ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/242774673

PERFORMANCE ENHANCEMENTS OF MONTE CARLO PARTICLE TRACING
ALGORITHMS FOR LARGE, ARBITRARY GEOMETRIES

Article - January 1999

CITATIONS READS
3 141

2 authors, including:

P.J. Burns
Colorado State University

48 PUBLICATIONS 701 CITATIONS

SEE PROFILE

All content following this page was uploaded by P.J. Burns on 21 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/242774673_PERFORMANCE_ENHANCEMENTS_OF_MONTE_CARLO_PARTICLE_TRACING_ALGORITHMS_FOR_LARGE_ARBITRARY_GEOMETRIES?enrichId=rgreq-9b68a6d84d699538ddee477e9bcf8a7b-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjc3NDY3MztBUzoyMDkzMDM1OTMwNjY1MDJAMTQyNjkxMzI3MzQ0MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/242774673_PERFORMANCE_ENHANCEMENTS_OF_MONTE_CARLO_PARTICLE_TRACING_ALGORITHMS_FOR_LARGE_ARBITRARY_GEOMETRIES?enrichId=rgreq-9b68a6d84d699538ddee477e9bcf8a7b-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjc3NDY3MztBUzoyMDkzMDM1OTMwNjY1MDJAMTQyNjkxMzI3MzQ0MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9b68a6d84d699538ddee477e9bcf8a7b-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjc3NDY3MztBUzoyMDkzMDM1OTMwNjY1MDJAMTQyNjkxMzI3MzQ0MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pj-Burns?enrichId=rgreq-9b68a6d84d699538ddee477e9bcf8a7b-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjc3NDY3MztBUzoyMDkzMDM1OTMwNjY1MDJAMTQyNjkxMzI3MzQ0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pj-Burns?enrichId=rgreq-9b68a6d84d699538ddee477e9bcf8a7b-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjc3NDY3MztBUzoyMDkzMDM1OTMwNjY1MDJAMTQyNjkxMzI3MzQ0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Colorado_State_University?enrichId=rgreq-9b68a6d84d699538ddee477e9bcf8a7b-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjc3NDY3MztBUzoyMDkzMDM1OTMwNjY1MDJAMTQyNjkxMzI3MzQ0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pj-Burns?enrichId=rgreq-9b68a6d84d699538ddee477e9bcf8a7b-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjc3NDY3MztBUzoyMDkzMDM1OTMwNjY1MDJAMTQyNjkxMzI3MzQ0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pj-Burns?enrichId=rgreq-9b68a6d84d699538ddee477e9bcf8a7b-XXX&enrichSource=Y292ZXJQYWdlOzI0Mjc3NDY3MztBUzoyMDkzMDM1OTMwNjY1MDJAMTQyNjkxMzI3MzQ0MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

PERFORMANCE ENHANCEMENTS OF MONTE CARLO PARTICLE TRACING
ALGORITHMS FOR LARGE, ARBITRARY GEOMETRIES

Charles N. Zeeb and Patrick J. Burns
Department of Mechanical Engineering
Colorado State University
Fort Collins, Colorado 80523
Phone: (970) 491-5778
FAX: (970) 491-1958
czeeb@lamar.colostate.edu and pburns@colostate.edu

ABSTRACT The main focus of this paper is the modeling of complex geome-
Drawing on techniques used in the computer graphics field of ray tries using the Monte Carlo method. Most published radiative Monte
tracing, an efficient algorithm for tracing particles in large, arbitrary Carlo work employ simple geometries such as slabs and cubes; there
geometries containing nonparticipating media is presented. An efficient are few published routines to handle arbitrary, complex geometries.
intersection algorithm for arbitrary triangles and/or convex planar Chin et al. (1989; 1992) have covered several Monte Carlo issues, par-
quadrilaterals is discussed in detail. Several techniques used in ray tracticularly applying Monte Carlo to finite element meshes. Farmer (1995)
ing to limit the number of surfaces tested are discussed and the methodas also discussed using Monte Carlo to simulate arbitrary geometries
of uniform spatial division (USD) is implemented. The “mailbox” tech- constructed using finite element meshes. In addition, Henson et al.
nique is also covered. To determine the efficiency of the intersection (1996) do discuss some techniques for improving the speed of Monte
algorithm, and USD, timing results are presented for a number of dif- Carlo routines. Several generalized radiative Monte Carlo programs do
ferent spatial divisions for four geometries containing between one exist, for example, TSS (Panczak, 1989) and MATRAD (Koeck, 1988).
thousand and five thousand surfaces each. For USD, speedups in tracStill, except for the above references, we have found nothing published
ing time exceeding a factor of eighty are observed. about these and other such codes’ algorithms.
One generalized algorithm discussed in detail has been imple-
mented in the code MONT3D (Maltby, 1987; Burns et al., 1990;
1 INTRODUCTION Maltby and Burns, 1991; Zeeb et al., 1999), which simulates radiative
The modeling of radiative heat transfer is a particularly challeng- transfer in geometries with nonparticipating media. The code has been
ing subject. Since radiation involves “action at a distance,” every sur- used extensively for more than a decade by Lawrence Livermore
face and volume of media in a geometry can affect every other surfaceNational Laboratory (LLNL) and other sites. The output of the code is
and volume. Geometries can be very complex. Furthermore, surfacea radiative exchange factor matrix output by MONT3D which is used
properties are often a function of angle and media properties often are aas input to thermal analysis codes, particularly TOPAZ3D (Shapiro,
function of wavelength. Few methods are versatile enough to handle 1985). Geometries with 14,000 or more surfaces have been modeled
problems this complex. One proven method is the Monte Carlo method and the current trend is to model even more complex geometries. The

(Haji-Sheik, 1988; Modest, 1993). code has been independently validated theoretically and verified exper-
In radiative Monte Carlo, results are obtained by tracing a statisti- imentally.
cally large number of bundles or “photons” of energy. Statistical rela- This paper discusses the latest improvements made in the photon

tionships are used to model the emission, absorption, reflection, tracing algorithm. This paper differs from most previous works in that
transmission and scattering of these bundles. Although the method istechniques from the field of computer graphics are incorporated. As
very versatile, it is also very computationally intensive, since most sim- pointed out by Rushmeier (1993), while much of the early work in
ulations involve tracing millions or even billions of photons. While computer graphics simply borrowed from heat transfer, computer
Monte Carlo methods are becoming more feasible with today’s more graphics has matured sufficiently that some of the techniques used in
powerful computers, it is still very important that Monte Carlo tracing computer graphics can be used to improve heat transfer calculations -
be as efficient as possible. especially true for ray tracing. While Henson et al. (1996), and particu-
larly Panczak (1989) have also addressed this topic, this paper covers

many aspects not touched in those papers. Since Monte Carlo calculainside the polygon. The first part is covered in this section; the second

tions are computationally intensive, the emphasis here is to present arpart is covered in the next section. The previous version of the tracing

algorithm that allows arbitrarily complex geometries but is computa- algorithm used an intersection routine with many similarities to this

tionally efficient. one. The major difference is that while the current algorithm focuses on
Timing results are shown for four geometries ranging from one calculating the distance to intersectiap, the previous algorithm

thousand to five thousand surfaces which demonstrate the efficiency offocuses on the point of intersectid®,which requires more calcula-

the new algorithm, particularly the USD algorithm. This in-depth study tion.

allows recommendations to be made about optimally applying USD to Intersections with planar surfaces are common in ray tracing, so

large radiative geometries. the formula for the intersection with a plane is covered in many ray

tracing tutorials. A particularly good discussion is given by Haines
(1989). Defining the origin of the photon Bg = (X, Yo, Zo) and its

2 SURFACE GEOMETRIES unit direction vector ak = (Ey, Ey Ez), the equation for the position of
For the algorithms described below, it is assumed the geometry is the photonR, is given by:

defined in a global Cartesian coordinate system from node points that

are input by the user or generated using a grid generation program such

as TrueGrid (XYZ, 1997). Surfaces are defined by specifying four node R = Ry+Et 1)

points and an unique surface number. The types of surfaces modeled

are either triangles or convex quadrilaterals as shown in Fig. 1. Surfaces

must be planar. If the four nodes of a quadrilateral are not coplanar to

within a small tolerance, the quadrilateral is divided into two planar tri- ! i L .

angles. Results for the two triangles are combined before output so the'Dlane which contains the polygon is given by:

division is transparent to the user, providing a simple way to handle

non-planar surfaces deriving from round-off error or mismatched

nodes. Mismatched nodes can occur when a complex geometry is gen- Ax+ By+ Cz D= 0 whereAZ + BZ + CZ =1 2

erated in several parts and then “patched” together. The orientation of

the surfaces follows the right-hand rule, so the surface normal, which

determines the direction of emission, always points outward as the sur-the ynit surface normal for the plane (and the polygon in the plane),

face is tra_versed in the dlre_ctlon of_ |nc_reasmg _node number. Surfacesy is equal toA,B,C) andD is the distance from the origin of the sys-

are one-S|dgd; the “back” ;lde, which is opposite the surface normal, tem, (0,0,0), to the plane. Inserting Eq. (1) into Eq. (2) and solving for

does not emit or interact with photons. t;, the distance to the intersection with the plane,

wheret is the distance the photon has travelled. The equation for the

_ ~(AXp*BY(+CZ;-D) D-(N,*Ry) v,

t. = = = — 3)
Ng =N, I AEy +BE, +CE, Np-E Vg
Np

Np andD are stored for each surface during preprocessingRgadd

E are calculated every time a photon is emitted, reflected, or transmit-
N ted.
N 2 The calculation above can be done most efficiently in steps.
1 1. Calculaterg.

(a) Quadrilateral (b) Triangle 2. If ve is greater than or equal to O, the photon is incident from the

back of the surface (see Fig. 2 (a)), the intersection point is
rejected and no further calculation for this surface is needed.
Figure 1 Radiating Surface Geometries 3. Calculatev,.
4. If vy is greater than or equal to 0, the photon must travel back-
wards from the photon origin to strike the surface (see Fig. 2
(b)). Therefore, the intersection is rejected and no further calcu-

3 CALCULATING THE INTERSECTION DISTANCE TO A lation for this surface is needed.
PLANE 5. Calculatg; using Eq. (3).
In all Monte Carlo simulations, most of the work is spent deter- Step 2 is referred to as “backface culling.” As mentioned in Sec-

mining which surface a photon hits. This calculation is the starting tion 2 and shown in Fig. 2, only the “front” of a surface emits or inter-
point of our discussion due to its importance and also because it is thesects photons and the “back” side is inside the surface itself. In a
basis for all intersection routines. For our algorithm, there are two parts properly defined geometry, no photons will intersect the back side, so
to the calculation: 1) findinthe distance to the plane that contains the all interactions with that side are ignored. Steps 1 and 2 only require
polygon, and 2) determining if the intersection point with the plane is

fails any test, it is rejected. The constahts By, Cy, andDy are cal-
= = The Emitting/Receiving Side of the Surface culated for each surface in the preprocessing (input) stage.
Haines (1989, 1994) suggests to project the polygon and the test
point into two dimensions. This saves a floating point add and multiply

vwww = Backwards Travel of the Photon

Np for each half-plane test. The simplest way to project the problem into
two dimensions is to discard one of €Y, or Z coordinates. The area

R Ro of the polygon is not preserved but the topology is. The best coordinate

R, o*® to throw away is the one whose magnitude in the polygon’s surface nor-

mal, N, is the greatestlpy and Dy must be calculated in this two-
dimensional plane using the new two-dimensional coordinates. While
the current version of the intersection algorithm implements this two-
(a) Hit “Back” of Surface (b) Surface is “Behind” dimensional test, the previous version uses the three-dimensional form.

Emission Point

5 LIMITING THE SEARCH

Every time a photon is emitted, reflected, or transmitted, the next
surface it strikes must be found. Since the time to trace each photon
increases linearly with the number of surfaces, it is obvious that great
three multiplies, two additions, and one compare, and, on average,improvements in efficiency can be gained by reducing the number of
cause about half the surfaces tested to be rejected. surfaces that need to be tested. Reducing the number of surface interac-

If transmittance is modeled, an extra step must be added to thetion calculations has been a topic of extensive study in the field of ray
algorithm. When a photon is emitted (or reflected) from a surface, that tracing. A good overview of the general techniques applied to this prob-
particular surface is never selected as the next intersecting surfacdem are given by Arvo and Kirk (1989). Of all the techniques reviewed,
because it will always fail the backface culling test. On the other hand, two general techniques are the most promising: bounding volumes and
if the photon is transmitted, then that surface will always pass that test.spatial subdivision. A discussion with a different perspective on apply-
Furthermore, due to round-off error, the transmitting surface may also ing ray tracing techniques to radiative Monte Carlo can be found in
pass through step 4 and appear to have a very small, positatae. Panczak (1989).

Therefore, if transmission is modeled, an extra check is required to The bounding volume technigque reduces the number of intersec-
make sure that the previous intersecting surface itself is not chosen as &on calculations by surrounding all the objects in the scene with
valid intersection point. Since transmission is rarely modeled, this test bounding volumes. The bounding volumes are chosen to be simple
is usually done last. objects such as spheres and cubes so that intersection calculations with
them are swift. The object or objects inside the bounding volume need
only be checked if the bounding volume is intersected. According to
4 POINT-IN-POLYGON TEST Arvo and Kirk (1989), when a hierarchy of bounding volumes is used,

Once a valid distance;, is found from step 5, a check must be the complexity of the intersection calculation is proportional to the log-
made to ensure that the point is within the polygon. A rather complete arithm of the number of objects. If the bounding volumes are not used
study of point-in-polygon strategies has been done by Haines (1994).in a hierarchy, the time for the intersection calculations is reduced but is
Since our polygons are convex and have only three or four sides, thestill linear with the number of objects. Since the polygon intersection
exterior-edges algorithm has been chosen for the point-in-polygon test.calculations described above are so simple, bounding volumes should
Within the uncertainty in Haines’ test results, this test is as fast as anycontain collections of polygons. Devising a good way to define bound-
other, and was chosen over the others he discussed because it requirédg volumes for groups of arbitrary surfaces would be difficult and
less storage and is easier to implement. probably not add much to the efficiency of the program.

In the exterior-edges test, the half-plane test is performed on all The other promising technique is three-dimensional spatial subdi-
edges of the polygon. The half-plane test requires a “bounding” plane vision shown in Fig. 3. For this technique, instead of placing bounding
for each edge that is perpendicular to the polygon’s surface andvolumes around objects, the volume bounding the geometry is parti-
includes that edge. From Eqg. (2), the “bounding” plane is defined by tioned. Space is usually divided into axis-aligned rectangular prisms
the normalNpy = (A4, By, Cyy) Which points into the surface, and the which are referred to as voxels (a three-dimensional version of a pixel).
distance,Dy. For the intersection poing,;, if (Jeger and Eckmann, By aligning the voxel planes with the axes, computations are simpli-
1967): fied. The photon is then traced from voxel to voxel. A check is made

only inside each voxel to determine if any of the surfaces inside it are
intersected. The search stops once the closest intersection within the
AL X +B Y, +CZ,>Dy, (4 current voxel is found. This reduces the number of intersection calcula-
tions in two ways. First, only surfaces in voxels along the photon path
are checked. Second, since voxels are traversed in order, surfaces in

o])) voxels further from the origin of the photon are checked only if an
then the point is outside that edge of the polygon and is rejected. Thej,tersection is not found in an earlier voxel. For large geometries, the
test is performed for each edge of the polygon. As soon as the point.qq ction in search time can be very significant.

Figure 2 Conditions to Invalidate a Potential Intersection

Using too many voxels can create inefficiencies. To search the sur-

------------------------------ faces inside each voxel quickly, a list must be made for each voxel of
surfaces completely or partially inside it. As the number of voxels
increases, the memory required for these lists and the time required to
generate these lists increases. Also, it must be remembered that surface
intersections outside the voxel must be rejected. If voxels are too small,
surfaces will span several voxels and several intersection calculations
for a surface will have to be rejected until the voxel with the intersec-
tion is entered. One way to avoid these repetitive calculations is to keep
track of past intersection calculations. This is termed the “mailbox”
technique and will be discussed below. It should also be noted that if
the grid is too fine, time spent traversing the voxels will be significant.
This can be a particular problem when using USD because the number
of empty voxels generally increases with the number of voxels.
————— e, Although some comparisons of the two methods have been done,

Grid v it is not clear which of the methods is the most efficient; different
geometries have been used for each test. Since geometries can vary
widely, each method does better on some geometries than others. Sung
and Shirley (1992) have found that axis-aligned octrees and BSP trees
give similar performance. Fujimoto et al. (1986) found that, for the
sample problems he did, USD was an order of magnitude faster than

It should be noted that if an intersection is found outside the cur- octrees. Both the octree (Panczak, 1989; Chin et al., 1992) and USD
rent voxel, it must be rejected, as it is possible that the photon might (Koeck, 1988) methods have been implemented in radiative heat trans-
strike another surface which, while not in the current voxel, contains an fer Monte Carlo codes, but no comparison of the benefits of the two
intersection point between the current voxel and the rejected intersec-methods has been made.

T - T T T T T T T T T

Figure 3 Example of a Non-uniform Grid

tion point. For example, in Fig. 3, the photon is traced from its point of The general consensus about USD is that it works well but
emission in voxeV/A through voxeVB to its intersection point in voxel ~ requires a lot of memory. In fact, this is one of the major complaints
VC. In voxelVB, the potential intersection point on surf&2will be against the method (Sung and Shirley, 1992). Sung (1991) compared
found, and must be rejected because the intersection point is outside th&/SD to various octree methods. In the one case where there was
voxel. The true intersection point on surf&will be found only after enough memory for the number of voxels USD required, it outper-
the photon enters voxgIC. formed all other methods.

Arvo and Kirk (1989) classify spatial subdivision into two general In this work, USD is chosen for two reasons. First, a version of the

categories: non-uniform and uniform. In non-uniform subdivision, USD called the Margolies algorithm (Maltby, 1987; Burns et al., 1990;
space is discretized into regions of various sizes to allow the voxel den-Maltby and Burns, 1991) has already been implemented in MONT3D.
sity to be greater where the surface density is greater. Two of the mostThis algorithm has been used for years, has worked well, and has
popular examples of this technique are the octree (Glassner, 1984) androven very robust. Still, there is room for improvement. As pointed out
the binary space partition (BSP) tree (Kaplan, 1987; Sung and Shirley, above, photons under USD usually traverse more voxels than in the
1992). Octrees are created by recursively dividing a rectangular volumeoctree and BSP methods. Therefore, for the USD method to be more
around the geometry into eight subordinate octants until the resulting efficient than the octree and BSP tree method, the algorithm that deter-
“leaf’ voxels meet some criterion for stopping such as a certain maxi- mines the next voxel to enter must be very efficient. The next section
mum number of surfaces per voxel. A BSP tree, on the other hand, isdescribes an improved algorithm that is quite different from the one
formed by partitioning space at each level of the tree into two pieces Used earlier. Again, the major difference is that the previous algorithm
using a separating plane. While the planes are often aligned with thestressed calculating the intersection point with the voxel boundaries,
coordinate axes, they do not have to be (Chin, 1995). while the new algorithm only calculates the intersection distance to the
While both the octree and the BSP tree store the geometry infor- Voxel boundaries.
mation efficiently, moving from voxel to voxel within the tree requires Secondly, as long as enough voxels are used to keep the average
some calculation. Uniform spatial division (USD) (Fujimoto et al., and maximum number of surfaces per voxel low, USD appears to be
1986; Amanatides and Woo, 1987; Cleary and Wyvill, 1988) consti- the best algorithm. As shown in the results below, with more memory
tutes another approach. In USD, a regular three-dimensional grid of capacity available today, USD is definitely feasible. While Sung (1991)
voxels of uniform size is placed over the geometry. While not dividing has shown that USD can be inefficient for geometries with extremely
the geometry as efficiently as the above two methods, the “next” voxel uneven distributions of surfaces, it is not expected that these types of
can be found by fast incremental calculation. More voxels are usually 9eometries are common in radiation problems. For that to occur, the
traversed in USD but the cost of traversing the voxels is less. size of the surfaces would have to vary by several orders of magnitude.
Other methods do exist, for example, see Sung (1991). His method The Margolies algorithm is actually a variant of USD because it

and most others are just combinations and variations of the octree, BSFH0es not require uniform voxels; it also allows the use of a non-uniform
tree, and USD methods mentioned above. grid in which the grid is still divided into rows and columns, but the
spacing betweek, Y, andZ divisions is variable. An example is shown

in Fig. 3. More about the advantages and disadvantages of non-uniformminimum value oDG required to exit the voxel (at step 3 above). This
grids will be discussed below. will automatically reject any intersection points outside the voxel.
Since there are often many empty voxels, it is important that both
the intersection calculations and the voxel traversal algorithm be coded
6 THE VOXEL TRACING ALGORITHM as efficiently as possible. Several authors suggest coding the grid tra-
This section outlines the algorithm for tracing using uniform or versal so that it only uses integer arithmetic (Fujimoto et al., 1986;
non-uniform grids. A less detailed description of the use of USD in Amanatides and Woo, 1987; Cleary and Wyvill, 1988). However, not
radiative Monte Carlo is given by Koeck (1988). As shown in Fig. 3, only will this give a minimal speed improvement, if any, it also

whether the grid is uniform or non-uniform, the grid NGCMAX increases the possibility of precision errors. It should be noted that even
voxels along each axis aNGCMAX + 1 grid planes along each axis for moderately sized geometries, photon tracing must be coded in dou-
wherei equals {1, 2, 3} for theX, Y, Z} axes, respectively. ble precision or round-off errors become significant.

The key to the speed of the algorithm is that since the voxel As noted above, the use of non-uniform spaced voxels makes the

boundaries are aligned with the axes, it is very easy to determine theDG; calculation less efficient. This may make one wonder why non-
next voxel to be entered. Although there are six sides to a voxel, only uniformly spaced grids are desirable. The reason is that if enough is
three sides, indicated by photon direction, have to be checked. Also,known about the geometry, voxels can be enlarged where there are few
since all the voxel sides intersect, the side the shortest distance from thesurfaces and shrunk where there are many, improving the efficiency of
photon’s origin is guaranteed to be the side that is intersected. Furtherthe algorithm. However, the usefulness of this type of grid resizing is
more, due to the fact that the voxel sides are aligned with thelx@gs, limited. Enlarging or shrinking one voxel will affect all voxels along
the distance to intersect a voxel side along each axis can be derivedbne or more coordinate directions. Furthermore, there is no easy way to
from the “distance to a plane” equation in Section 3, and has the fol- choose a non-uniform grapriori. In general, the user would probably
lowing form: get more benefit from an optimized uniform grid code than one that
allows non-uniform divisions.

DG, = (GC i -Ry)/E; 5)
' ' 7 MAILBOXES
One of the problems with spatial subdivision is that no record is
. . . kept of past calculations. If a surface exists in several voxels, the same
where j is the index of the next voxel plane the photon will cross along intersection is calculated repeatedly. To prevent this, “mailboxes”
theith axis, andsCis the coordinate along th¥8 axis for that plane. If (Amanatides and Woo, 1987; Cleary and Wyvill, 1988; A’rvo and Kirk
the grid is uniform, theGB;, the distance between grid boundaries ggq. Sung, 1991 Suﬁg and’ShirIey 1992) are ’used t,o store past caicu-
along an axis, is constant. Therefor_e, for uniform grids, while the first Iation,s. Eac’h surfe;ce has a “mailbox:’ that holds the results of the calcu-
value of DG; must be calcplated using Eg. (5), for subseql_Jent voxels lations and a photon counter value that indicates the last time those
DG; can be updated by using the equatidG§ may be negative): calculations were done. The photon counter is incremented by one each
time a photon is emitted, reflected, or transmitted. When the intersec-
tion calculation is performed for a surface, the first step is to compare
DG; = DG; +DGB, (6) the value of the counter in the mailbox to the current counter. If the two
are equal, then the intersection in the mailbox is used, instead of being
recalculated.

The basic algorithm is simple. It should be noted that Sung (1991) found several cases in which

1. Determine the emitting voxel cell and fiGC;; values. For mailboxes increased execution time. He notes that mailboxes are effi-
non-uniform grid divisions, these are found by bisection and for cient only if most objects span more than one voxel. In particular, he
uniform grid divisions by direct interpolation. suggests that, for the mailbox algorithm to be efficient, the objects in

2. CalculateDG; for each axis at the photon emission point. the scene must be larger than the voxels.

3. Determine the minimumG value. The mailbox algorithm is implemented here using two one-dimen-

4. Search for the shortest distance to intersection within the voxel. sional arrays of length number of surfaces, one for the distance to the
All surfaces even partially inside the voxel must be checked. To intersection and the other for the last value of the photon counter. To

increase the efficiency of this search, the search is done over aimplement the mailbox algorithm, only minor changes are required in
precomputed list which specifies the surfaces in each voxel. the loop over surfaces in a voxel. The first change is that, for each sur-
5. If no intersection is found, determine the next voxel to enter by face, the first step is to compare the value of the photon counter stored
the minimumDG value and the direction &, update the value for the surface to the current value. If the counter values do not match,
of DGI a|0ng the axis traversed, and go back to step 3. then the algorithm is the same as before, except that the two one-
When testing for intersection points inside a voxel, once a valid dimensional arrays are updated for each intersection calculation. If the
intersection point is found, any intersection points further from the values do match, then the distance to surface has already been calcu-
emission point than the current one are automatically rejected. If lated. In this case, the distance is comparedahD. If it is less than
TOLD, the current shortest distance to intersection, is stored, the point- TOLD, the point-in-polygon test is performed. Otherwise the surface is
in-polygon test may be skipped by any surface withvalue greater rejected. It should be noted that if a surface fails any of the tests except
thanTOLD. When entering a voxel,OLD should be initialized to the the Comparison tdOLD, then the distance to intersection is set to a

very large number, insuring it fail the comparisonT@LD above the
next time it is encountered.

The mailbox algorithm was tested on a number of large geome-
tries (1,000 to 5,000 surfaces) and grid resolutions. It was found that
the mailbox technique increased the run time in all cases. For the types
of simplified surfaces and complex geometries usually modeled by our
algorithm, the mailbox technique is not effective.

8 GRID TRACING RESULTS

To assess the improvements mentioned above, four geometries of
varying complexity are tested. Several different discretizations are
tested, in hopes of determining some guidelines in selecting the optimal
grid for a geometry. Besides showing the overall efficiency of the cur-
rent algorithm compared to the previous one, these large geometries
demonstrate the power of USD. Earlier tests of USD with small geome-
tries (143 surfaces or less) found that USD decreased run time by a fac-
tor of 2 to 5 (Burns et al., 1990; Maltby and Burns, 1991). As will be Figure 5 View of the Amplifier Geometry
shown below, the reductions in run time are much more significant for
larger geometries.

8.1 Geometries

Figure 6 View of the Gun Geometry

detail of assembly. Ampb, with 4,581 surfaces, is a more detailed repre-
sentation than ampa, with 3,381 surfaces. More details about the mod-
eling of this geometry are given in Sutton et al. (1998).

Gun, shown in Fig. 6, models the radiation coupling between the
outer parts of an electron gun. The gun is enclosed to capture escaping
photons. The gun is symmetric and is modeled as a wedge from 0° to

Four geometries were used: cham, ampa, ampb, and gun. They arg;o°. The edges of the wedge are modeled as specular symmetry planes.
described below. This geometry has 4, 580 surfaces; one less than ampb.

Cham is a model of the National Ignition Facility (NIF) target
chamber containing 1,382 surfaces. It is a medium-sized geometry,
shown in Fig. 4. The front section of the sphere is removed to show the
inner detail. NIF (http://lasers.linl.gov/lasers/nif.html) is currently
under construction and will contain 192 extremely powerful lasers

Figure 4 Cut-Away View of the Chamber Geometry

8.2 Test Description
In all tests below, surfaces are black, as using reflecting or trans-
mitting surfaces would just obscure observations about the photon

allowing research in inertial confinement fusion and other related top- INtérsection algorithm. Unless otherwise specified, all times given are

ics. A discussion of the modeling of this chamber by TOPAZ3D is Selution times. , , i .
given in Raboin (1998). For testing, the geometries are “gridded” using approximately

Ampa and ampb are geometries representing the NIF laser amp”_cubical voxels. A different number of photons are emitted for each
fier assembly as shown in Fig. 5. The front wall and symmetry plane geometry depending on the number of original surfaces and the number

across the top of the geometry have been removed to show the innePf photons per original surface as shown in Table 1. The cham and gun
geometries have non-planar surfaces that are split into two triangles as

Table 1: Photon Statistics

Geometry Number of Number of Total Number of | Photons Emitted per | Total Number of Photons
Original Surfaces | Split Surfaces Surfaces Original Surface Emitted (Millions)
cham 1,182 144 1,326 20,000 23.64
ampa 3,381 0 3,381 10,000 33.81
ampb 4,581 0 4,581 10,000 45.81
gun 4,297 283 4,580 10,000 42.95

described in Section 2. Each triangle is treated as a separate surface by

the intersection routine, so the efficiency of the intersection routine
depends on the total number of surfaces.

All tests were performed on a 233 MHz 604e PowerPC chip run-
ning Macintosh OS 8.0. The Absoft f77 compiler was used. Timings
among repeated runs differed by 5% at most, and typically by less than
1%. To obtain accurate timing for the photon tracing only, a modified
version of the code, which does not write output files, is used for all
results.

8.3 Determining the Optimal Grid

While we have used USD in the past, there has been no in-depth
study of its application to large-scale geometries. The purpose of this
section is determine the efficiency of USD for large geometries and
determine guidelines in selecting grids.

10° T T T T T
=—mampa solution
104. ®&—echam solution
%‘ E—Hampa input
5 e—ocham input
g 103}
2
£
E 102k
= 10
E - =) =)
()
10t f 1
100 2 2 L 2 L
10° 10t 102 102 104 10° 108

Number of Voxels

Figure 7 Results the for Ampa and Cham Geometries

105 T T T T T :
=—mampb solution
e—egun solution

~10%k G—8ampb input .
g ©—ogun input
o
(8]
B ol
o 10
E
|_
2
O 10°
10% 5 1 " 3 " " 6
10 10 10 10 10 10 10

Number of Voxels

Figure 8 Results for the Ampb and Gun Geometries

Execution times versus numbers of voxels for the current algo-
rithm for the four geometries are given in Figs. 7 and 8. The curves
marked “solution” are the solution times for the algorithm and those
marked “input” are the input times for the algorithm. The curves are
very flat around the optimal grid. In fact, it is hard to specify one grid as
“optimal.” As stated above, the uncertainty in the results is about 5%.
For each geometry, there are several points that are within 5% of the
minimum value, yielding a range. Several statistics for the optimal grid
range are given in Table Zhe results “min” and “max” are for the
minimum and maximum size grid in the optimal range. The optimal
grid range is quite large; the maximum grid size is around three to four
times the minimum grid size. While the optimal grid varies with geom-
etry, these results suggest that for geometries of 1,000 to 5,000 sur-
faces, a good first estimate of the optimal grid is 15,000 voxels.

Since determining the next voxel to enter requires less calculation
than the surface intersection calculations, the optimal grid favors fewer
surfaces per voxel over fewer empty voxels. For geometries tested,
37% to 60% of the voxels are empty when execution time is within 5%
of the optimal time.

Table 2: Grid Statistics

Geometry | Number of Voxels | Surfaces per Voxel | Number of Empty Voxels | Surfaces per Non-empty Voxel
cham min 4,096 2.40 1,521 3.82
cham max 15,625 1.52 7,192 2.82

ampa min 9,216 2.44 3,942 4.26
ampa max 39,546 1.10 23,578 2.73

ampb min 9,216 2.66 4,114 4.80
ampb max 23,958 1.53 13,476 3.50

gun min 15,360 1.52 5,880 2.46

gun max 65,910 0.887 30,084 1.63

Table 3: Current Algorithm Statistics

Geometry CPU Time Per Photon (X10® Seconds) Speedup Ratios (No Grid/Optimal) 0o
“Optimal Grid” “No Grid” Time Solution Tracing
Solution Time Solution Time Not Tracing Time Time
cham 30.6 541 551 17.7 21.4 0.574
ampa 154 1,020 5.68 66.1 104 0.429
ampb 16.7 1,360 5.72 81.4 123 0.429
gun 18.6 1,370 5.72 73.3 106 0.447

The input times for the code are shown in Figs. 7 and 8. The input black, this would also include determining the photon’s new direction
time grows quickly as the number of voxels becomes large. For the after being transmitted or reflected.
geometries tested this does not present a problem, as in the optimal grid ~ The “time not tracing” was obtained by running the codes with the
range, the input time is insignificant relative to the solution time. Fur- intersection routines commented out. While it is difficult to assess how
thermore, production runs are much longer than the ones for these testsaccurately this measures the time not tracing, similar estimates were
Usually, more photons are emitted per surface, particularly as the num-obtained by profiling the code on a RS/6000 workstation.
ber of surfaces increases. Also, tracing times are longer since reflection The speedup ratios listed in the table are the solution or time spent
exists. As the number of surfaces modeled is increased further, this maytracing for the “no grid” case divided by the same result for the optimal
be a problem, but only future testing can determine this. grid case. Comparing the “time not tracing” to the optimal solution

As noted in Table 1, each geometry emits a different number of time, it can be seen that only 63% to 82% of the optimal solution time
photons, so comparing the results can be difficult. For this reason,is spent in photon tracing. This represents quite an improvement over
Table 3 provides results in time per photon. The “optimal grid” solution the “no grid” solution where 99% or more of the time is spent in photon
time is the shortest execution time for that geometry. The “no grid” tracing. The “time not tracing” appears to be a weak function of the
solution time is the solution time when no grid is used. The “no grid” number of surfaces.
case is the same as specifying only one grid cell or voxel, and includes Table 3 indicates that the speedup can exceed a factor of 80 for the
the insignificant overhead of initializing the voxel tracing routine once entire solution phase and over a factor of 120 for the intersection calcu-
per photon. The other columns in the table are described below. lations. However, it would be helpful to quantify the speedup as a func-

The “time not tracing” is the time spent by the solution phase in tion of the number of surfaces. Cleary and Wyvill (1988) have done an
activities other than tracing, including specifying the photon emission in-depth theoretical analysis of a USD algorithm using a mailbox
point and direction, determining if the photon is absorbed, reflected, or scheme. They have found that the run time is a complex function that
transmitted and the overhead of the algorithm. If the surfaces are not alldepends on the number of surfaces, the average times for four different

Table 4: Previous Algorithm Statistics

Geometry CPU Time Per Photon (XlO'B Seconds) Optimal Algorithm Ratios (Old/New Algorithm)
“Optimal Grid” Solution Time | Time Not Tracing Solution Time Tracing Time
cham 53.0 5.31 1.73 1.90
ampa 22.9 5.38 1.48 1.79
ampb 25.7 5.43 1.54 1.84
gun 29.5 5.43 1.59 1.87

parts of the algorithm, the mean area of the objects, and the mean cirimonte). Several runs are performed and some of the results for the

cumference of the objects. older version of the algorithm are given in Table 4. The speedup ratios
A simplified model that is often used in these cases is the time perlisted in Table 4 are the solution time or time spent tracing for the old
photon t,, given by: algorithm optimal grid case divided by that for the new algorithm opti-

mal grid case. Gathering data from all the runs done, the new algorithm
is 33% to 45% faster than the old algorithm. Interestingly, the time not

a tracing is slightly better for the old algorithm, as new features added to
tp = aNg +b ™ the code slow it down slightly. The improvements to the voxel tracing
algorithm seem to be just as important as the improvements to intersec-
tion calculations. The timing curves for the old algorithm are similar in
whereNg is the number of surfaces. For the “no grid” casks, 1 since shape to the curve for the new algorithm results and exhibit very similar
all Ng surfaces have to be checked. If we assanige constant for a optimal grid ranges. As mentioned in Section 3, the main difference

geometry and thdi is equivalent to the “time not tracing” per photon, between the algorithms is that for both surfaces and voxels the current
thena,, the value ofx for the optimal grid can be determined. As the algorithm focuses calculating the distance to intersedjioinstead of
table showsq, lies between 0.43 and 0.57. This is consistent with esti- the point of intersectiorR;.
mates of the dependence of optimal grid tracing timéNgderived
from an analytical perspective [Burns and Pryor, 1999].
9 CONCLUSIONS
An in-depth study has been completed of a Monte Carlo photon
8.4 Memory Requirements tracing algorithm for large geometries with arbitrary planar surfaces in
Although photon tracing is often performed on large geometries nonparticipating media. Methods from the computer graphics field of
with thousands of surfaces, its memory requirements are usually notray tracing have been reviewed and implemented. An efficient algo-
prohibitive. Ignoring the memory required for the Margolies grid algo- rithm for determining intersections has been presented. Furthermore,
rithm which will be discussed below, the storage required is on the an assessment of ways to further increase the efficiency of the algo-
order of the number of surfaces. While it is true that the final output, the rithm has been conducted. Uniform spatial division (USD) was chosen
exchange number matrix, is number of surfaces squared in size, only aas the most promising technique, based upon its simplicity and effec-
small block of rows of that matrix are stored in memory at any one tiveness. The mailbox technique was found in all cases to increase exe-
time. For the geometries used in this study of 14,080 nodes, 4,581 surcution times, and is therefore not recommended. Tests were performed
faces and 6 surface materials types, excluding the storage for theon four geometries containing between 1,000 and 5,000 surfaces each.
exchange matrix and the uniform grid, only 1.7 megabytes of storage isFor these geometries, the following results were obtained. USD yielded
required. Storing 200 rows of the exchange matrix in memory at a time speedups in run time of factors as great as 81. While the optimal subdi-
requires about another 3.5 megabytes. If the block size is decreased, theision varies with geometry, execution time varies slowly with number
code must write its results to disk more frequently, thereby increasing I/ of voxels (grid cells). Good results are obtained with 15,000 voxels.
O time. For the Margolies grid algorithm, the extra storage required is The memory requirements for USD were found to be slight; less than a
around 0.1 megabytes for 10,000 voxels and around 0.7 megabytes fomegabyte of memory was required to store the grid variables for the
100,000 voxels. optimal grids for all geometries tested. The memory requirements for
the rest of the algorithm were also found to be slight, between 1.7 and
5.5 megabytes was required for the largest geometry tested. The current
8.5 Previous Algorithm Results photon tracing algorithm discussed in this paper is found to be 33% to
To gauge the effectiveness of the algorithm discussed in this paper,45% faster than the previous algorithm.
comparisons are made to the previous version of the algorithm (Maltby,
1987; Burns et al., 1990; Maltby and Burns, 1991) which is publicly
available (Maltby et al., 1994; ftp://lamar.colostate.edu/pub/czeeb/

ACKNOWLEDGMENT
The authors are grateful to Phil Brady, John Dolaghan, Gregg
Mannell, and the group at LLNL for supporting this effort. This work

ence - Volume 3 - Solution Methods for Radiative Heat Transfer in Par-
ticipating Medig HTD-Vol. 276, ASME, New York, pp. 25-34.
Jeger, M., and Eckmann, B., 196/&ctor Geometry and Linear

was supported in part by the Computational Science Graduate Fellow-Algebra (For Engineers and Scientisti)terscience Publishers, New

ship Program of the Office of Scientific Computing in the Department
of Energy. Finally, this work is dedicated to Don Brown of LLNL, who
has been supportive of this effort for over a decade.

REFERENCES
Amanatides, J., and Woo, A., 1987, “A Fast Voxel Traversal Algo-
rithm for Ray Tracing,” InProceedings of EUROGRAPHICS ,8G.

Marechal, ed., Elsevier Science Publishers B. V., North-Holland, pp. 3-

9.

Arvo, J., and Kirk, D., 1989, “A Survey of Ray Tracing Accelera-
tion Techniques,” IrAn Introduction to Ray Tracind\. Glassner, ed.,
Academic Press, San Diego, CA, pp. 201-262.

Burns, P. J., Maltby, J. D., and Christon, M. A., 1990, “Large-

York.

Kaplan, M. R., 1987, “The Use of Spatial Coherence in Ray Trac-
ing,” In Techniques for Computer Graphid3. F. Rogers, and R. A.
Earnshaw, ed., Springer-Verlag, New York, NY, pp. 174-193.

Koeck, C., 1988, “Improved Ray Tracing Technique for Radiation
Heat Transfer Modelling,Proceedings of the 3rd European Sympo-
sium on Space Thermal Control & Life Support Systéosrdwijk,

The Netherlands, (3-6 Oct. 1988) ESA SP-288, pp. 255-260.

Maltby, J. D., 1987 Three-Dimensional Simulation of Radiative
Heat Transfer by the Monte Carlo Methdd.S. Thesis, Colorado State
University, Fort Collins, CO.

Maltby, J. D., and Burns, P. J., 1991, “Performance, Accuracy and
Convergence in a Three-Dimensional Monte Carlo Radiative Heat
Transfer Simulation,Numerical Heat Transfer, Part B; Fundamentals

Scale Surface to Surface Transport for Photons and Electrons viaVol. 16, pp. 191-209.

Monte Carlo,"Computing Systems in Engineerivgl. 1 No. 1, pp. 75-
99.

Maltby, J. D., Zeeb, C. N., Dolaghan, J., and Burns, P. J., 1994,
User’'s Manual for MONT2D - Version 2.6 and MONT3D - Version 2.3

Burns, P. J., and Pryor, D. V., 1999, “Surface Radiative Transport Department of Mechanical Engineering, Colorado State University,

at Large Scale via Monte Carlo,” Vol. 9 dihnual Review of Heat
Transfer Begell House, New York, NY. (in press).

Chin, J. H., Panczak, T., and Fried, L., 1989, “Finite Element and
Raytracing in Coupled Thermal Problems,”Nimmerical Methods in
Thermal Problems, Vol. VI, Proceedings of the Sixth International Con-

ference R. W. Lewis, and K. Morgan, ed., Pineridge Press, Swansea,

U.K., pp. 683-701.

Fort Collins, CO.

Modest, M. F., 1993Radiative Heat TransfeMcGraw-Hill, St.
Louis.

Panczak, T. D., 1989, “A Fast, Linear Time, Monte Carlo Radia-
tion Interchange Program Utilizing Adaptive Spatially Coherent Subdi-
vision,” In Numerical Methods in Thermal Problems, Vol. VI,
Proceedings of the Sixth International ConfererReW. Lewis and K.

Chin, J. H., Panczak, T., and Fried, L., 1992, “Spacecraft Thermal Morgan, ed., Pineridge Press, Swansea, U.K., pp. 701-712.

Modelling,” International Journal for Numerical Methods in Engineer-
ing, Vol. 35, pp. 641-653.

Chin, N., 1995, “A Walk through BSP Trees,”@raphic Gems V
A. W. Paeth, ed., AP Professional, San Diego, CA, pp. 121-138.

Cleary, J. G., and Wyvill, G., 1988, “Analysis of an Algorithm for
Fast Ray Tracing Using Uniform Space Subdivisidmg Visual Com-
puter, Vol. 4, Springer-Verlag, pp. 65-83.

Farmer, J. T., 1993mproved Algorithms for Monte Carlo Analy-
sis of Radiative Heat Transfer in Complex Participating Me#ia.D.
Dissertation, University of Texas at Austin, Austin, TX.

Fujimoto, A., Tanaka, T., and lwata, K. 1986, “ARTS: Accelerated
Ray Tracing System,JEEE Computer Graphics and. Applications,
\ol. 6 No. 4, pp. 16-26.

Glassner, A. S., 1984, “Space Subdivision for Fast Ray Tracing,”
IEEE Computer Graphics and. ApplicatioMs). 4 No. 10, pp. 15-22.

Haines, E., 1989, “Essential Ray Tracing Algorithms,” An
Introduction to Ray TracingA. Glassner, ed., Academic Press, San
Diego, CA, pp. 33-77.

Haines, E., 1994, “Point in Polygon Strategies,Giraphic Gems
IV, P. S. Heckbert, ed., AP Professional, San Diego, CA, pp. 24-46.

Haji-Sheikh, A., 1988, “Monte Carlo Methods,” Chapter 16 in
Handbook of Numerical Methods in Heat Transfdmkowycz et al.,
ed., John Wiley & Sons, New York, pp. 673-722.

Raboin, P. J., 1998, “Computational Mechanics Moves Ahead,”
Science and Technology RevieMay, Lawrence Livermore National
Laboratory, UCRL-52000-98-5, pp. 12-19.

Rushmeier, H. E., 1993, “Computer Graphics Techniques for
Computing Radiation Heat TransfeRroceedings of the NFS Joint
Workshop on Radiative Heat transfer in Highly Coupled Physical Sys-
tems University of Texas at Austin, Austin, TX, October 4-8.

Shapiro, A. B., 1985, “TOPAZ3D - A Three-Dimensional Finite
Element Heat Transfer Code,” Lawrence Livermore National Labora-
tory, UCID-20484.

Sung, K., 1991, “A DDA Octree Traversal Algorithm for Ray
Tracing,” InProceedings of EUROGRAPHICS ;9. H. Post, and W.
Barth, ed., Elsevier Science Publishers B. V., North-Holland, pp. 73-85.

Sung, K., and Shirley, P., 1992, “Ray Tracing with a BSP Tree,” In
Graphic Gems Il D. Kirk, ed., AP Professional, San Diego, CA, pp.
271-274.

Sutton, S., Erlandson, A., London, R., Manes, K., Marshall, C.,
Petty, C., Pierce, R., Smith, L., Zapata, L., Beullier, J., Bicrel, B., 1998,
Thermal Recovery of the NIF Amplifieksswrence Livermore National
Laboratory, UCRL-JC-124528 Rev 1.

XYZ Scientific Applications, Inc., 1997 rueGrid Manual - Ver-
sion 1.4.0XYZ Scientific Applications, Inc., Livermore, CA

Zeeb, C. N., Burns, P. J., Branner, K., and Dolaghan, J., 1999,

Henson, J. C., Malalasekera, M. G., and Dent, J. C., 1996, “Heat User’'s Manual for MONT3D - Version 2.Bepartment of Mechanical

Transfer in Three-Dimensional, Nonhomogeneous Participating
Media,” ASME Proceedings of the 31st National Heat transfer Confer-

10

Engineering, Colorado State University, Fort Collins, CO.

https://www.researchgate.net/publication/242774673

	Abstract
	1 introduction
	2 Surface Geometries
	3 Calculating the Intersection Distance to a Plane
	4 Point-in-Polygon Test
	5 Limiting the Search
	6 The Voxel Tracing Algorithm
	7 Mailboxes
	8 Grid Tracing Results
	8.1 Geometries
	8.2 Test Description
	8.3 Determining the Optimal Grid
	8.4 Memory Requirements
	8.5 Previous Algorithm Results

	9 Conclusions
	Acknowledgment
	References

