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ABSTRACT
Drawing on techniques used in the computer graphics field of ray

tracing, an efficient algorithm for tracing particles in large, arbitrary
geometries containing nonparticipating media is presented. An efficient
intersection algorithm for arbitrary triangles and/or convex planar
quadrilaterals is discussed in detail. Several techniques used in ray trac-
ing to limit the number of surfaces tested are discussed and the method
of uniform spatial division (USD) is implemented. The “mailbox” tech-
nique is also covered. To determine the efficiency of the intersection
algorithm, and USD, timing results are presented for a number of dif-
ferent spatial divisions for four geometries containing between one
thousand and five thousand surfaces each. For USD, speedups in trac-
ing time exceeding a factor of eighty are observed. 

1 INTRODUCTION
The modeling of radiative heat transfer is a particularly challeng-

ing subject. Since radiation involves “action at a distance,” every sur-
face and volume of media in a geometry can affect every other surface
and volume. Geometries can be very complex. Furthermore, surface
properties are often a function of angle and media properties often are a
function of wavelength. Few methods are versatile enough to handle
problems this complex. One proven method is the Monte Carlo method
(Haji-Sheik, 1988; Modest, 1993). 

In radiative Monte Carlo, results are obtained by tracing a statisti-
cally large number of bundles or “photons” of energy. Statistical rela-
tionships are used to model the emission, absorption, reflection,
transmission and scattering of these bundles. Although the method is
very versatile, it is also very computationally intensive, since most sim-
ulations involve tracing millions or even billions of photons. While
Monte Carlo methods are becoming more feasible with today’s more
powerful computers, it is still very important that Monte Carlo tracing
be as efficient as possible. 

The main focus of this paper is the modeling of complex geom
tries using the Monte Carlo method. Most published radiative Mo
Carlo work employ simple geometries such as slabs and cubes; t
are few published routines to handle arbitrary, complex geometr
Chin et al. (1989; 1992) have covered several Monte Carlo issues,
ticularly applying Monte Carlo to finite element meshes. Farmer (19
has also discussed using Monte Carlo to simulate arbitrary geome
constructed using finite element meshes. In addition, Henson e
(1996) do discuss some techniques for improving the speed of Mo
Carlo routines. Several generalized radiative Monte Carlo programs
exist, for example, TSS (Panczak, 1989) and MATRAD (Koeck, 198
Still, except for the above references, we have found nothing publis
about these and other such codes’ algorithms. 

One generalized algorithm discussed in detail has been im
mented in the code MONT3D (Maltby, 1987; Burns et al., 199
Maltby and Burns, 1991; Zeeb et al., 1999), which simulates radia
transfer in geometries with nonparticipating media. The code has b
used extensively for more than a decade by Lawrence Liverm
National Laboratory (LLNL) and other sites. The output of the code
a radiative exchange factor matrix output by MONT3D which is us
as input to thermal analysis codes, particularly TOPAZ3D (Shap
1985). Geometries with 14,000 or more surfaces have been mod
and the current trend is to model even more complex geometries.
code has been independently validated theoretically and verified ex
imentally.

This paper discusses the latest improvements made in the ph
tracing algorithm. This paper differs from most previous works in th
techniques from the field of computer graphics are incorporated.
pointed out by Rushmeier (1993), while much of the early work 
computer graphics simply borrowed from heat transfer, compu
graphics has matured sufficiently that some of the techniques use
computer graphics can be used to improve heat transfer calculatio
especially true for ray tracing. While Henson et al. (1996), and parti
larly Panczak (1989) have also addressed this topic, this paper co
1
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many aspects not touched in those papers. Since Monte Carlo calcula-
tions are computationally intensive, the emphasis here is to present an
algorithm that allows arbitrarily complex geometries but is computa-
tionally efficient. 

Timing results are shown for four geometries ranging from one
thousand to five thousand surfaces which demonstrate the efficiency of
the new algorithm, particularly the USD algorithm. This in-depth study
allows recommendations to be made about optimally applying USD to
large radiative geometries. 

2 SURFACE GEOMETRIES
For the algorithms described below, it is assumed the geometry is

defined in a global Cartesian coordinate system from node points that
are input by the user or generated using a grid generation program such
as TrueGrid (XYZ, 1997). Surfaces are defined by specifying four node
points and an unique surface number. The types of surfaces modeled
are either triangles or convex quadrilaterals as shown in Fig. 1. Surfaces
must be planar. If the four nodes of a quadrilateral are not coplanar to
within a small tolerance, the quadrilateral is divided into two planar tri-
angles. Results for the two triangles are combined before output so the
division is transparent to the user, providing a simple way to handle
non-planar surfaces deriving from round-off error or mismatched
nodes. Mismatched nodes can occur when a complex geometry is gen-
erated in several parts and then “patched” together. The orientation of
the surfaces follows the right-hand rule, so the surface normal, which
determines the direction of emission, always points outward as the sur-
face is traversed in the direction of increasing node number. Surfaces
are one-sided; the “back” side, which is opposite the surface normal,
does not emit or interact with photons. 

3 CALCULATING THE INTERSECTION DISTANCE TO A
PLANE

In all Monte Carlo simulations, most of the work is spent deter-
mining which surface a photon hits. This calculation is the starting
point of our discussion due to its importance and also because it is the
basis for all intersection routines. For our algorithm, there are two parts
to the calculation: 1) finding the distance to the plane that contains the
polygon, and 2) determining if the intersection point with the plane is

inside the polygon. The first part is covered in this section; the sec
part is covered in the next section. The previous version of the tra
algorithm used an intersection routine with many similarities to t
one. The major difference is that while the current algorithm focuses
calculating the distance to intersection, ti, the previous algorithm
focuses on the point of intersection, Ri,which requires more calcula-
tion.

Intersections with planar surfaces are common in ray tracing
the formula for the intersection with a plane is covered in many 
tracing tutorials. A particularly good discussion is given by Hain
(1989). Defining the origin of the photon as R0 = (X0, Y0, Z0) and its
unit direction vector as E = (EX, EY, EZ), the equation for the position of
the photon, R, is given by:

(1)

where t is the distance the photon has travelled. The equation for
plane which contains the polygon is given by:

(2)

The unit surface normal for the plane (and the polygon in the pla
Np, is equal to (A,B,C) and D is the distance from the origin of the sys
tem, (0,0,0), to the plane. Inserting Eq. (1) into Eq. (2) and solving
ti, the distance to the intersection with the plane,

(3)

Np and D are stored for each surface during preprocessing, and R0 and
E are calculated every time a photon is emitted, reflected, or trans
ted. 

The calculation above can be done most efficiently in steps. 
1. Calculate vE.
2. If vE is greater than or equal to 0, the photon is incident from 

back of the surface (see Fig. 2 (a)), the intersection poin
rejected and no further calculation for this surface is needed.

3. Calculate v0.
4. If v0 is greater than or equal to 0, the photon must travel ba

wards from the photon origin to strike the surface (see Fig
(b)). Therefore, the intersection is rejected and no further cal
lation for this surface is needed.

5. Calculate ti using Eq. (3).
Step 2 is referred to as “backface culling.” As mentioned in S

tion 2 and shown in Fig. 2, only the “front” of a surface emits or int
sects photons and the “back” side is inside the surface itself. I
properly defined geometry, no photons will intersect the back side
all interactions with that side are ignored. Steps 1 and 2 only req

Figure 1 Radiating Surface Geometries
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three multiplies, two additions, and one compare, and, on average,
cause about half the surfaces tested to be rejected.

If transmittance is modeled, an extra step must be added to the
algorithm. When a photon is emitted (or reflected) from a surface, that
particular surface is never selected as the next intersecting surface
because it will always fail the backface culling test. On the other hand,
if the photon is transmitted, then that surface will always pass that test.
Furthermore, due to round-off error, the transmitting surface may also
pass through step 4 and appear to have a very small, positive ti value.
Therefore, if transmission is modeled, an extra check is required to
make sure that the previous intersecting surface itself is not chosen as a
valid intersection point. Since transmission is rarely modeled, this test
is usually done last. 

4 POINT-IN-POLYGON TEST
Once a valid distance, ti, is found from step 5, a check must be

made to ensure that the point is within the polygon. A rather complete
study of point-in-polygon strategies has been done by Haines (1994).
Since our polygons are convex and have only three or four sides, the
exterior-edges algorithm has been chosen for the point-in-polygon test.
Within the uncertainty in Haines’ test results, this test is as fast as any
other, and was chosen over the others he discussed because it requires
less storage and is easier to implement.

In the exterior-edges test, the half-plane test is performed on all
edges of the polygon. The half-plane test requires a “bounding” plane
for each edge that is perpendicular to the polygon’s surface and
includes that edge. From Eq. (2), the “bounding” plane is defined by
the normal NPH = (AH, BH, CH) which points into the surface, and the
distance, DH. For the intersection point, Ri, if (Jeger and Eckmann,
1967):

(4)

then the point is outside that edge of the polygon and is rejected. The
test is performed for each edge of the polygon. As soon as the point

fails any test, it is rejected. The constants AH, BH, CH, and DH are cal-
culated for each surface in the preprocessing (input) stage.

Haines (1989, 1994) suggests to project the polygon and the
point into two dimensions. This saves a floating point add and mult
for each half-plane test. The simplest way to project the problem 
two dimensions is to discard one of the X, Y, or Z coordinates. The area
of the polygon is not preserved but the topology is. The best coordi
to throw away is the one whose magnitude in the polygon’s surface 
mal, Np, is the greatest. NPH and DH must be calculated in this two-
dimensional plane using the new two-dimensional coordinates. W
the current version of the intersection algorithm implements this tw
dimensional test, the previous version uses the three-dimensional f

5 LIMITING THE SEARCH
Every time a photon is emitted, reflected, or transmitted, the n

surface it strikes must be found. Since the time to trace each ph
increases linearly with the number of surfaces, it is obvious that g
improvements in efficiency can be gained by reducing the numbe
surfaces that need to be tested. Reducing the number of surface in
tion calculations has been a topic of extensive study in the field of
tracing. A good overview of the general techniques applied to this pr
lem are given by Arvo and Kirk (1989). Of all the techniques review
two general techniques are the most promising: bounding volumes
spatial subdivision. A discussion with a different perspective on app
ing ray tracing techniques to radiative Monte Carlo can be found
Panczak (1989).

The bounding volume technique reduces the number of inters
tion calculations by surrounding all the objects in the scene w
bounding volumes. The bounding volumes are chosen to be sim
objects such as spheres and cubes so that intersection calculation
them are swift. The object or objects inside the bounding volume n
only be checked if the bounding volume is intersected. According
Arvo and Kirk (1989), when a hierarchy of bounding volumes is us
the complexity of the intersection calculation is proportional to the lo
arithm of the number of objects. If the bounding volumes are not u
in a hierarchy, the time for the intersection calculations is reduced b
still linear with the number of objects. Since the polygon intersect
calculations described above are so simple, bounding volumes sh
contain collections of polygons. Devising a good way to define bou
ing volumes for groups of arbitrary surfaces would be difficult a
probably not add much to the efficiency of the program. 

The other promising technique is three-dimensional spatial sub
vision shown in Fig. 3. For this technique, instead of placing bound
volumes around objects, the volume bounding the geometry is p
tioned. Space is usually divided into axis-aligned rectangular pris
which are referred to as voxels (a three-dimensional version of a pix
By aligning the voxel planes with the axes, computations are sim
fied. The photon is then traced from voxel to voxel. A check is ma
only inside each voxel to determine if any of the surfaces inside it 
intersected. The search stops once the closest intersection within
current voxel is found. This reduces the number of intersection calc
tions in two ways. First, only surfaces in voxels along the photon p
are checked. Second, since voxels are traversed in order, surfac
voxels further from the origin of the photon are checked only if 
intersection is not found in an earlier voxel. For large geometries,
reduction in search time can be very significant.

Figure 2 Conditions to Invalidate a Potential Intersection
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It should be noted that if an intersection is found outside the cur-
rent voxel, it must be rejected, as it is possible that the photon might
strike another surface which, while not in the current voxel, contains an
intersection point between the current voxel and the rejected intersec-
tion point. For example, in Fig. 3, the photon is traced from its point of
emission in voxel VA through voxel VB to its intersection point in voxel
VC. In voxel VB, the potential intersection point on surface S2 will be
found, and must be rejected because the intersection point is outside the
voxel. The true intersection point on surface S1 will be found only after
the photon enters voxel VC.

Arvo and Kirk (1989) classify spatial subdivision into two general
categories: non-uniform and uniform. In non-uniform subdivision,
space is discretized into regions of various sizes to allow the voxel den-
sity to be greater where the surface density is greater. Two of the most
popular examples of this technique are the octree (Glassner, 1984) and
the binary space partition (BSP) tree (Kaplan, 1987; Sung and Shirley,
1992). Octrees are created by recursively dividing a rectangular volume
around the geometry into eight subordinate octants until the resulting
“leaf” voxels meet some criterion for stopping such as a certain maxi-
mum number of surfaces per voxel. A BSP tree, on the other hand, is
formed by partitioning space at each level of the tree into two pieces
using a separating plane. While the planes are often aligned with the
coordinate axes, they do not have to be (Chin, 1995).

While both the octree and the BSP tree store the geometry infor-
mation efficiently, moving from voxel to voxel within the tree requires
some calculation. Uniform spatial division (USD) (Fujimoto et al.,
1986; Amanatides and Woo, 1987; Cleary and Wyvill, 1988) consti-
tutes another approach. In USD, a regular three-dimensional grid of
voxels of uniform size is placed over the geometry. While not dividing
the geometry as efficiently as the above two methods, the “next” voxel
can be found by fast incremental calculation. More voxels are usually
traversed in USD but the cost of traversing the voxels is less. 

Other methods do exist, for example, see Sung (1991). His method
and most others are just combinations and variations of the octree, BSP
tree, and USD methods mentioned above. 

Using too many voxels can create inefficiencies. To search the 
faces inside each voxel quickly, a list must be made for each voxe
surfaces completely or partially inside it. As the number of vox
increases, the memory required for these lists and the time require
generate these lists increases. Also, it must be remembered that su
intersections outside the voxel must be rejected. If voxels are too sm
surfaces will span several voxels and several intersection calculat
for a surface will have to be rejected until the voxel with the inters
tion is entered. One way to avoid these repetitive calculations is to k
track of past intersection calculations. This is termed the “mailbo
technique and will be discussed below. It should also be noted th
the grid is too fine, time spent traversing the voxels will be significa
This can be a particular problem when using USD because the num
of empty voxels generally increases with the number of voxels. 

Although some comparisons of the two methods have been d
it is not clear which of the methods is the most efficient; differe
geometries have been used for each test. Since geometries can
widely, each method does better on some geometries than others. 
and Shirley (1992) have found that axis-aligned octrees and BSP 
give similar performance. Fujimoto et al. (1986) found that, for t
sample problems he did, USD was an order of magnitude faster 
octrees. Both the octree (Panczak, 1989; Chin et al., 1992) and U
(Koeck, 1988) methods have been implemented in radiative heat tr
fer Monte Carlo codes, but no comparison of the benefits of the 
methods has been made. 

The general consensus about USD is that it works well 
requires a lot of memory. In fact, this is one of the major complai
against the method (Sung and Shirley, 1992). Sung (1991) comp
USD to various octree methods. In the one case where there 
enough memory for the number of voxels USD required, it outp
formed all other methods.

In this work, USD is chosen for two reasons. First, a version of 
USD called the Margolies algorithm (Maltby, 1987; Burns et al., 199
Maltby and Burns, 1991) has already been implemented in MONT
This algorithm has been used for years, has worked well, and 
proven very robust. Still, there is room for improvement. As pointed 
above, photons under USD usually traverse more voxels than in
octree and BSP methods. Therefore, for the USD method to be m
efficient than the octree and BSP tree method, the algorithm that d
mines the next voxel to enter must be very efficient. The next sec
describes an improved algorithm that is quite different from the o
used earlier. Again, the major difference is that the previous algori
stressed calculating the intersection point with the voxel boundar
while the new algorithm only calculates the intersection distance to
voxel boundaries. 

Secondly, as long as enough voxels are used to keep the ave
and maximum number of surfaces per voxel low, USD appears to
the best algorithm. As shown in the results below, with more mem
capacity available today, USD is definitely feasible. While Sung (19
has shown that USD can be inefficient for geometries with extrem
uneven distributions of surfaces, it is not expected that these type
geometries are common in radiation problems. For that to occur,
size of the surfaces would have to vary by several orders of magnitu

The Margolies algorithm is actually a variant of USD because
does not require uniform voxels; it also allows the use of a non-unifo
grid in which the grid is still divided into rows and columns, but th
spacing between X, Y, and Z divisions is variable. An example is show

Figure 3 Example of a Non-uniform Grid
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in Fig. 3. More about the advantages and disadvantages of non-uniform
grids will be discussed below. 

6 THE VOXEL TRACING ALGORITHM 
This section outlines the algorithm for tracing using uniform or

non-uniform grids. A less detailed description of the use of USD in
radiative Monte Carlo is given by Koeck (1988). As shown in Fig. 3,
whether the grid is uniform or non-uniform, the grid has NGCMAXi
voxels along each axis and NGCMAXi + 1 grid planes along each axis
where i equals {1, 2, 3} for the {X, Y, Z} axes, respectively. 

The key to the speed of the algorithm is that since the voxel
boundaries are aligned with the axes, it is very easy to determine the
next voxel to be entered. Although there are six sides to a voxel, only
three sides, indicated by photon direction, have to be checked. Also,
since all the voxel sides intersect, the side the shortest distance from the
photon’s origin is guaranteed to be the side that is intersected. Further-
more, due to the fact that the voxel sides are aligned with the axes, DGi,
the distance to intersect a voxel side along each axis can be derived
from the “distance to a plane” equation in Section 3, and has the fol-
lowing form:

(5)

where j is the index of the next voxel plane the photon will cross along
the ith axis, and GC is the coordinate along the ith axis for that plane. If
the grid is uniform, then DGBi, the distance between grid boundaries
along an axis, is constant. Therefore, for uniform grids, while the first
value of DGi must be calculated using Eq. (5), for subsequent voxels
DGi can be updated by using the equation (DGBi may be negative): 

(6)

The basic algorithm is simple. 
1. Determine the emitting voxel cell and first GCi,j values. For

non-uniform grid divisions, these are found by bisection and for
uniform grid divisions by direct interpolation. 

2. Calculate DGi for each axis at the photon emission point.
3. Determine the minimum DG value.
4. Search for the shortest distance to intersection within the voxel.

All surfaces even partially inside the voxel must be checked. To
increase the efficiency of this search, the search is done over a
precomputed list which specifies the surfaces in each voxel. 

5. If no intersection is found, determine the next voxel to enter by
the minimum DG value and the direction of E, update the value
of DGi along the axis traversed, and go back to step 3. 

When testing for intersection points inside a voxel, once a valid
intersection point is found, any intersection points further from the
emission point than the current one are automatically rejected. If
TOLD, the current shortest distance to intersection, is stored, the point-
in-polygon test may be skipped by any surface with a ti value greater
than TOLD. When entering a voxel, TOLD should be initialized to the

minimum value of DG required to exit the voxel (at step 3 above). Th
will automatically reject any intersection points outside the voxel. 

Since there are often many empty voxels, it is important that b
the intersection calculations and the voxel traversal algorithm be co
as efficiently as possible. Several authors suggest coding the grid
versal so that it only uses integer arithmetic (Fujimoto et al., 19
Amanatides and Woo, 1987; Cleary and Wyvill, 1988). However, n
only will this give a minimal speed improvement, if any, it als
increases the possibility of precision errors. It should be noted that e
for moderately sized geometries, photon tracing must be coded in 
ble precision or round-off errors become significant.

As noted above, the use of non-uniform spaced voxels makes
DGi calculation less efficient. This may make one wonder why no
uniformly spaced grids are desirable. The reason is that if enoug
known about the geometry, voxels can be enlarged where there are
surfaces and shrunk where there are many, improving the efficienc
the algorithm. However, the usefulness of this type of grid resizing
limited. Enlarging or shrinking one voxel will affect all voxels alon
one or more coordinate directions. Furthermore, there is no easy w
choose a non-uniform grid a priori. In general, the user would probabl
get more benefit from an optimized uniform grid code than one t
allows non-uniform divisions. 

7 MAILBOXES
One of the problems with spatial subdivision is that no record

kept of past calculations. If a surface exists in several voxels, the s
intersection is calculated repeatedly. To prevent this, “mailbox
(Amanatides and Woo, 1987; Cleary and Wyvill, 1988; Arvo and Kir
1989; Sung, 1991; Sung and Shirley, 1992) are used to store past c
lations. Each surface has a “mailbox” that holds the results of the ca
lations and a photon counter value that indicates the last time th
calculations were done. The photon counter is incremented by one 
time a photon is emitted, reflected, or transmitted. When the inter
tion calculation is performed for a surface, the first step is to comp
the value of the counter in the mailbox to the current counter. If the 
are equal, then the intersection in the mailbox is used, instead of b
recalculated. 

It should be noted that Sung (1991) found several cases in w
mailboxes increased execution time. He notes that mailboxes are
cient only if most objects span more than one voxel. In particular,
suggests that, for the mailbox algorithm to be efficient, the object
the scene must be larger than the voxels. 

The mailbox algorithm is implemented here using two one-dime
sional arrays of length number of surfaces, one for the distance to
intersection and the other for the last value of the photon counter
implement the mailbox algorithm, only minor changes are required
the loop over surfaces in a voxel. The first change is that, for each
face, the first step is to compare the value of the photon counter st
for the surface to the current value. If the counter values do not ma
then the algorithm is the same as before, except that the two 
dimensional arrays are updated for each intersection calculation. If
values do match, then the distance to surface has already been c
lated. In this case, the distance is compared to TOLD. If it is less than
TOLD, the point-in-polygon test is performed. Otherwise the surface
rejected. It should be noted that if a surface fails any of the tests ex
the comparison to TOLD, then the distance to intersection is set to

DGi GCi j, R0 i,–( ) Ei⁄=

DGi DGi DGBi+=
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very large number, insuring it fail the comparison to TOLD above the
next time it is encountered.

The mailbox algorithm was tested on a number of large geome-
tries (1,000 to 5,000 surfaces) and grid resolutions. It was found that
the mailbox technique increased the run time in all cases. For the types
of simplified surfaces and complex geometries usually modeled by our
algorithm, the mailbox technique is not effective.

8 GRID TRACING RESULTS
To assess the improvements mentioned above, four geometries of

varying complexity are tested. Several different discretizations are
tested, in hopes of determining some guidelines in selecting the optimal
grid for a geometry. Besides showing the overall efficiency of the cur-
rent algorithm compared to the previous one, these large geometries
demonstrate the power of USD. Earlier tests of USD with small geome-
tries (143 surfaces or less) found that USD decreased run time by a fac-
tor of 2 to 5 (Burns et al., 1990; Maltby and Burns, 1991). As will be
shown below, the reductions in run time are much more significant for
larger geometries. 

8.1 Geometries   

Four geometries were used: cham, ampa, ampb, and gun. They are
described below. 

Cham is a model of the National Ignition Facility (NIF) target
chamber containing 1,382 surfaces. It is a medium-sized geometry,
shown in Fig. 4. The front section of the sphere is removed to show the
inner detail. NIF (http://lasers.llnl.gov/lasers/nif.html) is currently
under construction and will contain 192 extremely powerful lasers
allowing research in inertial confinement fusion and other related top-
ics. A discussion of the modeling of this chamber by TOPAZ3D is
given in Raboin (1998).

Ampa and ampb are geometries representing the NIF laser ampli-
fier assembly as shown in Fig. 5. The front wall and symmetry plane
across the top of the geometry have been removed to show the inner

detail of assembly. Ampb, with 4,581 surfaces, is a more detailed re
sentation than ampa, with 3,381 surfaces. More details about the m
eling of this geometry are given in Sutton et al. (1998). 

Gun, shown in Fig. 6, models the radiation coupling between 
outer parts of an electron gun. The gun is enclosed to capture esca
photons. The gun is symmetric and is modeled as a wedge from 
60˚. The edges of the wedge are modeled as specular symmetry pl
This geometry has 4, 580 surfaces; one less than ampb. 

8.2 Test Description
In all tests below, surfaces are black, as using reflecting or tra

mitting surfaces would just obscure observations about the pho
intersection algorithm. Unless otherwise specified, all times given 
solution times. 

For testing, the geometries are “gridded” using approximat
cubical voxels. A different number of photons are emitted for ea
geometry depending on the number of original surfaces and the num
of photons per original surface as shown in Table 1. The cham and
geometries have non-planar surfaces that are split into two triangle

Figure 4  Cut-Away View of the Chamber Geometry

Figure 5  View of the Amplifier Geometry

Figure 6  View of the Gun Geometry
6
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described in Section 2. Each triangle is treated as a separate surface by
the intersection routine, so the efficiency of the intersection routine
depends on the total number of surfaces. 

All tests were performed on a 233 MHz 604e PowerPC chip run-
ning Macintosh OS 8.0. The Absoft f77 compiler was used. Timings
among repeated runs differed by 5% at most, and typically by less than
1%. To obtain accurate timing for the photon tracing only, a modified
version of the code, which does not write output files, is used for all
results.

8.3 Determining the Optimal Grid
While we have used USD in the past, there has been no in-depth

study of its application to large-scale geometries. The purpose of this
section is determine the efficiency of USD for large geometries and
determine guidelines in selecting grids. 

Execution times versus numbers of voxels for the current al
rithm for the four geometries are given in Figs. 7 and 8. The cur
marked “solution” are the solution times for the algorithm and tho
marked “input” are the input times for the algorithm. The curves 
very flat around the optimal grid. In fact, it is hard to specify one grid
“optimal.” As stated above, the uncertainty in the results is about 5
For each geometry, there are several points that are within 5% o
minimum value, yielding a range. Several statistics for the optimal g
range are given in Table 2. The results “min” and “max” are for the
minimum and maximum size grid in the optimal range. The optim
grid range is quite large; the maximum grid size is around three to 
times the minimum grid size. While the optimal grid varies with geo
etry, these results suggest that for geometries of 1,000 to 5,000
faces, a good first estimate of the optimal grid is 15,000 voxels. 

Since determining the next voxel to enter requires less calcula
than the surface intersection calculations, the optimal grid favors fe
surfaces per voxel over fewer empty voxels. For geometries tes
37% to 60% of the voxels are empty when execution time is within 
of the optimal time.

Table 1: Photon Statistics

Geometry Number of 
Original Surfaces

Number of 
Split Surfaces

Total Number of 
Surfaces

Photons Emitted per 
Original Surface

Total Number of Photons
Emitted (Millions)

cham 1,182 144 1,326 20,000 23.64

ampa 3,381 0 3,381 10,000 33.81

ampb 4,581 0 4,581 10,000 45.81

gun 4,297 283 4,580 10,000 42.95

Figure 7 Results the for Ampa and Cham Geometries
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Figure 8 Results for the Ampb and Gun Geometries
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The input times for the code are shown in Figs. 7 and 8. The input
time grows quickly as the number of voxels becomes large. For the
geometries tested this does not present a problem, as in the optimal grid
range, the input time is insignificant relative to the solution time. Fur-
thermore, production runs are much longer than the ones for these tests.
Usually, more photons are emitted per surface, particularly as the num-
ber of surfaces increases. Also, tracing times are longer since reflection
exists. As the number of surfaces modeled is increased further, this may
be a problem, but only future testing can determine this. 

As noted in Table 1, each geometry emits a different number of
photons, so comparing the results can be difficult. For this reason,
Table 3 provides results in time per photon. The “optimal grid” solution
time is the shortest execution time for that geometry. The “no grid”
solution time is the solution time when no grid is used. The “no grid”
case is the same as specifying only one grid cell or voxel, and includes
the insignificant overhead of initializing the voxel tracing routine once
per photon. The other columns in the table are described below. 

The “time not tracing” is the time spent by the solution phase in
activities other than tracing, including specifying the photon emission
point and direction, determining if the photon is absorbed, reflected, or
transmitted and the overhead of the algorithm. If the surfaces are not all

black, this would also include determining the photon’s new direct
after being transmitted or reflected. 

The “time not tracing” was obtained by running the codes with t
intersection routines commented out. While it is difficult to assess h
accurately this measures the time not tracing, similar estimates w
obtained by profiling the code on a RS/6000 workstation. 

The speedup ratios listed in the table are the solution or time s
tracing for the “no grid” case divided by the same result for the optim
grid case. Comparing the “time not tracing” to the optimal soluti
time, it can be seen that only 63% to 82% of the optimal solution ti
is spent in photon tracing. This represents quite an improvement 
the “no grid” solution where 99% or more of the time is spent in pho
tracing. The “time not tracing” appears to be a weak function of 
number of surfaces.

Table 3 indicates that the speedup can exceed a factor of 80 fo
entire solution phase and over a factor of 120 for the intersection ca
lations. However, it would be helpful to quantify the speedup as a fu
tion of the number of surfaces. Cleary and Wyvill (1988) have done
in-depth theoretical analysis of a USD algorithm using a mailb
scheme. They have found that the run time is a complex function 
depends on the number of surfaces, the average times for four diffe

Table 2: Grid Statistics

Geometry Number of Voxels Surfaces per Voxel Number of Empty Voxels Surfaces per Non-empty Voxel

cham min 4,096 2.40 1,521 3.82

cham max 15,625 1.52 7,192 2.82

ampa min 9,216 2.44 3,942 4.26

ampa max 39,546 1.10 23,578 2.73

ampb min 9,216 2.66 4,114 4.80

ampb max 23,958 1.53 13,476 3.50

gun min 15,360 1.52 5,880 2.46

gun max 65,910 0.887 30,084 1.63

Table 3: Current Algorithm Statistics

Geometry CPU Time Per Photon (X10-6 Seconds) Speedup Ratios (No Grid/Optimal) αo

“Optimal Grid” 
Solution Time

“No Grid” 
Solution Time

Time 
Not Tracing

Solution
Time

Tracing
Time

cham 30.6 541 5.51 17.7 21.4 0.574

ampa 15.4 1,020 5.68 66.1 104 0.429

ampb 16.7 1,360 5.72 81.4 123 0.429

gun 18.6 1,370 5.72 73.3 106 0.447
8
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parts of the algorithm, the mean area of the objects, and the mean cir-
cumference of the objects. 

A simplified model that is often used in these cases is the time per
photon, tp, given by:

(7)

where Ns is the number of surfaces. For the “no grid” case, α is 1 since
all Ns surfaces have to be checked. If we assume a is constant for a
geometry and that b is equivalent to the “time not tracing” per photon,
then αo, the value of α for the optimal grid can be determined. As the
table shows, αo lies between 0.43 and 0.57. This is consistent with esti-
mates of the dependence of optimal grid tracing time on Ns derived
from an analytical perspective [Burns and Pryor, 1999].

8.4 Memor y Requirements
Although photon tracing is often performed on large geometries

with thousands of surfaces, its memory requirements are usually not
prohibitive. Ignoring the memory required for the Margolies grid algo-
rithm which will be discussed below, the storage required is on the
order of the number of surfaces. While it is true that the final output, the
exchange number matrix, is number of surfaces squared in size, only a
small block of rows of that matrix are stored in memory at any one
time. For the geometries used in this study of 14,080 nodes, 4,581 sur-
faces and 6 surface materials types, excluding the storage for the
exchange matrix and the uniform grid, only 1.7 megabytes of storage is
required. Storing 200 rows of the exchange matrix in memory at a time
requires about another 3.5 megabytes. If the block size is decreased, the
code must write its results to disk more frequently, thereby increasing I/
O time. For the Margolies grid algorithm, the extra storage required is
around 0.1 megabytes for 10,000 voxels and around 0.7 megabytes for
100,000 voxels. 

8.5 Previous Algorithm Results
To gauge the effectiveness of the algorithm discussed in this paper,

comparisons are made to the previous version of the algorithm (Maltby,
1987; Burns et al., 1990; Maltby and Burns, 1991) which is publicly
available (Maltby et al., 1994; ftp://lamar.colostate.edu/pub/czeeb/

monte). Several runs are performed and some of the results for
older version of the algorithm are given in Table 4. The speedup ra
listed in Table 4 are the solution time or time spent tracing for the 
algorithm optimal grid case divided by that for the new algorithm op
mal grid case. Gathering data from all the runs done, the new algor
is 33% to 45% faster than the old algorithm. Interestingly, the time 
tracing is slightly better for the old algorithm, as new features adde
the code slow it down slightly. The improvements to the voxel trac
algorithm seem to be just as important as the improvements to inter
tion calculations. The timing curves for the old algorithm are similar
shape to the curve for the new algorithm results and exhibit very sim
optimal grid ranges. As mentioned in Section 3, the main differe
between the algorithms is that for both surfaces and voxels the cu
algorithm focuses calculating the distance to intersection, ti, instead of
the point of intersection, Ri. 

9 CONCLUSIONS
An in-depth study has been completed of a Monte Carlo pho

tracing algorithm for large geometries with arbitrary planar surfaces
nonparticipating media. Methods from the computer graphics field
ray tracing have been reviewed and implemented. An efficient a
rithm for determining intersections has been presented. Furtherm
an assessment of ways to further increase the efficiency of the a
rithm has been conducted. Uniform spatial division (USD) was cho
as the most promising technique, based upon its simplicity and ef
tiveness. The mailbox technique was found in all cases to increase
cution times, and is therefore not recommended. Tests were perfor
on four geometries containing between 1,000 and 5,000 surfaces e
For these geometries, the following results were obtained. USD yiel
speedups in run time of factors as great as 81. While the optimal su
vision varies with geometry, execution time varies slowly with numb
of voxels (grid cells). Good results are obtained with 15,000 voxe
The memory requirements for USD were found to be slight; less tha
megabyte of memory was required to store the grid variables for
optimal grids for all geometries tested. The memory requirements
the rest of the algorithm were also found to be slight, between 1.7
5.5 megabytes was required for the largest geometry tested. The cu
photon tracing algorithm discussed in this paper is found to be 33%
45% faster than the previous algorithm. 

t p aNs
α

b+=

Table 4: Previous Algorithm Statistics

Geometry CPU Time Per Photon (X10-6 Seconds) Optimal Algorithm Ratios (Old/New Algorithm)

“Optimal Grid” Solution Time Time Not Tracing Solution Time Tracing Time

cham 53.0 5.31 1.73 1.90

ampa 22.9 5.38 1.48 1.79

ampb 25.7 5.43 1.54 1.84

gun 29.5 5.43 1.59 1.87
9
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