this is
a preliminary work which focuses on identifying immediate roadblocks within the model and

methods to improve them. The goals for this research project can be summarized as follows:

1. Combine prior knowledge of the IMP distribution in skeletal muscle with a novel
constitutive model and a human TA mesh to conduct FEM simulations of passive
lengthening and active contraction.

2. Compare simulation results to experimental data. Draw conclusions from the comparison

and provide suggestions for future research in this direction.

These goals were expanded into nine overall tasks:

1. Analyze human in vivo data from passive lengthening and active contractile experiments.

Gather key trends and target data to create benchmarks for computational simulations.



2. Convert human TA mesh to usable format within selected solver (FEBio — discussed in
Section 4).

3. Conduct mesh convergence study to ensure accurate simulation results and appropriate
mesh density.

4. Determine applicable boundary conditions, loads, constraints, and other FEM parameters
for passive and active simulations.

5. Simulate passive lengthening and active contractile experiments using FEM.

6. Conduct applicable post-processing to analyze passive and active simulations.
Investigate trends and gather similar data to allow comparison between computational
and in vivo work.

7. Compare results of human experiments and FEM simulations. Identify similar trends and
data points, as well as disparities in the data.

8. Propose theories for differences between human and FEM data, make initial adjustments
and run follow-up simulations if applicable.

9. Gather conclusive findings and discuss improvements in the FEM model for future

iterations of the human TA simulation.

2. HUMAN TIBIALIS ANTERIOR

2.1 OVERALL STRUCTURE AND FUNCTION

The human tibialis anterior is a fusiform muscle located in the anterior compartment of the distal
lower limb. Adjacent to the tibia, this muscle is the main force associated with dorsiflexion and
inversion of the foot [5]. The TA is bipennate, with anterior and posterior sections that travel at
+5° from the longitudinal axis of the muscle [5]. It originates from the proximal 2/3 of the tibia,
specifically the tibial tuberosity, anterior fascia and interosseous membrane. The muscle inserts

at the base of the first metatarsal via a central tendon that traverses the ankle joint.



Figure 2.1 illustrates the shape and position of the human tibialis anterior muscle, seen just

lateral to the tibia in the image.

Figure 2.1: Drawing of the distal lower limb including the tibialis anterior (center), taken from
the 20th edition of Gray's Anatomy (public domain) [5].

2.2 APONEUROSES

Confounding the otherwise simple nature of the TA are sections of stiff connective tissue known
as aponeuroses. The human TA system includes aponeuroses that wrap around the exterior of

the muscle on the proximal % of its length, consisting of skin and fascia on the anterior side and



the interosseous membrane on the posterior side. Additionally, an aponeurosis extends upward
from the distal region of the muscle, effectively bisecting the belly of the muscle to form the
anterior and posterior sections. This aponeurosis culminates in the central tendon at the insertion
of the TA [5]. Together, these three aponeuroses serve to provide structural support for the belly

of the TA muscle and continuous connections to tendinous material on the muscle’s exterior.

Figures 2.2-2.3 are images taken during a post-mortem autopsy of the human TA by researchers
at the Mayo Clinic [6]. These images provide a graphical explanation of the TA components and

connective tissue.

9 Superficial TA

Interosseous
Membrane
s N

Figure 2.2: Human TA cadaveric study images. The superficial (anterior) and deep (posterior)
components of the muscle can be seen, with the posterior fibers extended. The progression from
the central tendon to the fiber insertion on the interosseous membrane (posterior aponeurosis)
can be seen [6].
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Figure 2.3: Human TA cadaveric study images. Lateral view of the TA, showing the superficial
(anterior) and deep (posterior) sections of the muscle diverging from the central tendon [6].

23 RATIONALE FOR SELECTION

There are several reasons for the continued use of the tibialis anterior muscle as an entry point in
this field of computational biomechanics. First, the TA is located in a limb of the body, meaning
it is far from internal organs and other crucial bodily structures. Second, the muscle is positioned
superficially, thus it can be easily accessed through the skin and outer fascia for measurements
and transection, if needed. Finally, and perhaps most importantly, the tibialis anterior is virtually
isolated in its action of dorsiflexion of the foot. Because of this, experiments involving
dorsiflexion can measure the strength and quality of the TA without interference from other
tissue. This data collection can also be done less invasively, as there is no need to isolate the

muscle fibers within the body for measurement.

3. FINITE ELEMENT MODELING IN BIOMECHANICS

Computational modeling can be a very useful tool, especially in a research field such as
biomechanics. Having virtual models that can be used to simulate real-world experiments can
bypass the need for institutional review boards, human subject training and strict guidelines for
experimental protocol. It also allows the researcher to study small changes in the protocol by

controlling or iterating specific variables. In essence, a virtual tissue model can significantly

11



speed up research by simplifying the experimental process and making it possible to test multiple

theories in a short time.

However, the benefits of added flexibility and decreased time for experiments do not come
without corresponding drawbacks. Computational modeling requires a thorough understanding
of the physics and mechanisms involved in the real-world experiment to be modeled. That is,
because the researcher is responsible for setting up the simulation, he or she must know the
proper techniques to do so. Barring that, one must be prepared to devote significant time to

methods of trial-and-error to determine the optimum modeling parameters.

The finite element method involves subdividing a computational model into many small
divisions, called elements. Together the elements form the mesh for a given model. This mesh
is assigned material properties through various material parameters. In this case, a constitutive
material model is used to simulate the behavior and physical properties of skeletal muscle.
Additionally, the mesh is subject to boundary conditions such as loads and constraints. Loads
can be surface forces applied to a specific part of the mesh (point loads, supports, etc.) or body
forces that affect the entire mesh equally (gravity, magnetism, etc.). Constraints are physical
manifestations of typical mechanical implements, such as pins or rollers, which secure part of the
mesh in assigned degrees of freedom. Boundary conditions can also involve prescribed
displacements in place of loads, if one desires to apply a measured degree of movement and
examine the results. Combined, the mesh, constitutive model and boundary conditions comprise

the backbone of a finite element simulation.

Once the finite element model is prepared, the time variants of the simulation are input. This
research project utilizes transient, or dynamic, simulations, because the computations are
designed to follow time-variant experimental data. Solution methods involve calculating various
mechanical parameters such as displacement, force, stress, and strain in each element. The
differences between these parameters for each element form residuals. The solver will iterate the

simulation for each step until such time as the residuals fall below a desired degree of accuracy.

12



3.1 BENEFITS AND LIMITATIONS FROM UNIFORMITY

A key difference between real-world data and that from FEM lies in uniformity and repeatability.
Due to the computational nature of FEM, repeated trials of the same simulation will result in
identical results. This is highly unlikely in real-world experiments. Because of this, the results
of a computational simulation should never be taken as “true,” especially in the presence of
experimental data. However, this means that FEM is a useful tool when accompanied or

validated by experimental results.

3.2 SOLVER AND SOFTWARE

The meshes used in this research project were constructed in TrueGrid. From here, initial pre-
processing was done using Abaqus CAE. This involved selecting appropriate surfaces for the
aponeuroses and creating element sets for the anterior and posterior muscle sets. Finally, the
simulation setup, calculations, and post-processing utilized the FEBio software suite. The

programs within this suite consist of PreView, FEBio, and PostView.

PreView is a pre-processing program used to define the mesh and corresponding boundary
conditions. It also allows the user to create simulation parameters, such as the type of
simulation, timesteps and optimal iterations while solving. FEBio is an open-source FEM solver
capable of a linear or non-linear format. All information is output in text-friendly files that can
be manually edited without major difficulty if required. PostView is a relatively simple post-
processer allowing users to graphically examine simulation data and perform low-complexity
post-processing, such as outputting simulation parameters of elements or nodes selected within
the GUI. This software suite is developed and maintained by a research group out of the
University of Utah. As such, the programs are continuously under development, with frequent
iterative releases to fix bugs or processing errors discovered by users. A major benefit of the
software is the many bio-related functions that are built into the program, specifically in the

definitions of complex materials. FEBio even has a “Muscle material” definition used as an
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overarching simulation of muscle tissue, along with a function to define an active contraction in

any coupled material [7].

33 PREVIOUS WORK FOR THE HUMAN TIBIALIS ANTERIOR

There is limited evidence of previous studies of FEM modeling of the human tibialis anterior. A
search of ProQuest and PubMed uncovered one study that used New Zealand rabbits to gather
mechanical properties of the lapine TA. These parameters were used to create a “transversely
isotropic viscoelastic continuum model” of lapine TA muscle fibers [8]. The constitutive model
developed in this study is very similar in theory to that developed for these simulations.
However, the authors of this paper only sought to verify their constitutive model against in vivo
lapine data. There was no attempt to transfer this model into a human simulation. Other studies
created an FEM model of rat TA muscles, again with no foray into the human tissue system [9].
Jenkyn, et al, focused on the ties between IMP and muscular force in lapine TA tissue when they
created a novel finite element model that effectively mimicked IMP distributions with

hydrostatic pressure from the model [10].

One study attempted to model human muscular tissue. Blemker, et al, created a simplified model
of the biceps brachii to model strain distributions in the muscle [11]. Some of the mathematical
parameters for this model were used in the constitutive model for these simulations because of
their ability to help match experimental data. Together, these works provide useful insight in the
current state of research with regards to human skeletal muscle, IMP and computational
biomechanics. To date, no research was found with the purpose of analyzing the connection

between force and IMP in human skeletal muscle such as the TA.

Additionally, this is the first attempt to combine the constitutive material model from the IMP
research group with a human TA study. To this point, all research has used the rabbit model due
to ease of gathering a larger amount of experimental data. Only recently has the Mayo Clinic
begun to collect human data for behavior of the TA, so thus the need for an FEM human model

has also become relevant of late.
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Because the IMP research group has spent the better part of decade constructing and testing
lapine FEM models, the focus for this research project will be to lay the foundation for future
work in the human TA field. Therefore, perhaps more important than the initial simulation
results is the need for future direction for the model. It will be especially important to note
opportunities for improvement that arise during the simulations and analysis of data, and

elaborate on these in the final sections of this report.

4. CONSTITUTIVE MODEL

A major objective of this research project was to utilize an existing constitutive model, which has
had some success in lapine TA simulations, and apply it to a human TA muscle simulation. This
constitutive model was also developed by Mr. Benjamin Wheatley from Colorado State

University.

4.1 EQUATION DESCRIPTION

The constitutive model is described as hyper-poro-viscoelastic, meaning it has three separate
components. A viscoelastic component is used to define time-dependent behavior, while the
porous component defines a fluid-solid mixture and corresponding permeability of muscle tissue.
Lastly, the elastic component models the transversely isotropic fibrous material within muscle

tissue. The basic equations of the constitutive model are shown below.

A hyperelastic material is one designed to handle large deformations, where a strain energy
density (SED) function defines the interaction between stress and strain. The constitutive model
utilitizes a decoupled transversely isotropic SED function that is dependent on the right Cauchy-
Green deformation tensor as shown below:

¥,(C) =¥,I,,1,,),1,) = Wpi5°(71.72,74) +%,"N ()
The decoupled designation indicates that the SED function can be broken down into volume-

preserving (isochoric/deviatoric) and volume-changing (volumetric) behavior, as shown below:
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The viscoelastic behavior of the muscle is modeled using a Prony Series, which controls the
relaxation of a particular modulus over time at a constant load. This behavior uses viscoelastic

coefficients (g) and time constants (7) according to the following equation:
N

gy =1- Zgi [1 T Exp (‘%)]

i=1

Finally, the poroelastic component defines the relationship between fluid and solid components
within the muscle. The purpose of this component is to give the material the compressive
stiffness a fluid can provide while concurrently containing the tensile strength of muscle fibers.
The poroelasticity of the muscle material is defined by its permeability, which in turn depends on

an adaptation of Darcy’s Law:

—kVp
qQ= —
U

Where g is the flow rate, & is the permeability, V'p is the pressure gradient, and u is the fluid
viscosity. Typically the permeability is not constant because it changes as the material deforms,

but a constant permeability was used in this case to simplify the model [12].

Together, these three components form the constitutive material models for this research project.
The connective aponeurosis tissue does not contain the fluid component; rather, it is modeled as
an uncoupled viscoelastic material. The mathematical parameters used for each material model
were determined by fitting the constitutive model to experimental tensile testing data from lapine

TA tissue. These parameters are listed in Section 6.
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4.2 RABBIT MODEL

As stated previously, this equation has been used with some recent success in a lapine TA model
to simulate passive lengthening of a transected, isolated muscle. Prior to this work, a similar
constitutive model was used to model a lapine meniscus in a passive anisotropic fashion [13].
This is the first attempt to combine the hyper-poro-viscoelastic constitutive model with a human
TA simulation, as well as the first attempt at modeling an active contraction using this

constitutive model.

S. HUMAN EXPERIMENTS

Prior to conducting the FEM simulations, findings were gathered from the in vivo experiments
for which these computational simulations were modeled. These experiments covered passive
lengthening and active contraction of the human TA conducted at the Mayo Clinic in Rochester,
MN. Both sets of data are as of yet unpublished and the active contraction trials ongoing.
However, they do provide a good foundation against which to compare findings from the FEM

simulations.

5.1 PASSIVE LENGTHENING

The passive lengthening data was collected by Dr. Elizabeth Jensen, a former Ph.D. student
working with the Motion Analysis Laboratory in the Orthopedic Research Division of the Mayo
Clinic in Rochester, MN, under Dr. Kenton Kaufman. Jensen’s study attempted to quantify the
volumetric strain distribution within the TA muscle so as to provide a building block for
understanding the IMP-muscle force relationship. Because volumetric strain and IMP have been
shown to increase with muscle depth and near bodily structures with increased stiffness such as

bones, Jensen believed that volumetric strain was an appropriate replacement for IMP [3].
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5.1.1 EXPERIMENTAL SETUP

This study used MRI to continuously scan a patient’s ankle as it was rotated in 26° of
plantarflexion from the neutral axis, thus lengthening the TA muscle. After scanning the
neutrally-positioned TA to gather anatomical data, Jensen used an apparatus to control the
plantarflexion along a 2s cycle while the MRI continuously scanned the region. The anatomical
scans were used to create a finite element mesh — the same geometry used in the mesh for this
research project. The velocities from the second MRI scan were mapped onto the anatomical
data to create a deformed mesh with corresponding velocities. These velocities were used to

compute the volumetric strain in each element.

The volumetric strains were first output in the overall mesh for qualitative analysis, and then
further analyzed by subdividing the mesh into slices. First, five transverse superior-inferior
partitions were made in the mesh, followed by a further ten longitudinal slices in either the
anterior-posterior or medial-lateral directions, as shown in Figure 5.1 below. The average
volumetric strain for each slice was plotted on separate charts for the anterior-posterior and
medial-lateral slices, respectively. Finally, statistical analysis was conducted to determine the

significance of any variation seen in the data.
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Figure 5.1: Illustration of partitions used to define slice data in Jensen's study [3]. This
procedure will be reproduced in the passive lengthening FEM studies.

5.1.2 DATA

As seen Figure 5.2 below, the strain distribution calculated in Jensen’s study was clearly non-
uniform. Gray and red regions indicate areas of very high strain (up to 47% seen), while black

areas indicate regions of low or compressive strain (up to -20% seen).
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Figure 5.2: Overall volumetric strain distribution seen from Jensen's studies. Note the high
strain regions located distally and anterior, and the compressive strain seen in the posterior

region [3].

The slice data from Jensen’s study was digitized and reproduced in Figures 5.3-5.4 below. The
series SI1-SIS represent the transverse partitions, with 1 corresponding to the most superior

(proximal) and 5 the most inferior (distal)
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Figure 5.3: Volumetric strain plot reproduced from Jensen's data for the posterior-anterior
slices.
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Figure 5.4: Volumetric strain plot reproduced from Jensen's data for the medial-lateral slices.

As seen above, Jensen identified a clear increasing trend from posterior to anterior in volumetric
strain, as well as a decreasing trend from medial to lateral. Additionally, she noted that strain
tended to increase in distal partitions (SI5 had the highest reported strain, SI1 the lowest). These

findings were statistically significant for most slice values.
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5.1.3  CONCLUSIONS

Jensen concluded that volumetric strain follows a non-uniform distribution in the human TA
muscle with an increasing trend in anterior, medial, and distal regions. Jensen noted that all
slices output a positive volumetric strain, which correlates to a volume increase and a
corresponding pressure drop. Because of this, she hypothesized that the mechanism for IMP
generation must be based within the muscle fibers (she provided evidence of muscle fiber
volume shrinking during stretching), as a positive volumetric strain would generally result in a

drop in pressure [3].

Perhaps more important than specific findings are the general benchmarks for volumetric strain
that can be gathered from Jensen’s data regarding passive lengthening of the human TA. Much
of the strain appears to be clustered in the 0-5% range, with maximum slice averages peaking
around 20%. Interestingly, although Jensen’s slice data did not report any compressive
volumetric strain, the raw data in Figure 5.2 show significant portions of the mesh with the dark
color corresponding to compressive strain — especially in the posterior region. This may
correlate to only superficial compressive strains, or could show some compressive data being
masked by the slice values. Indeed, strain values in the posterior slices (#1-4 in Figure 5.3) seem
clustered at or below 2%. The strain contours shown above have definite stagnation regions
(slices 3-5 in the PA direction and 5-7 in the ML direction) which indicate relative uniformity in

the strain distribution.

5.2 ACTIVE CONTRACTION

The active contractile data was collected by Dr. Shanette Go, an MD-Ph.D. student in the Mayo
Clinic Medical Scientist Training Program. Go’s ongoing study is measuring force, IMP and
EMG readings during isometric contraction of the human TA. The goal of this study is to
investigate the relationship between these three variables in hopes of furthering the

understanding of connections between IMP and muscular force.
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5.2.1 EXPERIMENTAL SETUP

Go’s study runs three sets of trials for each subject, with 15 repetitions of each trial. First,
subjects are lying prone with their right ankle secured in a stationary apparatus. A load cell (SM-
50 - Interface, Inc., Scottsdale, AZ) was secured on the apparatus oriented near the insertion of
the TA at the base of the first metatarsal. The pressure transducer (FOP-M260 - FISO
Technologies, Inc., Quebec, Canada) was positioned in the belly of the muscle, approximately

6cm distal to the origin of the TA near the tibial tubercle [14].

The force of the maximum voluntary contraction (MVC) of each patient’s TA was first measured
using the load cell. After measuring this force, the 50% MVC force became the target force for
each subsequent trial. Fifteen repetitions of this contraction were conducted at varying rates.
These contraction rates were 5%, 10% and 15% of MVC/s, corresponding to a total time to reach
50% MVC of 10s, 5s, and 3.33s, respectively. A plot of the directed force vs. time was shown
on a screen within view of the patient, where it was to be followed as closely as possible by the
patient during the trial. Thus, there was some human error introduced into the experiments since
it was the responsibility of the patient to follow the force curve as closely possible. The general
protocol for each run was a 5 second initial period with no force applied, the ramp of force up to
the prescribed 50% MVC, and a 10 second relaxation period with no applied load. Data were
collected at a sampling rate of 2500Hz. Following 15 trials at each contraction rate, the data was
compiled and transformed according to the impedance readings of the force and pressure

transducers.

5.2.2 DATA

Because of the preliminary nature of this research project as well as the Mayo experiments, only
data from one patient was analyzed for this report. Additionally, because all contraction rates
finished at 50% MVC, only the 5% MVC/s trial was analyzed for this patient. This means that

the experimental data cannot be considered a representative sample of the human population as a
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whole. Ideally, as the FEM model develops, more experimental data will be available for

comparison, thus strengthening the findings of this research.

The transformed data for all 15 trials of the 5% MVC/s contraction rate were analyzed to
determine the baseline and peak force and pressure values for each run, which were then

averaged. The resulting values are shown below in Table 5.1:

Table 5.1: Statistical averages gathered from Go's active contractile data, 5% MVC/s
contraction rate [14]

Fumax (N) 77.331
IMP, (mmHg) 493.468
IMP nsx (mmHg) 519.187
AIMP (mmHg) 25.719
AIMP (kPa) 3.429

The average force for 50% MVC for this patient’s data was 77.331N. After converting the
difference in pressure from the given mmHg to kPa (units used by the FEBio solver), the
pressure increase allotted to 3.429kPa on average. It is interesting to note that the initial pressure
seen on all runs is much higher than zero gage pressure. This indicates that there is a substantial
initial IMP even when the muscle tissue is completely relaxed, providing another reason to

consider IMP as an adaptation of the pressure readings calculated in the simulations.

Plots of one representative run in the 5% MVC/s trial are shown below to illustrate the typical

force vs. time and IMP vs. time curves seen in these experiments.
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Force vs. time plot of a representative trial for the 5% MVC/s contraction rate
showing the initial baseline, force ramp and relaxation phases.
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Figure 5.6: IMP change vs. time plot of a representative trial for the 5% MVC/s contraction rate

showing pressure oscillations during the initial baseline, force ramp and relaxation phases.

The AIMP vs. time plot shows a high degree of oscillation in the pressure readings, likely owing
to the sensitivity of the pressure transducer, among other effects. In order to better examine the

pressure data and its comparison to the force readings, a 10-point moving average in the pressure

25



data was created to smooth out the oscillations. This series was overlaid against the force vs.

time data on a single plot shown in Figure 5.7.
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Figure 5.7: Comparison of force and AIMP illustrating the strong correlations in the data aside
from the pressure drop-off at the initiation of the relaxation phase.

As shown, there is a high degree of similarity between the force readings and the IMP moving
average. The larger oscillations in the pressure readings tend to mimic those of the force data.
However, the gradual relaxation curve seen in the force series corresponds to a sharp drop in
IMP back to its baseline level, indicating that the mechanisms for IMP must differ between

contraction and relaxation.

5.2.3 CONCLUSIONS

A strong correlation was seen between force readings taken near the human TA insertion site and
the change in IMP seen at a location in the proximal belly of the muscle. This provides further

evidence that an empirical relationship between IMP and muscle force could prove beneficial
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towards medical diagnostics. The data from these experiments will be used as a general

benchmark for the active simulations conducted for this research project.

It should be noted that the data in these experiments comes from a single patient, from which 15
runs of a single experimental trial were conducted. This greatly diminishes the significance of
the experimental results, but still can provide us a good target for preliminary simulation data.

As Go’s work progresses with more patients and further trials, the average peak force and change
in IMP will become more robust, and thus will provide a stronger standard for which to tailor the

FEM simulations.

6. MESH AND SIMULATION SETUP

The original mesh used for the FEM simulations in this research project was identical to that of
the one used by Jensen in her passive lengthening experiments. The anatomy and structure of
the first mesh attempt are the same. However, because Jensen was only mapping velocity values
to corresponding nodal coordinates, she did not require a robust mesh from a density standpoint.

Corrective actions for this issue are touched on in Section 7.

6.1 ELEMENTS AND SIZE

The original mesh comprised 12734 elements, the majority of which were 8-noded hexahedral
bricks with some 4-noded quadrilateral shell elements. It models a transected version of the
human TA muscle, in which the proximal and distal connective tendons are removed to leave the
main belly of the muscle. This simplifies the simulations by removing additional variables
associated with tendons, muscle origin and insertion, and other factors. The resulting mesh is
approximately 170mm in length, and roughly 30mm in maximum transverse diameter. It is
asymmetrical in that the shape and volume of the anterior and posterior muscle halves are not
identical. However, each muscle half contains the same number of elements. An image of the
mesh is shown below in Figure 6.1, which includes the anterior and posterior muscle components

as well as the aponeuroses.
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Figure 6.1: Overview of the human mesh showing the external aponeuroses (blue), the anterior
muscle (green) and the posterior muscle (red) components. The distal aponeurosis is located at
the boundary of the two muscle components.

6.2  MUSCLE MATERIAL

The muscle material was assigned separately to the anterior and posterior components. This
allows for a separate fiber direction to model the bipennate nature of the human TA muscle. The
fibers of the human TA span from the distal aponeurosis to the anterior and posterior
aponeuroses, leading to a general fiber pennation angle of 5° away from the central axis. The

solid component of the muscle constitutive model was a mixture of a coupled Mooney-Rivlin
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matrix and fibers with an exponential power law. An approximation of the bulk modulus is
needed in this case because the biphasic (fluid + solid) nature of the material means that the
standard elastic definition of bulk modulus (pressure divided by volumetric strain) does not
apply. Three sets of orthogonal fibers are used to give the material both longitudinal and
transverse stiffness. The fiber angles are defined using spherical coordinates. Anterior muscle
fibers point 5° in the anterior direction from the longitudinal axis, and posterior muscle fibers
equidistant in the posterior direction. Transverse fibers compose the corresponding two
orthogonal directions to each. Because the fibers are seen as directionless, their orientation is

irrelevant as the longitudinal fibers are aligned properly and all three sets are orthogonal.

The viscoelastic nature of the muscle material is modeled using a 3-term Prony Series with
viscoelastic coefficients of gi=1.589kPa, go=0.3769kPa, and g3=0.6729kPa and time constants of
11=0.5s, 12=5s and 13=50s. Finally, the poroelastic model component was input with a solid
volume fraction of 0.2, or 20%. The hydraulic permeability was set at 0.074 mm*/mN-s. All of
these parameters were determined experimentally from tissue sample testing or empirically

within FEM simulations of lapine tissue.

6.3 APONEUROSIS MATERIAL

The aponeurosis material is modeled as only being viscoelastic (not biphasic), likely due to its
nature as a fibrous connective tissue. The elastic nature of the aponeuroses is modeled with a
transversely isotropic Mooney-Rivlin material. The bulk modulus approximation is 10000kPa,
and the fibers are oriented in the longitudinal direction of the material, or the Z-axis. The
viscoelastic component again uses a 3-term Prony Series with viscoelastic coefficients of
21=.203kPa, g>=0.133kPa, and g3=0.191Pa and time constants of 11=0.33s, 12=47.5s and
13=2500s.

Although FEBio does not use the physical bulk modulus because of the biphasic nature of the

model, it can still be used to compare between the muscle material and aponeurosis to see that
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they differ greatly in stiffness. In practice, the aponeurosis was designed to be approximately 5

times stiffer than the muscle material to reflect the fibrous nature of the connective tissue.

6.4  MESH GOALS

It is important to note that the goal of the FEM simulations was to keep the mesh geometry as
close as possible to that of Jensen’s mesh from her passive lengthening experiments.
Adjustments would add in further uncontrolled variables to the simulations, thus lowering the
significance of the results. Therefore, the original mesh was created to mimic Jensen’s exactly.
The anterior and posterior aponeuroses were added around the exterior of their respective muscle
components. These aponeuroses wrap 80-90% of the way around the muscle so as to not
completely encircle the mesh and join the distal aponeurosis. They extend from the proximal tip
of the mesh to about 2/3 of the longitudinal length, a decision which was based on findings from
the human TA cadaveric study [6]. Similarly, the distal aponeurosis bisects the anterior and
posterior muscle components and runs proximally from the distal tip of the mesh to
approximately 2/3 of the longitudinal length. A simplified mesh showing only the aponeuroses
can be seen below in Figure 6.2. The curved exterior of the anterior and posterior aponeuroses

can be clearly seen with the planar nature of the distal aponeurosis set in between.
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Figure 6.2: Human TA mesh screenshot with the muscle components removed. The anterior
(top), distal (middle), and posterior (bottom) aponeuroses are shown.

These aponeuroses were modeled as shell elements to signify their role as connective tissue

outside of the TA muscle, and also because of their relative lack of depth.

6.5 CRITICAL ASSUMPTIONS

A number of important assumptions were made to permit simulation of the human TA using
FEM. First, the positioning, extent and thickness of the aponeuroses material were estimated
based on previous work as well as values from literature. The anterior and posterior aponeuroses
were designed to model the skin and superficial fascia, and the tibia and interosseous membrane,
respectively. The distal aponeurosis models the central tendon that progresses upward through
the muscle to provide the origin for the fibers. All aponeuroses were chosen to extend 2/3 of the
longitudinal length of the model based on anatomical evidence [9]. This does, however, permit
significant overlap of the stiffer components of the model. The thickness of the aponeuroses was
assigned in PreView as 3.125mm, or 1/8”, a value estimated from literature [15]. This thickness
was assigned as constant in order to simplify the model. In reality, it is likely that the thickness
would taper at the extremes of the aponeurosis material. The anterior and posterior aponeuroses
were wrapped around 80-90% of the muscle circumference so as to apply the effects of the stiffer

connective tissue to the majority of the muscle exterior, but not create a direct link between the
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aponeurosis sections. By leaving a gap, this requires the muscle material to transmit the load
from the anterior and posterior aponeuroses to the distal aponeurosis, just as in the physical
model. The pennation angle of the human TA is known to change during muscle activity [16],
but this angle was assumed constant for the extents of this study. Assigning a transient

pennation angle may be beyond the abilities of the FEBio Suite at this time.

The boundary conditions applied to the muscle (described in the next section) were designed to
accurately mimic the behavior of the human TA. The biphasic nature of the material was
modeled as non-draining. That is, fluid could not freely exit the boundaries of the mesh during
the simulation. Although the mechanism for the biphasic nature of human skeletal muscle is not
yet fully understood, this non-draining assumption is believed to be valid because fluid within
the skeletal muscle cannot freely traverse the body during use. This is because the TA muscle
fibers, like those of other skeletal muscles within the body, are contained within an epimysium,

or fibrous sheath of tissue enveloping the muscle [17].

The final set of assumptions deals with conclusions drawn from the human experiments as well
as post-processing of the FEM simulations. The load cell used in Go’s active contraction
experiments was positioned very close to the insertion point of the human TA. Consequently,
the force readings were assumed to be equal to the reaction force calculated in the active
contractile FEM simulations. Similarly, the pressure sensor was positioned in the proximal belly
of the TA muscle, approximately 1/3 of the length from the distal end. As such, pressure
measurements taken in the active contractile FEM simulations were read from a small area of
uniform length, width and height approximately 1/3 from the proximal end of the mesh. Strain
slices measured in the passive lengthening FEM simulations were designed to mimic those of
Jensen’s experiments. Therefore, they can be assumed to provide data for a corresponding
region of the mesh in both cases. Finally, both sets of experiments provide good data for small
sample sizes, likely due to the time and expense required to gather human volunteers. Because

of this, we do not yet know whether the data gathered is representative of the human population
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as a whole. However, due to the exploratory nature of this research project this data was

assumed to provide a good benchmark for beginning work with a human TA simulation.

6.6  PASSIVE LENGTHENING SIMULATIONS

The passive lengthening simulations utilized a prescribed displacement to model the stretching of

the TA muscle.

6.6.1 BOUNDARY CONDITIONS

The TA muscle was constrained on both the proximal and distal faces. Combined, these two
faces intersect with all five parts within the mesh. Although the only prescribed motion took
place along the Z, or longitudinal, axis, the transverse behavior of the model needed to be
constrained in order to keep the mesh stationary. Therefore, the nodes on the proximal face all
received a “Zero displacement” constraint in the X-, Y-, and Z-directions. Attempts were made
to use smaller subsets of nodes on this proximal face for the X- and Y- constraints, but these

simulations did not converge.

From here, the distal nodes were assigned a prescribed displacement of 22% strain. This was
done by assigning a negative Z-displacement equal to the length of the model (169.897mm) and
then using a load curve within the PreView program to apply this displacement up to a fraction
of 0.22 over the course of the simulation. The strain value of 22% was chosen using simple
mathematical analysis of Jensen’s prescribed 26° of plantarflexion, to transform the angular
measurement into a linear strain. This 22% value was also chosen because it is similar to the

maximum volumetric strain seen in the slices from Jensen’s data.

Finally, no pressure boundary conditions were created so as to keep the mesh a closed system.
This means no fluid could enter or exit the model during the simulation, similar to what is
believed to occur in physical muscle during activity due to the aforementioned epimysium

surrounding the muscle fibers.

33



6.6.2 SOLVER SETUP

A biphasic step was created to model the 2s elongation cycle of plantarflexion used in Jensen’s
experiments. Although Jensen reports she used multiple cycles to overlay the velocity data, only
one elongation cycle was used in the FEM simulations to provide a simple approximation of the
experiment. The non-linear solver in FEBio allows users to input their number of timesteps and
the length of each step, the product of which is the overall length of the simulation. Therefore,
200 timesteps were used, each with a duration of 0.01s. The autostepping function within FEBio
adjusts the length of the timestep in accordance with the convergence behavior of the simulation.
The first step length is always the original duration (0.01s in this case), and subsequent steps may
increase or decrease in length depending on how long the previous step took to converge. The

maximum and minimum allowable steps were set as 0.2s and 0.001s, respectively.

6.7  ACTIVE CONTRACTILE SIMULATIONS

The active contractile simulations modeled an isometric contraction. As such, the active
contraction material module was used while the proximal and distal ends of the mesh were

pinned to remain stationary. This kept the length of the muscle constant through the simulation.

6.7.1 BOUNDARY CONDITIONS

The constraints on the proximal face remained the same as the passive lengthening simulations —
“Zero displacement” constraints on all nodes in the X-, Y-, and Z- directions. The distal node
constraints were changed to a prescribed displacement of Z = 0 for all nodes on the face. This
approach was used rather than the “Zero displacement” style used on the proximal face because
it keeps the corresponding deformation equations for the distal face in the mathematical solution
instead of removing them when a “Zero displacement” constraint is used. This is important
because it forces FEBio to calculate and output reaction forces on the distal face of the mesh — a

crucial result for these simulations. Once again, no pressure boundary conditions were created.
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Active contraction in FEBIo is input in the material designation within the file itself. By creating
a new module within the anterior and posterior muscle definitions, a simple version of active
contraction was modeled. This contraction only required input of the fiber direction (direction of
contraction) and the overall stress level Ty, or the stress generated in the muscle by the
contraction. The fiber direction was assigned to follow the contractile longitudinal fibers of the
muscle designations, or +5°. The stress level was varied from 0-200kPa in order to determine

the appropriate reaction force. This iterative process will be discussed further in Section 9.

6.7.2 SOLVER SETUP

A biphasic step was created to model the ramp phase of dorsiflexion used in Go’s experiments.
Although the experiments also had initial neutral phases as well as a final relaxation step, it is
difficult to model non-contractile steps in tandem with contractile steps in the current release of
FEBio. Additionally, only the ramp step is crucial to achieving the desired data comparison.
Although Go conducted trials at 5%, 10% and 15% MVC/s contraction rates, only the 5%
MVC/s rate was modeled in this research project. This rate was chosen because it provided the
longest duration of contraction. In order to model the 10s ramp phase, 1000 timesteps were
used, each with a duration of 0.01s. The maximum and minimum allowable steps were set as 1 s

and 0.001s, respectively.

6.8  VARIABLES TO OUTPUT

After completing the simulation setup, a list of variables to output from each simulation was

selected.

6.8.1 PRESSURE DISTRIBUTION OPTIONS

FEBio calculates both hydrostatic and fluid pressure. Hydrostatic pressure is simply the trace of

the stress tensor [ Tr(S) ], or the sum of the three principal stresses. FEBio uses the Cauchy
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stress tensor S in its calculations. As such, this calculation is mainly dependent on the
deformation of the solid matrix. The program also outputs fluid pressure. There is considerable
debate over whether hydrostatic, fluid pressure, or some combination of the two variables best
represents IMP. Intuitively, one would believe that IMP more closely follows fluid pressure,
because it is the fluid nature of the muscle that provides a pressure reading, not the deformation
of the solid matrix. However, previous work has constructed FEM models whose hydrostatic
pressure distribution resembles IMP [10]. Because of this uncertainty, both measures of pressure

were output from each simulation to allow comparison of the values during analysis.

6.8.2 RELATIVE VOLUME

Relative volume was used to calculate the volumetric strain within the passive lengthening
simulations. FEBio outputs relative volume values identical to the Jacobian of each element, or
the spatial volume divided by the volume of the reference configuration, dV /dVy. A Jacobian of
greater than 1 indicates volume increase, and less than 1 indicates volume decrease. The
volumetric strain in an element is equal to the change in volume divided by the volume of the
reference configuration. Therefore, the volumetric strain is equal to J - 1, or 1 subtracted from

the relative volume of the element.

6.8.3 REACTION FORCE

The final key output variable was reaction force for the active contractions. This variable is
relatively simple. Any non-rigid constraints will induce reaction forces in the nodes that are
constrained. Since a Z=0 prescribed displacement was used on the distal face of the mesh, the
corresponding nodes will show reaction forces output in mN in this direction. These reaction
forces can be averaged over the entire distal face within PostView, then output and multiplied by
the total number of nodes on the distal face (649) to achieve the total reaction force. This force

will be compared to the load cell readings from Go’s active contractile experiments.

36



7. MESH CONVERGENCE

After setting up the simulation input, the final step before collecting data was to conduct a brief
mesh convergence study. This was done to ensure the mesh density was sufficient to ensure
accurate results, but not so high as to require unnecessary computational power and time.
Insufficient mesh density can lead to irregularities in the FEM data, such as deformation artifacts
near boundary conditions or loads. In this convergence study, the average hydrostatic pressure
from the TA muscle material was output from a passive lengthening study following the protocol

set forth in Section 6.

7.1 PASSIVE SIMULATIONS

A total of five unique meshes were analyzed in this study, each one with a higher density than
the last. Mesh 1 is the original mesh modeled to exactly mimic that of Jensen’s from her
experiments. Mesh 2 adds additional elements in the transverse direction, but keeps the
longitudinal number of elements constant. All subsequent meshes add elements in both the
longitudinal and transverse directions. The goal of this study was to achieve a change in the
average hydrostatic pressure of around or less than 1% difference between a mesh and its
immediate predecessor. Midbelly longitudinal slices of the muscle were taken showing the
hydrostatic pressure gradient at time t=2s for all meshes. These slices are shown below in
Figures 7.1-7.5, followed by a table discussing the overall statistics from each mesh. All meshes
are arranged with the distal end on the left, and the pressure gradients range from +15 to -50kPa,

as shown in the color map at the right.
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Figure 7.1: Midbelly slice of pressure distribution for Mesh 1.

Figure 7.2: Midbelly slice of pressure distribution for Mesh 2.

Figure 7.3: Midbelly slice of pressure distribution for Mesh 3.

Figure 7.4: Midbelly slice of pressure distribution for Mesh 4.

Figure 7.5: Midbelly slice of pressure distribution for Mesh 5.
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As seen above, the pressure distributions for Meshes 2-5 seem virtually identical. All of these
contours feature a positive pressure (compression) region of muscle beneath the exterior
aponeuroses in red-orange, and a negative pressure (tension) region in the distal region of the
muscle in green. Elements that directly border the aponeuroses typically show lower pressures
than their surroundings. The meaning of this pressure distribution is not important for the
purposes of the mesh convergence study, but we must reach a point where a denser mesh brings
no new information. To quantify the convergence of the mesh, the hydrostatic pressures for the
muscle regions were output as weighted averages of all elements. These pressure readings are
discussed below in Table 7.1.

Table 7.1: Mesh Convergence Statistics

Average % Change
Mesh # | Elements Hydrostatic from
Pressure (kPa) Previous*
1 12734 -1.691 N/A
2 23460 -2.126 25.72%
3* 37518 -2.041 -4.00%
55778 -2.217 4.28%
5 95114 -2.190 -1.22%

Although the pressure gradient appears identical from Mesh 2 onward, the table shows that the
average pressure across the entire mesh still changes significantly until the transition from Mesh
4 to Mesh 5. There, a difference of only 1.22% indicates adequate mesh convergence for the
purposes of this research project. Therefore, Mesh 5 was used for all simulations discussed in
Sections 8 and 9. It should be noted that the drop in pressure seen in Mesh 3 likely corresponds
to a disparity in the number of elements in the anterior and posterior muscle components induced
by an odd number of transverse elements. The slight imbalance in the muscle halves can be seen
in Figure 7.3. Because of this, the previously symmetric muscle components (in terms of
number of elements) became unbalanced. The pressure reading from Mesh 4 seems to follow
that of Mesh 2 more closely, and consequently Mesh 5 does as well. Therefore, the minor
fluctuation in the convergence pattern seen in Mesh 3 was disregarded. The percent change for

Mesh 4 was calculated from Mesh 2, not Mesh 3.
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8. PASSIVE SIMULATIONS

A passive lengthening FEM simulation was conducted in accordance with the protocol outlined
in Section 6. Following the completion of this simulation, the output file was analyzed in
PostView to gather slice data in a manner mimicking that of Jensen in her in vivo experiments.
The t = 2s timestep was used to gather slice data. The relative volume, hydrostatic pressure and
fluid pressure were averaged across the elements in each slice and exported from PostView. The

data was then compiled and displayed in the sections below for discussion and further analysis.

8.1 INITIAL DATA AND TRENDS

Figure 8.1A-D below shows an exterior view of the model at the final timestep, t=2s, for the
relative volume (Jacobian) output. This figure shows quite an array of variation in volumetric

strain.
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Figure 8.14-D: Exterior views of the relative volume distribution. The views are from the (4)
Anterior, (B) Medial, (C) Posterior and (D) Lateral directions.

The figures above illustrate the non-uniform strain distribution seen in the passive lengthening
simulations. Green areas indicate little to no volumetric strain in any direction; this color
dominates regions of the mesh away from boundaries in the model or between material
designations. There is significant negative or compressive volumetric strain seen (blue),
especially in the posterior and medial regions. The large region of compressive strain seen in

Figure 8.1B corresponds to the mesh region between the anterior and posterior aponeuroses
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along the exterior. There are a number of reasons for this strain, but perhaps the most likely is
that there is likely a shearing effect seen as the stiff distal aponeurosis pulls softer muscle tissue
while the stiff anterior and posterior aponeuroses attempt to hold the tissue in place at the other
extreme. This could lead to some shearing or skewing of the elements between these interfaces
as the sides are pulled in opposite directions. On the other hand, positive or expansive
volumetric strain is seen on the lateral side of the mesh in the corresponding region. This is
interesting as it shows the opposite effect of the elements on the medial side. Further
investigation via the mesh slice partitions should provide more insight. Regardless, the strain on
the tissue seems much more uniform on the exterior than that seen in Jensen’s data.
Additionally, significant areas of compressive volumetric strain are seen, whereas Jensen’s slices

did not report any negative strain on average.

From here, the interior of the mesh was analyzed from a qualitative standpoint. The distribution
seen in the midbelly slices is much more uniform than that seen on the exterior, which suggests
that the distribution is relatively constant on the interior. Therefore, only one viewpoint was
analyzed as it provided representative visual data to the entire model. This viewpoint was from
the medial side of the mesh, effectively bisecting all five parts of the mesh in a plane
perpendicular to the Y-axis. This was done to provide the best vantage for how the aponeuroses
and muscle regions interacted. In this viewpoint, the model is oriented such that the proximal
end of the muscle is on the right, and distal end on the left. The anterior portion of the muscle is
positioned on the bottom, with the posterior portion on the top. A relative volume distribution

from this viewpoint is shown below in Figure 8.2.
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Figure 8.2: Midbelly slice of the relative volume distribution.

As seen above, the volumetric strain distribution on the interior of the model is much more
uniform than on the exterior. High strain regions (>5%) are seen near the junction between the
anterior/posterior aponeuroses and the distal muscle region. However, compressive can be seen
on the exterior border of this junction. This indicates that the interior muscle tissue is
undergoing greater volumetric strain, perhaps because it is more in line with the axis of
deformation. Some other areas of positive strain are seen in the extreme distal region, which

could indicate a possible correlation with Jensen’s data.
After completing qualitative analysis of the volumetric strain distribution, the various pressure

outputs were also examined. The hydrostatic and fluid pressure distributions are shown below in

Figure 8.3 and 8.4, respectively.
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Figure 8.3: Midbelly slice of the hydrostatic pressure distribution (kPa)

Figure 8.4: Midbelly slice of the fluid pressure distribution (kPa)

These two figures look markedly similar, with peak pressures around 15kPa located in the
central belly of the muscle where the aponeuroses overlap. Interestingly, there is significant
positive pressure seen in the hydrostatic pressure contour, which corresponds to compressive
stresses. One would imagine that in a simulation that stretches the model longitudinally, there
would be little compressive stress seen. Also interesting to note is the abrupt change from
positive to negative pressure at the transverse border of the anterior/posterior aponeuroses and

the distal muscle region of the model. This is the same location as the peak volumetric strains,
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which indicates that the boundary of the compressive and expansive stresses is likely to be the
source of the peak volumetric strain in the model. This is a different location than the peak strain
in Jensen’s model seen at the distal tip of the muscle, but this region is still more distal than the
majority of the mesh. In short, this suggests that the aponeuroses have a far greater effect on the

model behavior than the location within the mesh, among other factors.

To further examine this potential theory, the principal stresses were output in three contours

created in Figures 8.5-8.7 below.

Figure 8.5: Midbelly X-Cauchy stress distribution (kPa)
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Figure 8.6: Midbelly Y-Cauchy stress distribution (kPa)
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Figure 8.7: Midbelly Z-Cauchy stress distribution (kPa)

The X- and Y- stress distributions are virtually identical, with compressive stress seen in the
same regions as the compressive pressures, and maximum stresses seen at the distal junction of
the anterior/posterior aponeuroses and the muscle. However, the Z-stress distribution illustrates
the differences in strength between the aponeuroses and the muscle tissue. The gradient
expanding outward from the distal face, then vanishing at the distal boundary of the exterior
aponeuroses indicates that the vast majority of the stresses are carried by the aponeurosis tissue.

The three aponeuroses in this model essentially operate in parallel, and so the muscle only serves
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as a medium to transmit the load between them. As such, relatively little stress is seen in the
proximal 2/3 of the muscle as, under the strains seen, it carries negligible load compared to the
aponeuroses. A plot of the scalar Von Mises stress distribution is shown below in Figure 8.8.
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Figure 8.8: Von Mises stress distribution (kPa)

This distribution appears very similar to that of Figure 8.7. However, higher stress regions can
be seen along the three aponeurosis cross-sections running horizontally across the figure. This
indicates that the aponeuroses are under significant stress, while the belly of the muscle remains
relatively unstressed. There is a small portion of muscle with stresses in the 20-50kPa range just
proximal to the end of the distal aponeurosis within the muscle tissue, but this stress quickly
dissipates. The bands of muscle tissue on both sides of the distal aponeurosis have stresses

around 50-70kPa.

To confirm these theories, a contour plot of the Z-displacements in the model is shown below in

Figure 8.9.
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Figure 8.9: Midbelly slice of the Z-displacement distribution

This plot supports the claim that the muscle is supporting little force on its own. There is a sharp
change in the displacement seen between the exterior and internal aponeuroses. This diagonal
continuum of displacement around the proximal portion of the distal aponeurosis may explain
the compressive pressures seen previously, as the muscle tissue is undergoing some relaxation in
the regions between the interior (distal) aponeuroses and the exterior layers. The muscle is not
elongating in the longitudinal direction in this region, but is being constrained transversely by the
aponeuroses that are narrowing as they sustain the load induced by the displacement. This

explains the volume reduction seen in this region in the relative volume plots shown previously.

8.2 QUANTITATIVE RESULTS / PLOTS

Plots similar to those found in Jensen’s work were developed and are shown below in Figures
8.10-8.11. Volumetric strain plots are shown for both the posterior-anterior and medial-slices

with subsequent discussion.
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Figure 8.10: Volumetric strain plot for posterior-anterior mesh slices.

Volumetric Strain, ML Slices

Slices Medial --> Lateral

Figure 8.11: Volumetric strain plot for medial-lateral mesh slices.
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The strain plots above have some minor correlations to those from Jensen’s experiments, but
there are also many differences seen. First, Jensen saw the maximum strain in each direction in
her most distal slice, SI5. In the simulation data this slice has the strain closest to zero. Jensen’s
baseline volumetric strain values were between 2-4%, while the strains in the FEM simulations
were between 0-2% on average. Additionally, a significant number of slices showed reduction in
volume, specifically in the extreme medial and lateral slices of SI3 and SI4. These areas
correlate to the compressive strain regions seen on the exterior of the model discussed
previously. Additionally, there are some interesting fluctuations in strain seen in the
intermediate posterior-anterior slices in SI2, SI3 and SI4. This can be attributed to the jump
between the posterior and anterior aponeuroses on the exterior of the model, the same location as
the compressive strain regions. These slices contain the most medial and lateral regions of the

mesh within them.

Although there are minimal trends to be observed across the posterior-anterior spectrum, all of
the 5 superior-inferior sections contain their greatest volumetric strain in a slice on the medial
side of the mesh — the same trend as that seen in Jensen’s data. Additionally, with the exception
of SI5 all of the slices show an increasing trend in volumetric strain from proximal to distal.
Together, these trends show promise in the ability of the model to more closely match the data

from Jensen’s experiments in the future.

The disparity between volumetric strain readings in Jensen’s data versus the simulations
indicates that an important aspect of the FEM model is either missing or not addressed properly.
It appears the aponeuroses within the FEM model are too stiff to permit transmission of force
through the muscle tissue — the aponeuroses bear the vast majority of the force induced through
stretching. Additionally, transverse volume reduction in stretching may be a result of
inadequately address boundary conditions, such as those imposed by the tibia and surrounding

fascia. As the model becomes more complex, these boundary conditions should be addressed.
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In order to properly compare the volumetric strain readings for the experimental and simulated
data, the 5 series from each plot were overlaid on a single axes for each transverse direction. The
resulting graphs are shown below in Figures 8.12-13. These plots illustrate the general
magnitude difference between Jensen’s experimental data (shown in solid lines) and the

simulation data (shown in correspondingly-colored dashed lines).

Comparison of Volumetric Strain for Posterior --> Anterior Slices
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Figure 8.12: Comparison of volumetric strain data in the posterior-anterior slices. Series
beginning with 'E' indicate experimental data, while 'S" indicates simulated data.
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Comparison of Volumetric Strain for Medial --> Lateral Slices

0.3

0.25 —e—E-SIl

0.2 —e—E-SI2
E-SI3

0.15 E - SI4

—e— [ - SI5

4__’4—/ -=e=:5-8I
0.05 —
\ /‘":. -=e-:S-SI2

Volumetric Strain (mm?*/mm?)
S

0 — SzopdEoceREEeS . e D §-513
" S -S4
-0.05
-=e=.S-SI5
-0.1
1 2 3 4 5 6 7 8 9 10

Figure 8.13: Comparison of volumetric strain data in the medial-lateral slices. Series beginning
with 'E' indicate experimental data, while 'S’ indicates simulated data.

8.2.1 APPROPRIATENESS OF PRESSURE READINGS

As discussed in Section 6, a debate is ongoing regarding how to interpret IMP in FEM
simulations. Researchers have yet to unquestionably determine the physical mechanism for IMP
recorded by pressure sensors embedded in muscle tissue. FEBio outputs both hydrostatic (stress-
induced) and fluid-based pressure. Plots of both parameters over the posterior-anterior and

medial-lateral slices are shown in Figures 8.14-8.15 below.

52



Hydrostatic Pressure, PA Slices

é@ -10 —e—3I1
~ —e—3SI2
g 20
E —o—3I3
£ 30 E—
—e—SI5
-40
-50
-60 : : :
Slices Posterior --> Anterior
Figure 8.14: Hydrostatic pressure plot for posterior-anterior slices.
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Figure 8.15: Hydrostatic pressure plot for medial-lateral slices.
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The main observation from the hydrostatic pressure plots lies in the relative uniformity of the
pressure across the transverse directions. There is little change in the hydrostatic pressure
regions for slices 1-3 and 7-10 for SI12, SI3 and SI4 in the posterior-anterior direction.
Additionally, little change is seen in slices 3-8 for all sections in the medial-lateral direction.
The pressure for SI1 hovers around OkPa for both directions. This is likely not zero actual
pressure, but rather zero net pressure observed in each slice as the sum of the principal stresses.
Slices SI2 and SI3 both have positive (compressive) pressures between 0-10kPa with the
exception of slices 4-6 in SI2 in the posterior-anterior direction. Slices SI4 and SIS have
negative (expansive) pressures ranging from -10 to -30kPa with the exception of the two most
lateral slices in SI4 where the pressure plummets to -57kPa, likely an artifact of the aponeurosis-

muscle junction.

Overall, the pressure distributions show strong uniform tendencies in the FEM simulations in the
transverse directions, but not in the longitudinal directions. This may indicate that longitudinal
positioning of a pressure sensor is much more important than transverse positioning, as long as

the sensor is placed in the belly of the muscle and not near the boundaries.

Following the completion of the hydrostatic pressure analysis, similar plots were constructed to

study the fluid pressure distributions. These are shown in Figures 8.16-8.17 below.
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Figure 8.16: Fluid pressure plot for posterior-anterior slices
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Figure 8.17: Fluid pressure plot for medial-lateral slices
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The fluid pressure plots illustrate more varied distributions than those of their hydrostatic
pressure counterparts. Typical fluid pressure range from 0-15kPa, with some slices dipping
below zero, but never further than -1kPa. The peak fluid pressure was located in the most medial
slice of SI3, at 18.3kPa. The values for fluid pressure in both the posterior-anterior and medial-
lateral directions for sections SI1 and SIS hover around zero for their entirety. This may indicate
that the majority of the fluid component is located in the larger, and therefore more porous, belly
of the muscle. Slices SI2 and SI3 have their maximum pressures in the center of the mesh (slices
4-6) in the anterior direction, but in the most medial slice for the other orientation. IMP is well
known to be greater at deep points in the muscle or near stiffer structures such as bones or
fibrous tissue. Therefore, it comes as no surprise that the fluid pressure is greater at the extremes
of the tissue near the stiff aponeuroses. Jensen’s volumetric strain data described an increasing
trend in the medial direction. Since IMP is known to correlate directly with passive stretching of
muscle tissue, the increase in IMP in the medial direction could indicate a potential correlation.
Additionally, the medial-lateral plots from Jensen’s data were observed to have a trough-like
shape, where the lowest values were found in the center of the mesh. Each of the 5 sections
seem to follow this trend in the medial-lateral fluid pressure data, showing promise that fluid

pressure is a better representation of IMP for this model.

8.3 SUBSEQUENT ATTEMPTS

After uncovering the initial disparity in volumetric strain for the FEM simulations as compared
to Jensen’s in vivo data, several subsequent simulations were run to study the applicable changes
in volumetric strain output and determine if the adjustments pushed the strain readings towards

those found in Jensen’s experiments.

8.3.1 REMOVAL OF BIPHASIC COMPONENT

First, the biphasic nature of the muscle material was removed and the remaining viscoelastic
components were retained in order to make the muscle behave more similarly to the viscoelastic-

modeled aponeurosis material. This was done because it would make the muscle material more
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susceptible to volume changes. Figure 8.18 shows a comparison of the Jacobian gradients in the

original and resulting meshes.

Figure 8.18: Relative volume distribution before (top) and after (bottom) removal of the biphasic
(fluid) component of the mesh.

As seen above, removing the fluid component of the muscle causes significant compression in

the regions between the three separate aponeurosis materials. This is because there is no longer a
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force to resist compression of the material since the fluid was removed. The fibers used to give
the muscle tensile strength have no action in compression, and as such only the weak Mooney-
Rivlin ground matrix is left to resist the compressive transverse force seen during elongation in
this region. Therefore, the fluid component clearly plays an important role in the behavior of the

muscular tissue, and should be left intact.

8.3.2 BULK MODULUS

The second post-hoc adjustment made was a decrease in the bulk modulus approximation of the
muscle material. This value was set arbitrarily at SkPa during fitting to the lapine data because
no recommended value could be found in literature [12]. Decreasing the bulk modulus
approximation would have the effect of increasing the susceptibility of the material to changes in
volume. Therefore, the value was decreased by an order of magnitude from 5 to 0.5kPa and the

simulation repeated. A screenshot of the Jacobian gradient is shown below in Figure 8.19.

1.05

Figure 8.19: Relative volume distribution after reduction in bulk modulus approximation from 5
to 0.5kPa.

As shown, the decreased bulk modulus approximation has minimal effect on the volumetric
strain seen in this longitudinal midbelly slice — this contour is almost identical to the original one

shown previously. There may be slightly higher strain seen in the distal regions, but the
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difference is not enough to warrant a deeper analysis at this time. While the idea to drop the bulk
modulus should work in theory, this may indicate that there are other problems to be resolved
with the mesh before trying this approach. This is especially true when taking into consideration
that there is no basis in literature for the choice of SkPa or 0.5kPa for this value. Iterating the
bulk modulus approximation would be better done in tandem with a fitting process to acquired

human TA testing data in the future.

8.3.3 QUADRATIC ELEMENTS

An attempt to address element skewing seen in the regions between the aponeuroses involved the
use of second-order elements. Also referred to as quadratics, the use of second-order elements
would increase the number of nodes in a standard hexahedral brick element from 8 to 20, by
adding a node at the midpoint of each edge of the element. Aside from greatly increasing the
accuracy and precision of the simulations, the use of quadratic elements can help reduce
problems due to shear, especially when the shear-susceptible linear brick elements are used such
as in this simulation. The use of quadratic elements will greatly increase the computation time of
a simulation due to the increased number of nodes, but the benefits of their use in complex

simulations such as this generally outweighs the additional time and expense involved.

Therefore, the linear brick elements in the muscle material were converted to second order
hexahedral brick element in Abaqus. Unfortunately, the 4-noded quadrilateral shell elements
could not be converted to their 8-noded quadratic counterparts because FEBio does not support
second order shell elements at this time. Therefore, the linear shell elements were retained, and

the simulation run again to examine the overall results.

Almost immediately, the results of the simulation were rendered invalid due to the poor interface
between the stiff, linear shell elements of the aponeuroses and the more flexible, quadratic brick
elements of the muscle tissue. Although the shearing behavior seen was reduced within the
muscle material, the newly introduced intermediate nodes of the hexahedral elements could not

interact with the quadrilateral shells, and as such they tended to pull away from the aponeurosis
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shells while the original nodes remained in contact. This resulted in the “fish-scaling” effect

seen below in Figure 8.20.
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Figure 8.20: "Fish-scaling" effect seen due to the interaction of linear shells and quadratic brick
elements.

This behavior is clearly unrealistic, and therefore undesirable for these FEM simulations.
Therefore, the use of quadratic elements will be suspended until such time as FEBio can support
the second order shell elements as well. However, it does expose just how much stiffer the
aponeuroses are than the TA muscle. With linear elements, the muscle elements bordering the

aponeuroses are rendered virtually immobile, which may explain the low pressure regions seen.

8.3.4 DECREASED APONEUROSIS THICKNESS

The final post-hoc adjustment made to the passive lengthening model was a drop in the
aponeurosis thickness. It is believed that having the muscle and aponeuroses materials closer in
overall stiffness would result in a better distribution of the volumetric strain and a reduction in

the compressive behavior seen in the model. Therefore, the thickness of the aponeurosis shell
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elements was dropped from 3.125mm to Imm. The resulting Jacobian gradient is shown below

in Figure 8.21.

Figure 8.21: Relative volume distribution after reduction in aponeurosis thickness to Imm.

The decreased thickness of the aponeuroses does not seem to greatly affect the strain
distribution. In fact, it actually serves to make the distribution more homogeneous in the
previously fluctuating strain areas. This loss of non-uniformity seen in previous simulations is a
major drawback. Getting a non-uniform volumetric strain distribution has proven to be the
biggest challenge of this aspect of the research thus far, and any adjustments that reduce the
variation of the strain distribution should be avoided if possible. Additionally, there is no basis
for the Imm aponeurosis in literature as compared to 3.125mm. Therefore, the original thickness
will be retained as there is some physical evidence for its selection and the adjusted thickness

does not seem to benefit the model in any major way.

However, this attempt does raise questions about whether the aponeuroses and muscle materials
have appropriate stiffness for the simulations used in this project. The parameters for these
materials were optimized using coupon testing of lapine TA muscle samples. Therefore, it is

very possible that the values used may not transfer between species to the human TA model used
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in these simulations. Further work could quantify this difference or even perform a similar

fitting process if appropriate human TA testing data is acquired.

9. ACTIVE SIMULATIONS

A set of active contractile FEM simulations was conducted in accordance with the protocol
outlined in Section 6. Output files from these simulations were analyzed in PostView to gather
reaction force data from the distal face as well as pressure data from a group of elements deemed
to represent the pressure sensor implantation region of Go’s experiments. The final t=10s
timestep was used to gather the force and pressure data. The reaction forces were averaged
across the distal face nodes and exported from PostView, while the hydrostatic pressure and fluid
pressure were averaged across the elements in the representative region and also exported. The

data was then compiled and displayed in the sections below for discussion and further analysis.

9.1 INITIAL DATA AND TRENDS

The goal of this section of the research project was to iterate the overall stress level To until the
reaction forces matched that of Go’s in vivo experiments (about 77.3N). Then, the
corresponding pressure identified in the representative region of the mesh could be analyzed. An
initial set of simulations was conducted at To=1, 5, 10, 50, 100, 150 and 200 kPa, to set a
baseline. Overall figures of each simulation, midbelly slices and views of the distal face reaction

forces are shown below for the To=10kPa simulation.

Because of the isometric nature of this simulation, there was little physical deformation of the
model. Therefore, it was crucial to perform quantitative analysis of various qualities. A side-by-
side comparison of the undeformed mesh at t=0s and the fully contracted mesh at t=10s are

shown below in Figure 9.1.
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Figure 9.1: Comparison of initial (left) and final (vight) mesh displacement gradients (mm)

As seen in the figure, there is very little change in the shape of the TA model from the initial to
final timesteps. Also, the exterior aponeuroses appear to experience no displacement, but this
will be touched on later in the analysis. Figure 9.2A-D below shows the four main views of the

displacement gradient at the final timestep t=10s.
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Figure 9.24-D: Exterior views of the displacement distribution. The views are from the (4)
Anterior, (B) Medial, (C) Posterior and (D) Lateral directions.

The figures above illustrate the deformation seen in the active contractile simulations. The main
observation here lies in the lack of displacement seen in the exterior aponeuroses in general. The
muscle portion distal to the exterior aponeuroses shows a positive (+Z) displacement, while the
muscle beneath the exterior aponeuroses on the proximal end shows a negative (-Z2)
displacement. Together, these findings indicate a successful isometric contraction of the human
TA muscle was modeled. The next set of Figures 9.3-9.6 portray longitudinal midbelly slices of

the deformation, pressure and stress distributions.
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Figure 9.3: Midbelly slice of the Z-displacement distribution (mm).

The Z-displacement interior distribution follows the same trends as those identified previously.
The distal muscle region has a positive displacement, while the exterior regions of the proximal
muscle region nearest to the aponeuroses show a slight negative displacement, meaning both
areas are getting pulled towards the center during contraction. As we may expect, the distal
region experiences greater deformation because it contains half the quantity of stiff aponeurosis

tissue as the proximal region.

Figure 9.4: Midbelly slice of the hydrostatic pressure distribution (kPa).
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The hydrostatic pressure distribution shows a generally negative (expansive) pressure, aside from
a small artifact region near the proximal constraints. As seen in the passive lengthening
simulations, the pressure tends to be more negative near the aponeurosis tissue due to greater

application of stress occurring there.

Figure 9.5: Midbelly slice of the fluid pressure distribution (kPa).

The fluid pressure distribution is mainly positive (compressive), but generally decreases in
magnitude as we move distally in the model. Interestingly, the two pressure distributions appear

very similar in terms of the color gradients, but the values themselves are very different.
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Figure 9.6: Midbelly slice of the Z-Cauchy stress distribution (kPa).

The Z-Cauchy stress distribution appears very uniform, with most values clustered around
15kPa. This is very different from the distribution seen in the passive lengthening simulations,
when the muscle tissue did not transmit a significant portion of the load. Since the aponeuroses
are not contracting in this simulation, it makes sense that the active muscle tissue now supports a
stress. However, the peak stresses are still seen in the extreme sections of all three aponeuroses,

where the values peak above 50kPa.
The reaction force readings were taken exclusively from the distal face of the model, as these

were the only nodes to undergo a prescribed displacement constraint (of 0). The typical

appearance of the distal face at the final timestep t=10s is shown in Figure 9.7.
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Figure 9.7: View of reaction forces on the distal face (mN).

The vast majority of reaction forces occur on nodes that are shared with the distal aponeurosis.
Thinking about the vast disparity in material stiffness between the aponeurosis and muscle, it
makes sense that the muscle is not able to sustain a significant portion of the load when
compared to the distal aponeurosis. This likely is not realistic in terms of the physical muscle
contraction. Nonetheless, averaging the reaction force over the entire distal face should still

provide an accurate representation of the total reaction force generated by the model.

The figures in this section are all from the To=10kPa stress level simulation, chosen because it
was in the intermediate range of the applied stress across all the simulations. All simulations

possessed a very similar contour appearance for all the distributions discussed here. However, as
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the stress level increased above 100kPa, a distinct distortion of the mesh was seen at the distal
boundary of the exterior aponeuroses and the muscle tissue. This bulging is shown in Figure 9.8

below.

Figure 9.8: T0=100kPa distribution showing bulging at the distal boundary of the exterior
aponeuroses and muscle.

Although this bulging is certainly not anatomically realistic, it can be attributed to the effect of
the bidirectional contractions and the stiff exterior aponeurosis tissue. While it is an error to be
remedied in the future, it should not affect either the reaction force or pressure data collection as

the sources for both measurements are a significant distance from the site of the distortion.

9.2 QUANTITATIVE RESULTS / PLOTS

The total reaction force and average pressure in the chosen representative region were calculated
for each simulation. To determine total reaction force, all the nodes on the distal face were
selected (649 in total), and the average reaction force across this node set was output from
PostView. A weighted average was used that normalizes the data based on corresponding
element volume so as to prevent small element artifacts from skewing the data. For pressure, a
cube of approximately 1mm? was created in the belly of the muscle, precisely 1/3 of the length of
the muscle from the proximal end. Aside from matching the protocol of Go’s active contractile

experiments, this region possessed a relatively stable pressure gradient according to the midbelly
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slices taken previously. The elements in this cube were selected and their hydrostatic and fluid
pressures output as weighted averages. Figures 9.9-9.11 below describe the distal reaction force

and pressure collection methods.

Figure 9.9: Screenshot of node selection for reaction force calculations.
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Figure 9.10: Midbelly slice of hydrostatic pressure distribution illustrating approximate location
of pressure sampling point.

Figure 9.11: Side-by-side comparison of overall model (left) and the pressure sampling region
(right). Yellow lines indicate the cutting planes used to define the region.

Reaction force and pressure data for the seven different stress level simulations were gathered
using the methods described above. Table 9.1 below describes the reaction force and pressure

output from each active contractile simulation.
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Table 9.1: Pressure and reaction force data for the initial active contractile simulations.

Stress Level Hydrostatic Fluid Pressure Reaction Force
(kPa) Pressure (kPa) (kPa) (N)

1 -0.548 0.078 1.313

5 -2.575 0.642 6.21

10 -4.954 1.526 11.609

50 -22.164 9.042 42.599

100 -41.589 17.193 74.831

150 -59.566 25.373 105.306

200 -76.976 33.354 134.922

In the data analyzed from Go’s experiments, the target reaction force is 77.3N, while the target
IMP is 3.43kPa. As seen, the target reaction force falls at a stress level slightly higher than
100kPa. The hydrostatic pressure values are all negative (expansive) in nature, while the target
IMP value is 3.43kPa. An equal magnitude pressure is achieved between 5 and 10kPa for the
stress level. Similarly, a fluid pressure value of 3.43kPa would occur between the stress values
of 10 and 50kPa. One encouraging finding lies in the relatively linear change in reaction force or
pressure with a corresponding change in applied stress. These relationships will be examined

further in Section 9.3.1.

9.2.1 APPROPRIATENESS OF PRESSURE READINGS

Unlike the passive lengthening simulations, the active contractile in vivo data provides a
benchmark for IMP to compare to the FEM simulations. From Section 5, we are looking for a

peak pressure of approximately 3.43kPa when the reaction force is around 77.3N.

An immediate issue that arises is the negative hydrostatic pressure seen in the FEM simulations.
This does not match the positive IMP seen in Go’s studies. However, when one considers
physics of the active contraction in the FEM simulation, the negative values seem to make sense.
Although the tissue itself is undergoing a contraction, the isometric nature of the contraction

means that the muscle is generating tension since the ends of the model are pinned in place.
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Tension in the muscle would correlate to positive stress in the Z-direction. Since this stress
dominates the principal stresses, it would thus carry over to a positive trace of the stress tensor.
Since FEBio outputs hydrostatic pressure as the opposite of the trace of the Cauchy stress tensor,
this pressure would therefore be negative. Although this is correct mathematically, it moves us
no closer to an accurate IMP reading. Therefore, this measurement suggests that, if IMP is

dependent upon hydrostatic pressure during isometric contractions, it is not solely so.

On the other hand, the fluid pressure rises proportionally from OkPa with corresponding
increases in the applied stress level. The fluid pressure appears to be slightly less than half of the
hydrostatic pressure, and opposite sign, at any given stress level. Because fluid pressure seems
to intuitively be a better fit for modeling IMP (hydrostatic pressure is more related to
deformation than it would be to an actual pressure reading), the positive fluid pressure values
seen here are encouraging. However, in the realm of an appropriate reaction force of 77.3N
(74.831N at To=100), the fluid pressure is 5-6 times the target IMP value of 3.42kPa
(17.193kPa). Nonetheless, this is a good first attempt in the efforts to model the behavior of the

human TA muscle with a high degree of accuracy.

9.3 SUBSEQUENT ATTEMPTS

Once again, several subsequent active contractile simulations were conducted to further examine
the relationship between reaction force and pressure in the model, and ideally push the values

closer to those found in Go’s in vivo studies.

9.3.1 ITERATED STRESS LEVEL

Since the primary goal of this section of the project was to iterate Ty stress values until a reaction
force was found that matched that of Go’s experiments, this was the first additional simulation
conducted. The reaction force and pressure readings were plotted vs. the overall stress level To
below in Figures 9.12-9.14. The target pressure and load values are shown on the fluid pressure

and reaction force plots as horizontal lines.
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Hydrostatic Pressure vs. Stress Level
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Figure 9.12: Hydrostatic pressure values (kPa) plotted against the Ty stress values (kPa)
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Figure 9.13: Fluid pressure values (kPa) plotted against the T0 stress values (kPa)
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Reaction Force vs. Stress Level
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Figure 9.14: Reaction force values (N) plotted against T0 stress values (kPa)

As seen above, the desired reaction force of 77.3N seems to fall just above the stress level
To=100kPa. Although the data does not follow a strictly linear pattern, the decrease in slope with
increasing stress was gradual enough that a linear approximation could be used to determine
intermediate points. After interpolating the data, a simulation was conducted at To=104kPa
because it was believed this value would result in a total reaction force very close to 77.3N.
However, the true pressure values lie at a much lower stress value. Two more rounds of
interpolation were conducted to determine a stress value that provide a hydrostatic pressure and

fluid pressure magnitude closest to 3.43kPa. The results of these simulations are shown in Table
9.2 below.
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Table 9.2: Updated active contractile simulation statistics. Values shown in bold indicate those
of the second round of simulations done to match experimental data.

Stress Level Hydrostatic Fluid Pressure | Reaction Force
(kPa) Pressure (kPa) (kPa) (N)

1 -0.548 0.078 1.313

5 -2.575 0.642 6.210

6.8 -3.444 0.976 8.238

10 -4.954 1.526 11.609

20 -9.459 3.492 20.665

50 -22.164 9.042 42.599

100 -41.589 17.193 74.831

104 -43.202 17.956 77.315

150 -59.566 25.373 105.306

200 -76.976 33.354 134.922

Each simulation proved very effective in achieving its desired parameter value. The To=6.8kPa
simulation resulted in a hydrostatic pressure of -3.444kPa. The To=20kPa simulation achieved a
3.492kPa fluid pressure, and the To=104kPa simulation output a 77.315N reaction force. All
values were well within 1% error of the experimental values. However, the complementary
parameter in each of these simulations does not effectively match the values from Go’s in vivo
experiments. The simulations that match the hydrostatic and fluid pressures have reaction forces
of 8.238 and 20.665 N, respectively, the closest of which is still slightly less than a factor of 4
from matching the true reaction force from Go’s data. Conversely, the reaction force-matching
simulation (To=104) has hydrostatic and fluid pressures of -43.202kPa and 17.956kPa, the
closest of which is again 5.25 times greater than expected. This shows that there is considerable
work to be done with this model before it can be expected to achieve accurate results for the
human TA. However, the ability to effectively match either parameter is a good stepping stone
for future developments in these simulations. Furthermore, the fluid pressure appears to better
match the data than the hydrostatic values, even when simply examining the magnitudes of each
parameter. This is in line with previous theories that fluid pressure better approximates the IMP

distribution than the stress-based hydrostatic pressure.
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There are several lengthier methods by which this model could be adjusted to ideally bring the
reaction and pressure values closer to those from Go’s experimental data. These changes will be

discussed in Section 10.

9.3.2 CONTRACTILE APONEUROSES

A second adjustment to the active contractile simulations was the addition of contractile
aponeurosis tissue. This was an attempt to resolve the distortion of the mesh at the boundaries of
the exterior aponeuroses and the muscle tissue. Although connective tissue like fascia and
internal aponeuroses is typically not considered contractile, there is evidence of smooth-muscle-
like contractile behavior seen during voluntary muscular contraction 18]. There is also evidence
of internal aponeurosis shortening during some muscular contraction, which may indicate
contractile behavior [19]. A simulation was conducted after adding the active contraction
modules into the aponeurosis materials at a stress level of To=6.8kPa to use an appropriate range
for the pressure values. This required separating the three aponeuroses into individual material
distinctions because of their different contractile directions. The anterior and posterior
aponeuroses were made to contract in the same direction as their respective muscle components,
while the distal aponeurosis contracted along the longitudinal (Z) axis due to its model
symmetry. The contractile aponeurosis simulation was run at To=6.8kPa and To=50kPa. Figures

9.15-9.16 show the midbelly pressure distributions for the To=6.8kPa pair.
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Figure 9.15: Midbelly slice of the pressure distribution for the original Ty=6.8kPa simulation.

Figure 9.16: Midbelly slice of the pressure distribution for the Tp=6.8kPa contractile
aponeuroses simulation.

As seen above, minimal changes in the hydrostatic pressure distributions are seen between the
original and contractile aponeurosis simulations for To=6.8kPa. The shape of the distribution
appears to be slightly more anatomical in the distortion region, but this issue will be easier to

analyze when looking at the distributions for stress level To=50kPa below in Figures 9.17-9.18.
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Figure 9.17: Midbelly slice of the pressure distribution for the original To=50kPa simulation.

Figure 9.18: Midbelly slice of the pressure distribution for the contractile aponeurosis
Ty=50kPa simulation.

Once again, the pressure distributions for the original and contractile aponeurosis simulations for
To=50kPa appear virtually identical. However, there is a small decrease in the amount of

distortion seen at the distal boundary of the exterior aponeuroses. Although the bulging effect is
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not completely eliminated, it does appear to be slightly less apparent for the simulation with
aponeuroses included in the contractions. This is likely because the exterior aponeuroses are
contracting in the same bidirectional motion as the muscle tissue, thus preventing the build-up of
muscle material behind the exterior aponeuroses. However, the applied stress induces less
displacement in the aponeurosis tissue because of its greater stiffness, meaning that the muscle
material distal to the exterior aponeuroses still experiences greater strain. Nonetheless, this
adjustment shows promise as a potential fix for the mesh distortion issues. A quantitative

analysis of the parameters of interest is shown below in Table 9.3

Table 9.3: Comparison of the original and contractile aponeurosis (CA) simulations, showing
the percent change of the new values over the originals

Stress Level Hydrostatic Pressure Fluid Pressure .
(kPa) (kPa) (kPa) Reaction Force (N)
6.8 -3.444 1% 0.976 4.9% 8.238 4.6%
CA-6.8 -3.516 0.928 8.618
50| -22.164 0.7% 9.042 1.4% 42.599 14.3%
CA -50 -22.329 8.911 48.675

The results from the table highlight some potentially useful findings. The table illustrates the
percent change from the standard simulations. In the previous section, we discovered that
pressure readings were generally too high or reaction forces too low. Therefore, it is an
encouraging sign that contractile aponeuroses tend to decrease both the hydrostatic and fluid
pressures as well as increase the measured reaction force. Although the contractile aponeuroses
did not fully resolve the mesh distortion problems, this adjustment could prove very beneficial

for getting the pressure and reaction force values closer to those from the in vivo benchmarks.

9.3.3 STRAIGHT CONTRACTION

The final post-hoc simulation involved changing the differing contraction directions to a simple,
longitudinal (Z-axis) contraction of the tissue. This was another attempt to resolve the mesh

distortion, as the muscle tissue could then avoid “bunching up” at the distal boundary of the
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exterior aponeuroses due to the off-axis contractions. This could also counteract the negative
hydrostatic pressure values seen, if the £5° contraction angles were causing significant positive
stresses in the transverse directions. In this simulation, the muscle contractions (aponeurosis
contractions were not input for this run) were set along the Z-axis. However, this adjustment did
not yield any useful quantitative results. There was no reduction in mesh distortion seen, and the
straight contraction served to increase the representative pressure output in both To=10kPa and
100kPa simulations, while decreasing the total reaction force along the distal face. As such, this
adjustment did not result in any helpful changes to the simulation results and also moved away
from the true biomechanical process of contraction in the bipennate directions. Therefore, the

straight active contraction should not be pursued any further.

10.  DISCUSSION

Following the completion and analysis of all simulations, a discussion of the overall findings of

the research project and recommendations for the next step in the work were created.

10.1 SUMMARY OF FINDINGS

Jensen’s data showed a strong trend of positive volumetric strain during passive lengthening of
the TA, with typical values between 2-4% but up to 20% or more in some slices. She observed
an increasing trend in volumetric strain in the anterior, medial and distal directions within the
muscle. Go’s data illustrated a very strong correlation between IMP and muscular force. Small
fluctuations in the force data were reflected very closely in the IMP values. The average peak
load measured was 77.331N, and the average increase in IMP over the course of the active

contraction was 3.43kPa.

A mesh convergence study analyzed the average hydrostatic pressure in the muscle material at
the end of the passive lengthening simulation. The fifth mesh resulted in a change in average

pressure of only 1.22% over the fourth mesh, so it was selected for use in the remainder of the
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simulations. Because a further increase in mesh density is likely to result in an even smaller
improvement in pressure accuracy (likely <1% change), this fifth mesh was deemed appropriate
for use in the subsequent portions of this research project. The chosen mesh contained 95114
elements, an increase from the 12734 elements found in the original mesh modeled after that of

Jensen’s experiments.

The passive lengthening simulation shows significant variation in volumetric strain on the
exterior surface, but the distribution is much more uniform in the interior of the mesh.
Significant areas of compressive volumetric strain are seen in the mesh, whereas Jensen’s data
did not show any negative strain (even though her raw mesh values did appear to contain some
compressive strain). These compressive strain regions typically border the stiffer aponeurosis
tissue, suggesting that the skewing of elements connected to the aponeuroses or transverse

compression may result in a decrease in net volume.

Findings gathered from the pressure distributions also support this claim that the stiff
aponeuroses have a significant effect on the simulation results. Positive (compressive) pressures
are seen in the regions between the aponeuroses, again suggesting that the transition between the
stronger components of the model causes a compressive effect on the muscle material between.
Examination of the stress and deformation gradients uncovers the final piece of this theory. The
transverse (X- and Y-directions) stresses show compressive regions between the three sets of
aponeuroses. The Z-Cauchy stress gradient shows how the transmission of the deformation load
does not traverse the belly of the muscle, but rather spans from the distal aponeurosis diagonally
through the muscle tissue to the distal boundary of the exterior aponeuroses. Because of this,
there is no Z-stress seen in the X- and Y- compressive stress regions, and thus the hydrostatic
pressure (sum of principal stresses) becomes compressive in this area. In examining the Z-
displacement contour, the steep diagonal gradient seen in this compressive pressure region
indicates that some relaxation in the muscle tissue is occurring, likely leading to the compressive
stresses. The induced load from displacement is transmitted between the aponeuroses by a

narrow band of muscle tissue. The remaining muscle tissue contains minimal stress in the
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longitudinal direction, but is compressed by the narrowing of the muscle as a result of
elongation. This may explain some of the negligible or compressive volumetric strains seen, as

well as the positive pressures in these areas.

Quantitative slice plots illustrated smaller volumetric strains on average than those seen in
Jensen’s data (0-2% as opposed to 2-4%). However, the FEM simulation data did share some of
the same trends as those found in Jensen’s data. Specifically, all sections have a peak strain on
the medial side of the mesh. Additionally, aside from SIS, the remaining slices show an
increasing trend as one moves from proximal to distal within the model. The hydrostatic and
fluid pressure plots show increased uniformity within the model than the volumetric strain
distribution, mainly in the transverse direction. This indicates that the longitudinal position of a
pressure sensor placed in the TA muscle will have a greater effect on the reading than the

transverse position.

Post-hoc adjustments to the model determined that a reduction in the bulk modulus
approximation could result in favorable changes in the volumetric strain distribution, but this
should be done after fixing larger issues with the model. The biphasic nature of the constitutive
model is critical for providing compressive stiffness, and should not be removed. The use of
quadratic elements could provide an additional level of accuracy within the model, but 2™ order
shell elements are not yet supported by FEBio. Decreased shell thickness of the aponeurosis

elements did not significantly affect the results.

The active contractile simulations effectively model a contraction by pulling the distal and
proximal regions of the model towards the center of the mesh. The distal region of the mesh
experiences greater deformation since less of the stiff aponeurosis tissue is modeled there. The
hydrostatic pressure during contraction is generally negative (expansive). This is because, due to
the isometric nature of the contraction, the muscle is actually in tension as the stress is generated,
causing a tendency to increase in volume. The muscle fibers must support a stress during these

simulations because they are actually generating the contraction, so the Z-stress distribution is
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much more uniform than that of the passive lengthening simulations. Reaction force readings
were clustered densely around the nodes of the distal aponeurosis that intersect the distal face.
This is because the stiffness of the aponeurosis material dwarfs that of the muscle, meaning it
sustains much more of the load induced by the contraction stress. Increasing the effective stress
level above 100kPa results in distortion of the mesh around the distal boundary of the external
aponeuroses as the muscle fibers try to contract out around them. This is not anatomically

realistic, and several attempts were made to remedy this.

Within the active contractile simulations, the most accurate reaction force reading was found at a
stress level of 104kPa (77.315N), while the most accurate hydrostatic pressure magnitude was
found at the 6.8kPa stress level (3.444kPa) and at 20kPa stress for the fluid pressure (3.492kPa).
These findings suggest that fluid pressure was a better measure of IMP than hydrostatic pressure
for this simulation. However, the fluid pressure reading was still significantly higher than the

value seen in literature. This is consistent with findings from ongoing lapine simulations as well.

Of the post-hoc adjustments made in the active contractile simulations, the addition of contractile
aponeuroses was the most beneficial. This adjustment lowered pressure readings while
increasing the reaction force — the desired directions for both variables. This should be pursued
further in future work. However, switching to a straight longitudinal contraction resulted in the

opposite response, so it will not be analyzed any further.

10.2  RECOMMENDATIONS

This research project is the first foray into FEM simulations of the human TA model for the IP
research group as all previous work has been done using lapine tissue. Because of the
preliminary and exploratory nature of the work discussed here, perhaps the most important part
of this project is generating useful suggestions and the direction for the next round of work to be

completed. These recommendations, a total of 20, are discussed in this section.
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10.2.1 MESH

The stiff aponeurosis elements are positioned around the exterior of the proximal face, but bisect
the distal face. Because of this, the deep regions of muscle tissue did not sustain any stress in the
passive simulations. Furthermore, the full reaction force was centered around the distal
aponeurosis in the active simulations. Increasing the aponeurosis shell elements to cover the
proximal and distal faces could induce greater strain in the muscle tissue without sacrificing
anatomical correctness within the model. A similar change could use graduated aponeurosis
thickness that decreases as one moves towards the center of the model or towards the extremes of
the part regions. Although there is no concrete evidence for this, it is unlikely that the
aponeuroses remain constant thickness until their termination within the muscle. Additionally,
the longitudinal length and transverse width of the aponeuroses (especially the exterior ones)
could be varied or decreased to study changes in the results. Doing this might put more load
requirements on the muscle tissue, thus potentially increasing strain values. Either way, the
interactions between aponeuroses and muscle tissue should be investigated with more depth, as
this is the key to understanding the strain distribution within the FEM model. The lapine FEM
model only contains aponeuroses at its proximal and distal ends in accordance with lapine
anatomy; no aponeurosis tissue extends towards the center of the model. Therefore, the loads
and stress must be transmitted by the muscle tissue. A final suggestion, in limbo for the moment,
would be to use quadratic elements for greater accuracy at such time when FEBio begins to

support 2" order shell elements.

10.2.2 SIMULATION PARAMETERS

Recommendations for the simulation setup begin with more complete analysis of the human
experimental data. The raw data from Jensen’s study should be acquired and analyzed further to
look for compressive strains seen within the model, especially in the posterior regions as shown
in her figures. Go’s active contractile study is ongoing, and as such the data can be appended
when more experiments are conducted to gain robustness in the benchmark data. Similarly, Go

mentioned that the pressure sensor tended to migrate distally within the muscle during her
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experiments. If a more concrete position metric can be acquired, this will increase the accuracy
of the IMP modeling approach, as the pressure distributions vary greatly in the longitudinal

direction.

Within the FEM simulations, the full active contraction protocol can be followed if desired (the
initial relaxed state, ramp of force, and relaxation phase). However, this will complicate the
active contraction module within the FEBio material designation due to the initial hold phase.
Finally, attempts should be made to revise the mesh distortion seen at the distal boundaries of the
external aponeuroses. This may require revising the constitutive model (discussed below), but

could also be done by adjusting simulation parameters.

Eventually, once accurate data can be compiled for this simple FEM simulation, greater depth
should be added to the model through the inclusion of more surrounding tissues, such as fascia
and the tibia. The disparity in volumetric strain readings between Jensen’s data and the FEM
simulations indicates that some mechanism of the physical stretching is not addressed properly in
the FEM model. Perhaps the muscle is constrained more on its exterior to allow longitudinal

stretching without significant narrowing in the transverse direction.

10.2.3 ANALYSIS

There are small strain artifacts seen in the passive lengthening data, specifically on the exterior
of the model. Jensen mentions removing a fraction of the exterior MRI data to resolve artifacts
before gathering slice data, and the same process could be done with the mesh. This is especially
apparent at the longitudinal extremes of the model, likely due to the boundary conditions
imposed there. Further examination should be conducted on the compressive volumetric strains
seen in the passive lengthening models, as these differ significantly from the experimental data.
This could be done with greater slice density, using half slices divided transversely, or with a

different approach.
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The elements in the representative pressure regions sampled in the active contractile data were
manually selected within PostView. This may have induced a small variation in the data as a
different number of elements was selected each time. However, the number of elements was
kept within +1% of the mean at all times to avoid the introduction of significant human error. A
workaround for this issue would involve selecting a list of elements in the region in the model’s
unstressed state, then rerunning the simulation to output the pressures in these specific elements.
Finally, experimentation should be done with various combinations of hydrostatic and fluid
pressure to determine the best match to IMP. This can be done in tandem with the same work in

other models, such as the previous lapine data in the research group.

10.2.4 CONSTITUTIVE MODEL

There is a second type of active contraction available within FEBio. This involves inputting
maximum calcium ion concentrations as well as optimal muscle fiber length, among other
parameters. This simulation was not conducted for this research project as it is a logical second
step after the first prescribed active contraction. The active contraction used in this report treats
the muscle as a single sarcomere for each contraction direction. While this is certainly not
anatomically accurate, it does offer a good foundation for future work in active contractile
simulations for the model. Contractile aponeuroses showed promise for pushing the model
towards more accurate results, so this theory should be pursued in future iterations. Similarly,
decreasing the bulk modulus approximation for the muscle material also proved potentially
worthwhile, but only after addressing larger disparities between the model and reality.
Additionally, if human muscle testing data can be gathered to show mechanical testing of the TA
model in a controlled environment, this data can be used to more accurately fit the constitutive
model to the human model for TA simulations. Overall, the aponeurosis tissue seems to be
modeled with an excessively high stiffness. During passive lengthening virtually no portion of
the model stress was transmitted through the belly of the muscle. This suggests that adjustments
in the material stiffness should be made to correct this issue. Further out, perhaps a graduated
stiffness could be applied to the aponeuroses to model their assimilation into the muscle tissue.

The extremes of the aponeuroses, both longitudinally and transversely, could have a lower
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stiffness than elements in the center of the tissue. This would provide smoother transitions
between the connective tissue and the muscle body, and likely more accurate results with less

distortion of the mesh.

11.  CONCLUSIONS

This research project served as an introduction of a muscle material constitutive model,
previously only used in lapine work, into a mesh of a human tibialis anterior muscle and the
relevant connective tissue. Human experimental data was analyzed and used as a benchmark for
passive lengthening and active contractile simulations. A functional FEM model was
constructed to conduct passive stretching simulations, and an active contraction module was
added to the material designations in order to achieve isometric contraction. Over 50 unique
FEM simulations were conducted to analyze different aspects of the muscle model and make
initial adjustments in a push towards greater accuracy in the results. Volumetric strain,
hydrostatic pressure, fluid pressure and reaction forces were analyzed during post-processing and

output in a thorough graphical and quantitative analysis.

Analysis of the simulations indicates relatively lower volumetric strains seen in the model than
Jensen’s experimental data, on average. A mechanism for passive stretching and active
contraction was theorized, with the aponeuroses bearing the majority of the load due to their high
stiffness. Compressive volumetric strains seen in the passive lengthening data are believed to be
due to transverse narrowing of the tissue as it lengthens occurring in tandem with the skewing of
elements that directly border the exterior aponeuroses. Fluid pressure seems to have a stronger
correlation with known IMP values than hydrostatic pressure, which conforms to current theories
within the IMP research group. Fluid pressures for the active contractile simulations were higher

than expected, likely owing to the stiffness of the aponeuroses being greater than necessary.

For a first attempt, good success was achieved in the similar trends seen in data from both

simulation types. The results that did not match human data can be explained via investigations
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into the contours of various parameters within the model, such as stress and displacement values.
A complete list of recommendations for the model was compiled and listed in the discussion to

be used in future iterations of this research project.

Looking back at Section 1.4, both goals for the project have been accomplished. Experimental
data was analyzed, and a quality mesh was setup to conduct both passive and active simulations
of the human tibialis anterior muscle. The results of these simulations were compiled and
analyzed, and correlations were drawn between the results of this work and those of the
experimental data from the Mayo Clinic. Disparities between the results were explained using
the mechanics of the simulation, and preliminary adjustments were made to the mesh. Overall

findings were discussed, and suggestions for future work provided in a concise manner.
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