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ABSTRACT

Medical imaging sensors can be used to noninvasively probe tissue
morphology and monitor material deformations associated with growth, disease, or
normal physiology. Deformable image registration provides a framework for
extracting and quantifying this information. Image registration is, however, an
inherently ill-posed inverse problem. The research in this dissertation investigates
techniques to regularize image registration problems. Preprocessing, integral and
post-processing tools were developed to complement existing image registration
techniques. These tools included techniques for dynamic (sequential) spatial filtering,
histogram-matching, sequential image tracking, rezoning, and other techniques that
allow the solution of difficult practical registration problems. These tools have been
incorporated into the continuum mechanics based deformable template registration
method known as Warping. Warping was then used to solve a variety of typical
registration problems, utilizing regularization tools when needed.

Additionally, two quantitative techniques for assessing image registration
results have been developed and implemented. The singular value decomposition
(SVD) topology tracking technique hierarchically assesses the match in topology
between image data sets. The technique also provides a systematic method of tracking
the evolving topology of the deformed template data during registration and

comparing it with the topology of the target image data. In order to apply the



technique to volumetric image data, a three-dimensional (3D) extension of the SVD
was formulated. The technique was applied to registration problems using both
simulated and real image data. Results indicated that spikes in the inner product map
of the template may correspond to potential difficulties in the registration.

The second technique utilized the variances of the registration potential energy
to evaluate the relative influence of image data and registration method on image
registration solutions. An image influence parameter was defined, which provided a
regional measure of the relative influences of the image energy and registration
method over the domain of the template model. The technique was applied to several
representative image registration problems. Results indicated that choice of image
registration method played a significant role in registration results in image regions of

conflicting or inadequate image texture.
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CHAPTER 1

INTRODUCTION

Motivation

Since the discovery of X-Rays, medical imaging has become a vital part of
biological and medical research. As techniques for acquiring images improve, so does
the amount of information that can be extracted from these images. The role of
medical imaging continues to evolve far beyond simple inspection and visualization of
biological structures. It has become a tool for disease diagnosis and tracking, surgical
planning, evaluation of organ function, and a myriad of other uses.

In some cases, the best method for examining biological structure and function
is through comparison of medical images with those taken from similar structures that
have been more thoroughly characterized. Often, additional insights may be obtained
through comparison of images of a biological structure in deformed stress states with
images of the same structure in a reference configuration.

With recent advances in image acquisition techniques, medical imaging is now
in a position to offer improved insights into biomechanics. Although many physical
quantities may be measured directly using modern imaging techniques, extracting
stress and strain fields from medical images remains a challenge. Recently,

deformable image registration methods have emerged that use medical images in



combination with computational methods to determine nonlinear deformation fields
(and in some cases the corresponding strain and stress fields). These methods are
compatible with modern imaging modalities (e.g., CT, MR, PET, SPECT, optical
microscopy), and allow accurate estimation of in vivo strain fields, without the need
for exact material properties or invasive surgery.

The overall objectives of this research are to develop a set of practical
techniques for regularizing and evaluating the efficacy of image registration problems,
specifically applied to the deformable image registration method referred to herein as
“Warping” [1-4]. The specific aims of the research are to: 1) develop and implement a
suite of practical tools for regularizing image registration, 2) develop, implement, and
evaluate quantitative techniques for evaluating the success of image registration, 3)
demonstrate the efficacy of aims 1 and 2 using a series of simulated and actual image

registration problems.

Summary of Chapters

Chapter 2 introduces the process of image registration, with specific emphasis
on the methods for deformable image registration. The ill-posed nature of the image
registration problem is described and discussed. A review of the literature on image
registration is presented, including current registration techniques and regularization
strategies, and related fields of research are identified. The relevance of the present
work to current image registration techniques is established.

Chapter 3 details the development and implementation of several
regularization tools created during the course of the present research. These tools are

characterized as preprocessing, processing, or postprocessing tools. Preprocessing



tools address inconsistencies in medical image data due to the stochastic nature of
image acquisition devices, as well as differences in acquisition techniques that can
occur in intersubject registration. Processing tools are applied during the image
registration process to avoid local minima solutions. Postprocessing tools facilitate
accurate visualization and evaluation of the computed registration solution.
Additionally, because image registration is often an iterative process, postprocessing
tools often guide variation in registration parameters during iterations, as well as
providing stopping criteria.

Chapter 4 addresses the practical aspects of image registration. A brief
description of the mathematical basis of Warping, as well as some details of the
implementation are presented. A collection of both simulated and real example
problems demonstrate application of the techniques described in Chapter 3. A
combination of simulated nonlinear forward problems and image registration problems
are used to validate the Warping method for computing strain and stress fields.
Warping is then used to compute strain and stress fields in a human spinal disc, human
distal phalanx, and a mouse tectorial membrane. Since a large portion of medical
image registration problems deal with mapping various study anatomies into
alignment with a template anatomy, Warping is also used to examine intersubject
registration of both macaque and mouse neuroanatomies. An additional application of
the method is demonstrated through semiautomatic generation of a subject-specific
hexahedral mesh for the human distal femur.

A paper detailing a new topology tracking technique for evaluating the success

of medical image registration is presented in Chapter 5. The technique is based on



singular value decomposition (SVD) and provides an objective method to compare the
topology of a deformed template image with that of a target image. A 3D extension of
the standard singular value decomposition is posed and applied. The technique
provides: 1) A hierarchical method to quantify image registration, 2) a method to
assess topological mismatch between image datasets, and 3) a means to rank image
registration solutions to distinguish local from global minima. Results demonstrate
application of the technique using magnetic resonance images of the heart and human
distal phalanx, as well as optical images of primate brain cryosections. Results
indicate that the technique may also be useful for a priori identification of local
minima.

In Chapter 6, a novel technique for assessing the interaction of image data and
registration method in deformable image registration is presented. The technique
utilizes the characteristics of the Hessian of the energy functional (cost function). An
image influence parameter is defined that quantitates the regional variance in the
influence of the image data over the domain of the template model. A variety of
practical registration problems are evaluated using the technique. The value of the
technique lies in its ability to indicate the reliance of the computed solution on the
image data as compared to the constraint system.

Chapter 7 provides a cohesive discussion of the work from previous chapters.
The overall significance of the present work is emphasized and the strengths and
limitations of the work are presented. An outline of future work stemming from the

current research is also presented.



The attached appendix details the derivation of the fundamental Warping
equations in indicial form. Although the warping derivation has been previously
published [2-4] in direct notation, the indicial notation equations are a valuable

reference for those interested in the practical aspects of coding.
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CHAPTER 2

BACKGROUND

Biomedical image registration plays an important role in a wide variety of
medical applications, including image comparison [1]-[3], image fusion [4],
segmentation [5]-[10], image-guided surgery [11], and strain field computation [12]-
[16]. In its simplest form, it is the process of aligning anatomical features present in a
template image data set (a.k.a. reference, textbook, atlas) with those present in a
specific target (subject) image data set. While the premise is simple, implementation
can be challenging. The problem is ill-posed in the sense of Hadamard [17], [18]
because there is not a unique solution to the registration and some form of
regularization must be used to constrain the manipulation [19]. Various constraints
have been used towards this goal. Image registration methods are typically classified

according to the technique used to limit the field of acceptable solutions.

Registration Techniques

There are numerous techniques for achieving image registration, e.g., [20]-
[23]. Recent efforts follow three distinct lines: 1) Landmark or marker based

identification techniques that align key points from a template image set with those in



a target image set [24], 2) Principal axis registration methods based on low-
dimensional translation, rotation, and scaling operations [5], [25], and 3) Deformable

image registration methods (deformable shape models) [26].

Landmark Based Registration

The use of fiducial markers or anatomical landmarks to achieve intersubject or
multimodality registration has been well established [23], [27]-[31]. Distinct
anatomical landmarks (or markers) are selected on both of the image datasets that are
to be aligned. A transformation map between the images is obtained by interpolation
between these key landmarks, which are constrained to align perfectly.

Landmark based registrations have a low computational cost and are currently
favored in clinical situations where quick answers are desired. A drawback to these
techniques is that they rely heavily on expert interaction to determine appropriate
anatomical points to use as landmarks, as well as to define the location of those points.
Additionally, because the technique relies upon interpolation between the chosen
landmark points, the quality of the registration obtained is highly dependent upon the

quantity and spacing of these landmarks.

Principal Axis Registration
Principal axis registration [5], [25], [32], [33] is often used for extremely quick
registration of medical images. Binary versions of the 3D image data are created
using a threshold algorithm. Principal axes of these binary template and target image
datasets are computed using the eigenvectors of the inertia matrix [32], [5]. Volume

centroids of the binary image datasets are computed in the standard manner.



Registration is obtained by translation and rotation of the template image dataset to
align centroids and principal axes. The template image volume is then scaled to
complete the registration.

Principal axis registration is extremely fast compared to other image
registration techniques, and may be appropriate for applications where the template
and target images are taken from the same anatomy using different imaging
techniques. However, the technique is often inappropriately applied to segmentation
or intersubject registration problems. Considering the enormous anatomical
variability present in even the normal population, failure to address fundamental
differences in structure between subjects during registration makes this method
inadequate for all but the most global image comparisons. Some researchers have
used Principal Axis registration as a preliminary step to remove global rigid body

differences [34].

Deformable Image Registration

Deformable image registration is rapidly gaining preference for many image
registration applications. In deformable image registrations, a geometrical model of
the template image dataset is created and subsequently deformed to align with the
target. The template is typically a static set of image data. The target can either come
from a time sequence of image data taken of the template anatomy during
deformation, or from entirely different subjects. The first case represents a strain-
tracking problem common in experimental biomechanics, e.g., ventricular mechanics
[35]-[39], plaque mechanics [40]-[S1], knee mechanics [48], [51]-[61], and muscle

mechanics [50], [62]-[68]. The second case represents a segmentation or registration



problem frequently encountered in medical imaging, e.g., tracking tumor growth [69],
[70], brain mapping [24], [71]-[73], or anatomical metric tracking [74]-[76]. One goal
is common: generate a transformation map (registration) between the reference image
set (the template), and the target image set. This transformation map allows direct
comparison of tissue geometrical structures as represented by the image sets.
Registration can also provide 3D spatio-temporal strain field information based on
inhomogeneities in the deforming tissue as interrogated by the imaging sensors.

When deformable image methods are rigorously applied, the template
transformation is governed by principles of nonlinear differential geometry or
continuum mechanics. Some methods focus on border information, such as the
deformable contour models of Kass [66], [77]-[80]. Others have used full volumetric
approaches subject to the laws of linear solid mechanics [81]-[86], fluid
mechanics[87]-[89], nonlinear continuum mechanics [7], [12], [13], [16], [90], [91], or
free-form deformation [92], [93]. Although deformable image methods are robust
enough to solve most problems without user interaction, many of these techniques also
allow stipulation of known correlation points (landmarks) in both the template and
target image datasets.

The advantages of deformable image registration methods are due to their
ability to automatically generate very high resolution (often voxel level)
transformation maps between the template and target image datasets. A primary use
of such techniques to date has been medical image segmentation and registration [7]-
[10], [66], [94], [95]. The methods have also been applied to a wide range of

problems including handwriting recognition [96], [97], vehicle classification [98],
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facial feature recognition [99], [100], fish identification [30], military target
identification [101], manufacturing [102], and nonlinear strain computation [12]-[16],
[47].

Deformable image registration methods typically require significantly more
computational effort than landmark or principal axes methods. Additionally, stopping
criteria for these methods are often ad-hoc and there is the potential for generation of
incomplete registrations (local minima solutions) due to premature termination of the
registration process.

A significant portion of the present work has been devoted to techniques for
quantifying the success of deformable image registration techniques. Previous efforts
to quantify the success of these techniques have focused on global comparisons of the
mapped image following registration with the target image. Examples include image
subtraction [16], misfit calculation (a.k.a. sum of the squared differences) [103],
histogram comparisons [104], wavelet transform comparisons [105], and mutual
information [106]. A potential drawback of global measures is that they do not show
the regions of the registered image where the registration scheme is highly dependent
upon the registration constraints (rather than the image data). Additionally, global

measures can be inconsistent with expert observer evaluations.

Related Fields of Research

The technology underlying deformable image registration has direct
application to three major fields of research: pattern recognition, biomechanics, and
medical imaging. To provide context for the present work, related contributions from

each field are summarized briefly below.
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Pattern Recognition

Significant effort has been devoted to establishing methods for recognizing
distinct patterns present in image data. Applications to the medical field are abundant.
For example, a radiologist might recognize that certain intensity patterns are indicative
of a tumor, while other patterns represent a benign cyst. Numerous techniques have
been proposed for attempting automated or semiautomated pattern recognition, such as
nearest neighbor [107], clustering [108], neural networks [109], support vector
machines [110], [111], and statistical techniques [112], [113], [63].

Many of the image registration methods currently in use can trace their roots to
pattern recognition techniques. Indeed, image registration can be classified as a
pattern recognition technique, and the literature is often intertwined. In many cases,
new algorithms that simplify the pattern recognition process can also be applied to

image registration.

Biomechanics

An important problem in biomechanics is the extraction of three-dimensional
(3D) strain tensor fields from biological tissues undergoing deformation. Tissue
deformation described by the strain field has been used to study function of the heart
[114]-[116], joint dysfunction [117], and other physiologically relevant problems
[118]-[121].

Previous attempts to estimate nonlinear strains in biological tissues and cells
have typically employed fiducial markers [65], [122]-[129]. 3D strains can be

estimated directly from changes in the distances between groups of markers making
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up tetrahedral sets. Inhomogeneous strain fields and physical dimensions of the
markers, however, can limit applicability of marker-based methods [36], [122], [123].
Some techniques attempt measurement of biological strain fields using direct imaging
methods such as tagged MRI [115], intravascular ultrasound [43], [46], spatial
modulation of magnetization (SPAMM) MR [39], or other methods [114], [130],
[131]. These techniques allow direct, in vivo measurement of strain fields. However,
each of these methods makes assumptions about homogeneity of the deformation
field, similar to marker-based techniques. Additionally, image resolution is generally
poor and extended image acquisition times are often required.

Many researchers currently use computational techniques such as finite
element analysis (FEA) for predicting the strain and stress fields developed in
biological tissue during deformation [41], [61], [68], [132]-[134]. These techniques
have obvious advantages over invasive experimental methods, which would otherwise
be required to obtain this information. The techniques are also able to deal with a
tremendous variety of complex tissue geometries and nonlinear material properties
[135]. A drawback to purely computational techniques is that material property data
for biological tissues are often poorly characterized. Additionally, both material
properties and geometry can vary widely between subjects, making generalized
models inadequate in many instances. Verification of results is also challenging.

Some of the most successful techniques to date have used a combination of
computational, experimental, and imaging methods to calculate stress and strain fields
in biological tissue [37], [136], [137]. Subject-specific computational models are

created directly from image data that correspond to the biological structures of
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interest. Material property values are then measured experimentally directly from
explanted tissue. Marker-based imaging methods are used to verify the computational
results as far as possible. The most obvious disadvantage of these techniques is that
they must generally be performed on cadavers because of the necessity of obtaining

accurate material properties and applying markers to the tissue of interest.

Medical Imaging

Part of the usefulness of medical imaging sensors stems from their ability to
interrogate the 3D structure of biological tissue. The process of medical imaging
generally involves a measurement process, followed by an image reconstruction
process. Stochastic noise and systematic errors in these processes propagate to the
reconstructed image. The statistical properties of imaging sensors can influence the
ability of both intrasubject and intersubject image registrations to achieve acceptable
results [7], [13], [66]. Examples of stochastic sources of error related to imaging
sensors include X-ray interaction effects and attenuation effects, magnification effects,
and tomographic reconstruction approximations. Systematic errors can also influence
registration methods. Examples of systematic sources of error [138] include
calibration errors, differences in imaging scanner settings, differences in exposure

time, and differences in tomographic reconstruction techniques.

Relation to Present Work

The continuum mechanics origins of the deformable image registration
(Warping) method developed by Rabbitt and Weiss [16], [90] present several

advantages over other registration techniques, albeit at a computational cost. The
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registration obtained is a one-to-one (diffeomorphic) mapping of differential lines,
areas and volumes from the target image set to the template. Thus all features
associated with the template (labels, functional information, segmentation information,
etc.) are easily transferred to the target. Relative volume results are readily available,
providing a means to identify subject abnormalities and/or tracking tumor growth over
time. Because of these features the method was used as a test bed for implementation

and evaluation of the tools developed in the present work.
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CHAPTER 3

REGULARIZATION TOOLS FOR DEFORMABLE TEMPLATE

BASED IMAGE REGISTRATION METHODS

Introduction

In 1902 Jacques Hadamard classified mathematical problems as either “well-
posed” or “ill-posed.” He defined a “well-posed” problem as one with an existing,
unique and well-conditioned solution [1], [2]. Hadamard believed that all naturally
occurring problems fell into this category and were considered to be solvable. A
problem that did not meet these criteria was considered “ill-posed,” and unsolvable.

Contrary to Hadamard’s belief, ill-posed problems of practical interest arise
naturally in many areas of science and engineering. Many biomedical image
registration problems do not have a unique solution, and fall into this category. In
order to solve these problems, the solution space must be restricted using some form
of applied constraints or optimization criteria (a.k.a. image similarity measure). As
was discussed in Chapter 2 of the present work, image registration techniques are
defined by their applied constraint system. In many cases, however, restricting the
solution space still does not guarantee a unique solution. The problem is most
common in deformable template based registration methods, where the problem

solution is guided by optimization of a potential function. Local similarities in image
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data (regions of the template and target images that are similar in intensity, gradient,
border information, etc.) can confound global registration of the image data.
Mathematically these similarities appear as local minima in the potential function that
is being optimized. In theory, the higher the dimension of the transformation, the
more local minima present in the potential function [3].

During registration, the template image is deformed to align with the target
image field. The magnitude of the registration force is based on both the difference in
absolute pixel intensities between these fields and on gradient information (see
Appendix). In the ideal case, the target represents a “perfect” transformation of the
template and registration progresses until the template image is perfectly aligned with
the target (and the registration forces are brought into balance with the internal energy
of the deformation).

Real image data, however, present a greater challenge. No perfect
transformation exists. Thus, the registration consists of balancing conflicting image
information (due to imaging artifacts or variability between subjects) and internal
energy generated during deformation. Locations on the template and target images
containing similar intensity and gradient information will attract each other, whether
or not the deformation represents a correct registration. Thus, local image information
can interfere with global registration. This represents a local minima in the combined
energy functional used for registration and is common to most deformable template
registration techniques [4-6].

In this chapter, several techniques for regularization of image registration

problems are presented. The techniques were developed and applied to a deformable
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template based image registration algorithm, which was implemented into the
nonlinear, implicit FE code, NIKE3D [7-9]. The code was designed to align a
template model (consisting of both a material representation of the image space and
the template image data) with target image data. The target image space was assumed
to be a transformed version of the template image field. The mathematical problem
was to search through all admissible deformed configurations of the template for the
one that minimized the difference between the transformed template and target data,
while simultaneously minimizing the strain energy of the deformation. Mathematical
details of the implementation are given in Appendix.

Details of the development and implementation of a series of regularization
tools are given below. Practical application of these tools to a variety of both
simulated and real problems is presented in Chapter 4 of this dissertation. The
regularization tools detailed in this chapter are characterized as preprocessing,

integral, or postprocessing tools.

Regularization Tools: Preprocessing

Preprocessing tools address inconsistencies in medical image data due to the
stochastic nature of image acquisition devices, as well as differences in acquisition
techniques, which can occur in intersubject registration. These tools are primarily
concerned with adjusting for overall differences in image intensity and contrast

between the template and target images.
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Histogram Stretching

In many medical imaging modalities, signal intensity decays non-uniformly
over time, not only resulting in a general decrease in image intensity, but also
affecting the composition of the intensity histogram. Additionally, in the case of inter-
subject registrations, template and target images have often been acquired with
different hardware or imaging parameters (e.g., in X-Ray CT the peak voltage, current,
and exposure time may be different). Because of these factors, the image histograms
of the template and target may be significantly different and can result in incorrect
image registration. One way to partially accommodate such difficulties is to match the
centroids of template and target image intensity histograms. A simplified version of
the technique used by Dale-Jones and Tjahjadi [10] is utilized in the present work.

First the area centroids and extreme values of the intensity histograms of both
the template and target image datasets are computed. For an arbitrary image
histogram with singularly spaced discrete intensity values i ranging from 7, to Ly
and frequency of occurrence (i), the area centroids of the histogram may be computed

using

Imax

3 i) o]

1=

i=

Im n l=]min
Trnax v= : nax ’ (3. 1)
V(i) 2. v()
min =

l=[ i [|‘ﬂl|l

For an arbitrary image A with intensity values 4(n), containing N voxels the

histogram area centroids may be computed more directly as:
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D>
A(n)
N A =l .

T N (3.2)

Following calculation of these values for both the template, (7) and target, (s) image

datasets, the target voxel intensity values s(n) are scaled in order to match the target

histogram intensity centroid (i ) with that of the template (i‘" ):
A1) _ (1)
. =TI o
s (n)= (s(n) 1% )—_ min 4 (D) for s(n) <i®
) _ e
T . (3.3)
. (R CS —
s (n)= (s(n)— i(s))—ma" —+i" for s(n) =i
I(T) _ l-(S)

max

The frequency centroid of intensity histogram (W) of the adjusted target (s")

is then computed and scaled to match that of the template image intensity histogram.

D

s (n)=s"(n) (3.4)

e )

Results obtained using this technique were reported by Bowden [5], [11].

Singular Value Replacement
Improvements in correspondence between the histogram of the target data with
the template image can also be accomplished by replacing the singular values of the
target image with those of the deformed template image. The technique is based on
the Singular Value Decomposition (SVD) [12-14]. The premise is that any real x-by-y

matrix A can be decomposed such that
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A=UzV". (3.5)

Here, U and V are orthonormal matrices whose columns contain the singular

vectors of the decomposition, and the diagonal matrix, 2 = diag(a ,,...,or),
r=min(x,y) with o, 2...> 0o, 20, contains the singular values of the decomposition.

For clarity, a particular singular value is referenced as o;. SVD has found wide
application in image compression and for evaluating the “noise level” of a matrix
system or image based on the singular values [15].

The original matrix A4 is easily retrieved following decomposition by
multiplication of the component matrices. An interesting observation is that the U and
V matrices represent positional data, essentially a topological mapping of intensity
information contained in the X2 matrix to the 4 matrix. This observation is the basis of
the singular value topology tracking technique discussed in Chapter 5 of this
dissertation.

Since a fundamental assumption of all deformable template based image
registration methods is that the target image is a transformed version of the template,
containing the same elements as the template, but at different spatial locations within
the image data, it follows that 3 =3®. Real variability between sensors and subjects
will of course influence the actual values of ™ and 3, but by enforcing this
constraint, we can improve the correspondence between the histogram of the target

image with that of the Template image. In 2D,

*

s =

n

M=

u, ("o, 1,)v," (3.6)

S
Il
—_
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where the lower case singular vectors (u, , v, ) correspond to individual (column)

vectors of the target s, but the singular values "’

o, are those of the deformed
template. This operation has the effect of changing the overall intensity of each target
mode to match the corresponding mode in the deforming template without changing
the topology or spatial distribution within the mode. I, refers to a depleted identity
matrix containing zeroes in all matrix locations, except the main diagonal entry in the
nth position.

To apply SVD to 3D image data it is necessary to extend the concepts beyond
the classical 2D matrix framework. There are several ways in which this could be

done. In the present work the matrix containing the image intensity data 4 was

arranged in a 3D rectangular format and decomposed separately for each image slice £

(k:1 .o .K)I
A® — gy ®T (3.7)

to obtain a stacked set of 2D SVDs. The singular values from the stacked slices were

then assembled as columns of a new matrix A:
a=[z" zv .. x] (3.8)

This matrix, containing slice-by-slice singular values, was then subjected to a second

SVD:

A=U3VT (3.9
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The n™ 3D singular mode (A4,) was obtained by applying Eqgs. 3.7 - 3.9 to the n"

singular value. For the k™ slice this provides

AW = yhgop®T (3.10)
The matrix = was constructed in 3D for the k™ slice of the n™ singular mode using
O =071, 3.11)

where ¥ was obtained by zeroing all elements in ¥ with the exception of &, the

subscript k denotes the k™ column, and I is the identity matrix. Note that this reduces
to the 2D case described above if all slices are identical. Although this approach is not
the only possible 3D decomposition, it preserves the hierarchical property and has
well-defined inner-products. Eqs. 3.7 - 3.11 will be referred to herein as 3D SVD.

Using these equations, a 3D singular value replacement may be defined as:

§ = iu ("6,1,)%," (3.12)

n=1
Results obtained using this technique were reported by Bowden [5].

Regularization Tools: Integral

Integral tools are applied during the image registration process to avoid local
minima solutions. In general, two types of local minima solutions are likely to occur

during the Warping process. Euphemistically, they could be referred to as the “train
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wreck” and the “shoving match.” As part of the present work, tools have been
developed to deal with each type.

The train wreck occurs when several portions of the template and target images
contain similar intensity and gradient values. This situation is common in many
biological problems, but it is especially common in neuroanatomical registrations.
The analogy to a train wreck follows: Two trains are traveling along the same track,
both carrying similar cargo, but bound for different destinations. Unfortunately, the
first train mistakenly stops at the first city, leaving the second train unable to reach its
destination (since the first train is already there), but unable to travel to the second city
(because there is only one track). Similarly, sometimes during image registration,
local template image information must pass through regions of similar intensity in the
target in order to reach the appropriate destination. If the correspondence between
template and target is high enough, the registration process can get “stuck”, making
further progress in the registration impossible, because of the penalty imposed on
deviating from the current template configuration. Figure 3.1 shows an example of
train wreck local minima that occurred during registration of macaque brain
cryosections (macaque cryosection data provided by D.C. Van Essen of Washington
University). The arrows indicate the particular areas of the images that cause the
problem.

The second type of local minima that commonly occurs during registration is
the shoving match. The shoving match is more often encountered during nonphysical

registration problems, such as intersubject registration. The analogy hearkens to a
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Figure 3.1. Examples of typical local minima solutions. Panels A and B show the
template and target images from a macaque neuroanatomical registration. Panel C
shows the “train wreck” local minima solution. Note that many of the sulcal regions
have similar image intensity/gradient. These regions can interfere with global
registration. Panels D and E show the template and target images, which resulted in a
“shoving match” type local minima solution. The dark occlusions do not overlap, and
surrounding areas of the images lack sufficient gradient and image texture to drive
deformation. Panel F shows the discretized template model before deformation.
Panel G shows discretized template in a local minima solution. The FE mesh cannot
deform further without element inversion.

schoolyard quarrel where the two combatants face off, neither willing to move. The
first combatant pushes the other, lightly at first, the other responds in kind. Push turns
to shove until both are shoving the other as hard as they can. Similarly, sometimes
image information would dictate continued deformation of the template model,
however material constraints placed on the deformation (most commonly related to the
bulk modulus in Warping problems), penalize that mode of deformation. As the
penalty parameter is increased (see equation A.6 in the appendix), the associated
Warping force increases. Incremental deformation of the FE mesh simply increases

the material resistance to further deformation (often because surrounding elements

have already become locked into place), until finally an element is inverted, causing
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premature termination of the solution process. Figure 3.1 also shows an example of a
“shoving match” type problem that cannot be solved without regularization. A dense
occlusion in a soft billet was subjected to gravity loading such that following
deformation the occlusions did not overlap. The regions of the images corresponding
to the billet lack sufficient texture to drive deformation. Panel F shows the discretized
template model before deformation. Panel G shows discretized template in a local
minima solution. The FE mesh cannot deform further without element inversion.
Without regularization, the Warping algorithm attempted to expand the region
surrounding the target inclusion, while simultaneously shrinking the region

surrounding the template inclusion.

Dynamic Spatial Filtering (FFT & SVD)

One way to regularize the registration problem and potentially overcome “train
wreck” (and some “shoving match”) type of local minima is to spatially filter the
template and target image data during the registration process. Smaller image features
are obscured in favor of more dominant ones. The registration can then proceed to
smoothly align these dominant, global features and lock them into place. The filtering
is gradually removed, allowing registration of higher frequency detail, until the
registration is complete.

One method of spatially filtering 3D image data is by convolution of the image

with a filtering kernel A(X):

C(X)=t(X)*k(X)=[((X k(X - Z )dZ (3.13)
B
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where #X) and 7' (X) are the original image data and the filtered data respectively, X is a
vector containing the material coordinates and Z is the frequency representation of X. Since
convolution in the spatial domain is equivalent to multiplication in the frequency
domain, an efficient way to accomplish this calculation is through the use of the

discrete Fourier transform.

T(Z)=3{t'(X)}=T(Z)K(Z) (3.14)

Once the data are in Fourier space, a simple multiplication is applied and then the

transform is inverted to obtain the convolved image in the spatial domain.

t(X)=3YT(Z)K(Z)) (3.15)
Because of the highly optimized algorithms developed for applying Fourier
transforms [16], this method is significantly faster than computing the convolution in
normal image space. Changes in the filter are applied by changing the convolution
function k. Different filter kernels have been successfully used, including a Gaussian
kernel and a simple Heaviside function. The technique has been used extensively in
the Musculoskeletal Research Labs at the University of Utah [4], [5], [17-19]. An
example of using dynamic Gaussian spatial filtering during registration of macaque
cryosection images is given in Figure 3.2.
As part of the present work, we have developed and applied another dynamic
spatial filtering technique based on SVD. The technique exploits the hierarchical

nature of the decomposition, in that the most significant image information is
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Figure 3.2. Dynamic Gaussian spatial filtering. Panels A, B, and C show the
Template, Target, and initial subtraction (Template-Target) images, respectively.
During the solution process, the Template and Target images are convolved with
Gaussian kernel functions. Initially large variance values for the kernel are used, then
progressively smaller values as registration nears completion. Rows D, E, and F show
the filtered versions of the Template, Target, and subtraction images at incremental
points in solution time.

contained in the first singular values/vectors. To utilize the technique, both the
template and target images are decomposed using the SVD (Eq. 3.5, 3.9). The images

are then reconstructed with a truncated version of 2

A = zm:un(anln)vj (3.16)

n=1
where m < N and u,, c,, and v, are all from SVD of the corresponding template or

target image. When only the few largest singular values are used for reconstructing
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the regularized images, the images are reduced to their most basic components and
local details are obscured. Following registration of these regularized images, new
versions of the template and target images are generated with progressively more
singular values. The process continues until all of the singular values are included
(m— N), and the complete images are registered. The 3D version is applied

similarly as:

A = zm:ﬁ (6,1,)7 (3.17)
n=1

In this manner, the most significant singular values from the most significant slices are
registered first, and then progressively more image detail is added during the
registration process.

The evolution of the macaque cryosection registration problem using the
progressive SVD filter is shown in Figure 3.3. The technique may be used in
conjunction with the Singular Value Replacement technique described previously.
Although computation of the SVD algorithm is somewhat time-consuming, it need
only be performed once for each image set. Reconstruction of the image data at each
change in the number of included singular values m, is a simple matrix multiplication
process. This is in contrast to other spatial filter algorithms, which generally involve
major computational effort at each change in filter dimension. For example, the
convolution of an image with a Gaussian filter of 5 voxels cannot be directly obtained
from knowledge of the convolution result with a Gaussian filter of 3 voxels without
performing another convolution operation. Thus the SVD algorithm is often more

efficient than these techniques.



41

Figure 3.3. Dynamic SVD spatial filtering. Panels A, B, and C show the Template,
Target, and initial subtraction (Template-Target) images, respectively. The Template
and Target images are decomposed using the SVD. During the solution process, the
images are reconstructing using progressively more singular values. Rows D, E, and F
show the filtered versions of the Template, Target, and subtraction images at
incremental points in solution time.

The potential advantage of using an SVD filter over a Gaussian filter is that
registration progresses naturally through the principal modes of the image data.

Practically, the technique is susceptible to local minima during the intermediate steps

(for example, reference panels B-F of Figure 3.2).

FE Rezoning
During large deformation registration problems, FE discretization levels can be

insufficient to track kinematics of very complicated displacement patterns. Rezoning
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allowed for larger nodal displacements and more complicated element deformation
fields by periodically restoring the finite element mesh to its undeformed state during
computation. At this point, material stresses were reset to zero, and template image
intensity and nodal displacements were interpolated from the nodes of the deformed
FE mesh to those of the reset mesh. The analysis then continued until the convergence
criteria were met or another rezoning was required. Strain values were computed
following registration using standard FE techniques from the accumulated nodal
displacements computed at each remesh point.

The rezoning procedures required interpolation of the template image data T
and the accumulated nodal displacements #(X) from the deformed FE mesh to the
nodes of the reset mesh. For each node N in the undeformed mesh, the element in
deformed mesh that contains the node is located by comparing the natural coordinates
(&v v, and Cy) of the node in each deformed element (successful location requires —
1 <&y, nv ¢v < 1). Once the natural coordinates of the node in the element local
coordinate system were determined, the value of the quantity to be interpolated could
be obtained for the node of the reset mesh by interpolation using the trilinear shape
functions for the eight-noded hexahedral element [20].

The relationship between the global coordinates and the local element
coordinates was required to perform the interpolation. For this, the local coordinates
of the eight nodes of the element containing N were assembled into an 8x3 matrix
K& n, &), where &, m;, and ¢ are the local element coordinates of the nodes
composing the element; for instance, node 1 has local coordinates (-1, -1, -1). An 8x8

matrix G' was assembled to contain the global nodal coordinates and the products of
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these coordinates as per the shape function definitions. The local coordinates were
related to the global coordinates via the interpolating polynomial constants arising

from the shape functions as follows:

-1 -1 -1 L x, » zo xy» »z xz xnz|la b ¢
pl=lcle]=| =]

1 1 1 Loxg vy oz Xy VeZy NZg XZg || ds by G
(3.18)

Here, a is an 8x3 matrix containing the polynomial coefficients and (x; y; z;)
are the coordinates of the corner nodes of the deformed element in the global

coordinate system. The matrix a was determined for each element in the reset mesh:

[«]=[GT"[¢] . (3.19)

The local element coordinates (v, 77y, ¢y) of node N follow from « and the global

coordinates (xy, ¥n, Zn):

a b ¢

[ézv Ny é,N]z[l Xy Yn Zy XNVn  VnZN  XnZy xNyNZN] .
ag by ¢
(3.20)

The interpolated values can then be computed from the local coordinates, the nodal
values, and the trilinear shape functions. For example, the interpolated template

intensity was computed using
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v (EotnsSn) = DTk (EvamgsSn) s (3.21)

i=1

where the 7; are intensity values at each node in the deformed element and 4; are the

shape functions corresponding to each node evaluated at (§N,77N,§ N) [20]:

1
:g(l_éNéi )(1—77N77i)(1—§N§i)- (3.22)
As an example, for node 8 with local coordinates (1,1,1) the shape function would be
1
hg =§(1—§N)(1—77N)(1—§N)~ (3.23)

The accumulated nodal displacements u(X) were interpolated using the same
procedure. Note that this interpolation strategy is consistent with the shape functions
used in the FE solution process. A graphic illustration of the technique is given in
Figure 3.4. Panels A and B of the figure show the template and target images,
respectively.  The template evolution Results using the technique on mouse

neuroanatomies have been reported in the literature [17].

Sequential Image Registration
In strain-tracking registration problems, it is often possible to avoid train wreck
type local minima by using additional target images acquired at intermediate stress
states during the deformation. Utilizing additional images also allows more accurate
computation of developed stress for materials that have path dependent material

characteristics (such as viscoelastic and elastic-plastic materials).
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Solution Time >

Figure 3.4 Rezoning during mouse neuroanatomy registration. Panels A and B show
the Template and Target images, respectively. Panels C-G show the deforming FE
mesh overlaid onto the deforming template image. At panel D, the mesh has almost
become sufficiently distorted to start inverting elements. A rezoning operation is
performed and the mesh reset to its initial configuration (Panel E). Registration then
continues to completion.

This regularization technique has been implemented into the Warping code
using the restart capabilities of NIKE3D [9]. Accumulated nodal displacements and
element stresses (as well as template image information) are stored to disk following
registration of the template image with the first sequential target image. The
registration problem is then restarted from the previous termination point, but with the
next sequential target image. The procedure continues until registration of the
template with the final target image has been completed.

For accurate stress computation using rate-dependent material models, it is

important to accurately specify the acquisition time of each sequential target image.

This is in contrast to a typical quasi-static Warping problem, where time is irrelevant
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and simply used for gradually increasing the penalty parameter A (see Eq. A.6 in

Appendix A).

Regularization Tools: Postprocessing

Postprocessing tools facilitate accurate visualization and evaluation of the
computed registration solution. Additionally, because image registration is often an
iterative process, postprocessing tools often guide variation in registration parameters

during iterations, as well as providing stopping criteria.

Mapper3D

In most cases, the nodal points of the computational FE mesh used for image
registration are not co-located with the image voxels. Following image registration,
the computed registration map must be applied to the original template image in order
to accurately view the results and compare the registered template image with the
target image. For simple equi-spaced rectilinear meshes, tools such as the
visualization toolkit (vtk) [21] are available. Many registration problems, however,
are more suited to a FE mesh that conforms to specific areas of interest within the
template image data. In some cases, a subject-specific mesh that excludes the spatial
domain of irrelevant background image data, can avoid shoving match type local
minima that occur using a rectilinear mesh. For these problems, custom software
(Mapper3D) was written to map the computed deformations into the template image
space.

Mapper3D uses an optimized version of the technique described for rezoning

(Eq. 3.18 —3.23) to locate the particular deformed finite element corresponding to the
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Image

Deformed Image

Displacement Field

Figure 3.5. Mapper3D. Mapper3D uses the trilinear FE shape functions to apply a
computed displacement field to an image.

location of each image voxel in the deformed template image. The standard tri-linear
shape functions from isoparametric finite element analysis are then used to determine
the original location of that voxel in the undeformed template image. The template
image intensity from that voxel is then applied to the deformed template image voxel
(see Figure 3.5).

A special case occurs for medical imaging sensors that compute image
intensity based on the density of the biological tissue under consideration (CT,
ultrasound, etc.). For these types of images, Mapper3D can adjust the intensity of the
voxel in the deformed template image by utilizing the change in volume of the
corresponding finite element in the deformed finite element mesh.

In addition to allowing direct visualization of the deformed template following
registration, this custom software allows segmentation and classification of
information computed on the template image to be accurately applied to the target

image. Versions of this software have been utilized heavily in the Musculoskeletal
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Research Labs at the University of Utah and were used to report results in several

publications [4], [5], [11], [17], [19], [22-25].

Ports to Other Operating Systems

In order to take advantage of more efficient hardware solutions, the Warping
code (and the tools described above) has been successfully ported to Compaq Alpha
(Tru64 Unix) and x86 Linux (Redhat 8.0) platforms. The Compaq Alpha version of
the code uses the PARDISO massively parallel, sparse matrix solver [26]. It was
compiled using the native Fortran compilers for that system. SVD and FFT library
functions are used from the Compaq extended math library (cmxl). The x86 Linux
platform uses the PCSMS sparse matrix solvers developed by NASA [27]. It was
compiled using the Portland Group compiler [28]. SVD and FFT library functions are

used from the LAPACK library [29] and the GNU Scientific Library [30].
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CHAPTER 4

A CONTINUUM MECHANICS BASED DEFORMABLE

TEMPLATE REGISTRATION METHOD: WARPING

Introduction

In 1995, Rabbitt and Weiss first presented a method for using the fundamental
principles of continuum mechanics to guide deformable template based image
registration [1]. The method, known as Warping, possesses several desirable
characteristics. The general approach does not require the definition of landmarks,
fiducials or surfaces, although it can accommodate these if available. Perhaps most
significantly, Warping is formulated to naturally accommodate accurate stress and
strain field computation during nonlinear material deformations, which are typical of
many registration problems. Additionally, the method is diffeomorphic, in that one-
to-one correspondence of differential lines, areas, and volumes is guaranteed between
the registered images.

During the course of the research described in this dissertation, considerable
effort has been exerted to validate Warping and extend its application. To this end,
several techniques have been developed for regularization and evaluation of practical
image registration problems. The purpose of this chapter is to demonstrate the

application of Warping to a series of both simulated and real image registration
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problems. Solution of these problems has been facilitated by development of the
regularization tools described in Chapter 3 of this work.

The Warping examples presented in this chapter can be classified into three
general categories: strain tracking, image segmentation and registration, and semi-
automatic hexahedral mesh generation. Strain tracking results are provided for tip
deflection of a cantilever beam, compression of a circular billet, indentation of a
human distal phalanx, compression of a human spinal disc, and deflection of a mouse
tectorial membrane. Segmentation and registration results are provided for a macaque
neuroanatomy. Warping was also used to automatically generate a subject-specific

hexahedral FE mesh of the human femur.

Methods
Mathematical Basis

Only a descriptive outline of the mathematical basis of the method is presented
here. For a more thorough treatment of the derivation, please refer to Appendix A (or
reference [1-3]). Standard notation from finite deformation theory is employed [4],
[5]. In general, lowercase letters refer to quantities associated with the spatial
(current) configuration. Uppercase letters denote quantities associated with the
material (reference) configuration. Vector and tensor fields are presented in boldface
italic type.

A deformation map ¢ was defined that related a reference (template)
configuration with material coordinates X to a target configuration with mapped

material coordinates x.
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P(X)=x (4.1)

A suitable large-deformation material model (e.g., hyperelastic) was used such that the
strain energy density function W(X, C(@)) was defined, where C() is the right Cauchy
strain tensor [6]. In addition to the strain energy density function, an image-based
energy density function U(X, @) was used to relate spatial information from the
template to the target data [1], [3], [7]. This spatial information was obtained by
mathematically interrogating the template and target anatomies using medical imaging
sensors. The image energy density function penalized all configurations of the
template that were in conflict with the target image data. Both energy terms were

incorporated into a combined energy density functional:

E(p)=[W(X,.Clp))dV-[U(X,p)aV (4.2)
B B

which was used to derive the weak form Euler-Lagrange equations. The domain of
the template space was discretized; and the template image data was interpolated onto
the corresponding discretized version of the template model. The FE method was
used to iteratively deform the template model into alignment with the target image
data, while simultaneously minimizing the internal strain energy of the model. When
solved using the penalty method [8], this is equivalent to a Bayesian approach [9],

where W defines the Gibbs form of the prior probability and U defines the likelihood.

Implementation
Solution of the problem was divided into three phases: preprocessing,

processing, and postprocessing. In the preprocessing phase, a geometric model was
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constructed, boundary conditions were specified, and material properties were
assigned. If needed, preliminary image regularization was applied at this phase of the
analysis.

First, a geometric model was constructed to span the region of interest (ROI) in
the template image. For all of the example problems presented in this chapter, the
geometric models were constructed using the commercial FE preprocessor TrueGrid
(XYZ Software, Livermore CA). The software is an extremely robust interactive
hexahedral mesh generator, and allows parametric definition of mesh characteristics
and applied boundary conditions. TrueGrid uses a projection technique for aligning
nodes of the FE mesh along imported curves and surfaces. The software also supports
various methods of automatic mesh relaxation and evaluation.

In general, the template model was sampled more sparsely than the image data.
In some cases, the model was constructed to directly correspond to individual
anatomical structures represented in the image data; in others, the model covered the
entire domain of the template image data. For registration problems where accurate
stress calculations were required, it was important to use subject-specific meshes in
order to apply appropriate material parameters to the relevant anatomical structures as
represented in the template model. Image data were interpolated over the domain of
each element to generate a continuum representation of the “image field” in the
reference configuration. The evolution of the image field was a function of the
deformation and the material mapping.

Due to differences in imaging scanner settings, intersubject anatomical

variation, and other sources of error, it was sometimes necessary to perform various
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image processing operations on the image data prior to registration. For instance, in
some cases it was necessary to histogram equalize the template and target images to
correct for differences between scanners and data collection techniques. This was
done with either the histogram stretching technique or singular value replacement
technique as described in Chapter 3. Because the image data were usually acquired at
a finer resolution than that of the computational mesh, often the image data were
downsampled.  The downsampling was governed by the Nyquist frequency
corresponding to the nodal spacing of the template mesh and was obtained by
convolution of the image data with a Gaussian kernel of appropriate dimension
(reference Chapter 3, Eqgs. 3.13 - 3.15).

During the processing phase of registration, the combined energy functional
(equation 4.2) was minimized using the nonlinear FE code NIKE3D [10]. NIKE3D is
a large deformation, implicit FE solver developed and maintained by Lawrence
Livermore National Lab. Implementation of the Warping algorithms into such a well-
developed FE package allowed for broad variation in both applied boundary
conditions and material constitutive parameters, which were used to guide the
registration process. For example, in some subject-specific registration problems,
contact conditions can be important. It also allowed independence of the
computational mesh from the spatial discretization of the image data. This
independence was important for reduction of the computational size of the geometrical
model and in cases where the region of interest did not include the entire image data

set.
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Template and target images were interpolated from voxel coordinates to the FE
model to define continuous mathematical representations of the data. The interpolated
images were updated as the material deformed through the spatially fixed image
coordinates. Differences between intensity of the target and template images, as well
as their gradients, contributed a spatially dependent body force that drives the
registration process. These differences also contributed to the tangent stiffness in the
FE implementation (reference Appendix A, Egs. A.15 — A.18). It was also during the
processing stage of the registration that the regularization techniques discussed in
Chapter 3 of this dissertation were used to avoid local minima in the combined energy
functional. Some of the techniques used were: dynamic spatial filtering, rezoning, and
sequential image registration.

After the processing phase of Warping, field variables, including displacement,
relative volume, and strain, were viewed using the FE postprocessor GRIZ [11].
Additional custom postprocessing software was written to output the deformed
template as an image data set (reference Chapter 3: Mapper3D). This required
interpolation of Lagrangian nodal displacements in order to generate pixel locations
and intensities within the Eulerian image-based coordinate frame. If the registration
were perfect, the mapped template image would exactly align with the target image.
Thus, visual inspection of the mapped template image provided a qualitative means to
assess the registration. Global quantitative measures such as subtraction and sum of
the squared difference (SSD) were also used to demonstrate image alignment [3].
Other quantitative means of assessing image registration are presented and discussed

in Chapters 5 and 6 of this dissertation.
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Illustrative Examples

Mechanics Validation Study: Compressed Circular Billet

The first example problem was a homogeneous circular billet compressed
between two parallel plates. The problem was highly nonlinear in that it accounts for
both large strain as well as contact between the billet and the parallel plates during the
deformation. Hypoelastic material properties were assigned to the billet (E= 1MPa,
v=0.48). A FE mesh was constructed to model 1/4 of the billet in the reference
configuration with symmetry boundary conditions applied to the appropriate surfaces.
The objective of this analysis was to verify the ability of the Warping code to
accurately predict stress and strain for a simulated example problem with well-defined
material properties and known loading conditions.

For the forward simulation, a prescribed displacement condition was applied to
the parallel plates so as to impose 50% axial compression on the billet. Simple black
and white Template and target images were generated from the forward solution using
images of the FE mesh in the reference and deformed configurations (without mesh
lines).

To validate the warping algorithm, the boundary conditions and the applied
loads were removed, and the image terms were added to the energy functional (Eq.
4.2). The problem was then re-run with the two images driving the process. An
augmented Lagrangian approach was used to enforce correspondence between the
template and target images. As with all problems presented in this chapter, this
example problem was solved using a static analysis. For this simulated registration

problem, no additional regularization techniques were needed.
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Mechanics Validation Study: Large Deformation Cantilever Beam

A classic problem in solid mechanics is the cantilever beam. For this analysis,
a three-material hypoelastic beam was used. The objective was to verify the ability of
the Warping code to accurately predict stress and strain for a simulated example
problem with well-defined material properties and known loading conditions. In
contrast to the compressed billet problem described previously, the computed
deformation was nonhomogenous in nature and interior stress and strain fields cannot
easily be determined from border information alone. Young’s Modulus values for the
top, middle and bottom layers respectively were specified as: E = 20GPa, E = 20MPa,
E = 2GPa. Poisson’s ratio was set at 0.3 for all layers of the beam. The beam was
modeled in a plane strain configuration with the left end of the beam constrained from
motion. A FE mesh was constructed to directly correspond with the material layers of
the beam.

First a forward mechanics problem was solved, with a prescribed loading
applied to the top node on the right end of the beam (50kPa {). Unlike the
compressed billet problem described previously, the nonhomogenous nature of the
cantilever beam required adequate image textural content to effectively predict stress.
To this end, arbitrary textured image data were generated to correspond with the
undeformed configuration of the beam. This image data served as the template image
for the image registration problem. The target image for the registration problem was
generated using Mapper3D by applying the deformation field computed from the

forward solution to the template image data.
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Once the forward solution was complete, the prescribed loading conditions
were removed and the problem was solved using Warping to drive the deformation.
Additional regularization was not necessary for this simulated problem. Following
registration of the image data, the stress fields from the forward and Warping

problems were compared in order to validate the solution process.

Determining Strain Fields in a Human Spinal Disc during Compression

The human vertebral disc is a complex combination of materials including
collagen, water, and a proteoglycan matrix. Material characterization and strain
measurement are extremely difficult for the disc. Using a nonmagnetic compression
frame and a MR scanner, MR images of a L2-L.3 motion segment were obtained
before (template) and after (target) application of a compressive load (image data
supplied by Chiu et al. [12]). The objective of the analysis was to compute the strain
field present in the spinal disc during the deformation from the supplied image data.

The template image was manually segmented to obtain contours corresponding
to the bone and disc. These contours were used to generate a FE mesh corresponding
to the specific anatomy of the subject. Image data were filtered at the spatial Nyquist
frequency (6 pixels) of the FE mesh to avoid aliasing. Representative hypoelastic
material properties were estimated from the literature [13]. Differences between the
template and target images described the only input force driving the deformation of
the disc and bone. A penalty method was used to apply the registration force. As the
warping code registered the two images, strains developed in the spinal disc.

Following registration, the computed deformation field was applied to the template
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image using Mapper3D, in order to obtain the deformed template image following

registration.

Determining Stress and Strain Fields in Human Distal Phalanx
During Indentation

High-resolution MR data from the distal phalanx were collected in order to
estimate material response of the human fingerpad to indentation. A 4.7 Tesla magnet
and a RARE sequence were used to obtain high-resolution (125 x 125um) MR images
of the cross-section of a healthy human male fingerpad [14]. The nail of the distal
phalanx of the subject was rigidly constrained using a specially constructed, non-
magnetic frame. Mechanical indentation of 1-2 mm was applied to the fingerpad with
a nonmagnetic, rectangular indenter. Constant indentation was maintained by
mounting the indenter to the constraint frame. The target image was obtained during a
maintained indentation of the fingerpad. The objective of the analysis was to examine
stress and strain fields in the fingerpad under the described loading conditions.

In order to examine the stress developed in the fingerpad due to the applied
indentation, it was necessary to develop a template model that reflected the specific
anatomy underlying the images. A FE mesh was constructed based on a manual
segmentation of the undeformed template image. This mesh was divided into three
regions based on tissue type. Hypoelastic material properties were assigned from the
literature [15] as follows: bone (E = 15x10® Pa, v = 0.48), dermis (E = 15x10* Pa, v =
0.48), other tissue (E = 15x10° Pa, v = 0.48). No externally applied loads or boundary
conditions were imposed on the model; thus deformation of the mesh was exclusively

due to the image registration process. Dynamic spatial filtering was applied to both
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the template and target images during registration. An augmented Lagrangian method
was used to enforce correspondence between the template and target images.
Following registration, the computed deformation field was interpolated from the

template FE model to the original spatial grid of the template data using Mapper3D.

Determining Strain Fields in the Mouse Tectorial Membrane

Abnet and Freeman isolated tectorial membranes from the mouse cochlea and
obtained a series of high-resolution video microscopy images [16]. The cochlea was
isolated and placed in an artificial endolymph solution. An apical section of the
membrane was affixed to the bottom of a cylindrical glass chamber using a tissue
adhesive. A single magnetizable bead 20 um in diameter was fixed to the free surface
of the membrane with tissue adhesive. Polystyrene beads 1 to 2 um in diameter were
dispersed along the surface to serve as motion markers.

The preparation was placed in a magnetic field created by two electromagnets.
A computer was used to control the waveform and the magnitude of the current
applied to the magnets. The method produced up to 1 uN of force for frequencies
from DC to more than 100Hz. The snapshot images were taken with a scientific grade
CCD camera and light microscope with strobed illumination. The voxel size in the
obtained images was about 0.2255 pm.

Tectorial membrane is composed of a mucopolysaccharide matrix with aligned
collagen fibers. Hypoelastic property data were used in the problem (E=1.2 Pa,
v=0.2). The testing situation seemed to warrant the use of a low Poisson’s ratio to
allow for water extrusion from the matrix. Because of the significant anisotropic

impact of the collagen fibers in the membrane, the applied FE mesh was dense (one
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element per pixel). This approach avoided aliasing while fully utilizing the texture of
the membrane as reflected in the image data. At such a high mesh resolution,
however, the computational cost was greatly increased. @A subsection of the
membrane was examined. The histogram of the target image was adjusted to match
that of the template image using histogram stretching. During the registration process,
the bottom surface of the 3D mesh was fixed in all direction. No other external
boundary conditions were applied except the position dependent body force generated
from the image data. Following registration, the computed deformation field was
interpolated from the template FE model to the original spatial grid of the template
data using Mapper3D. The objective of this problem was to examine fiber-matrix
interaction in the membrane during the described deformation. The problem also
demonstrated the ability of Warping to distinguish between rigid body motion and

deformation in the membrane.

Intersubject Registration of Macaque Neuroanatomies

One of the most common applications of image registration techniques is
neuroanatomical segmentation and registration. The complexity of brain structure
presents numerous challenges for deformable template based registration techniques.
Neuroanatomical structure varies widely between subjects; and as a consequence,
most of these problems display numerous local minima during image registration.

The digital images of the macaque neuroanatomy were generated by block
microtome cryosectioning and CCD digitization of 100-um sections from two
macaque monkeys (images from D. VanEssen, [17]). Results appearing previously in

the literature for neuroanatomical registration often use rectilinear computational grids
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associated with image voxels. The present FE method allows for both rectilinear and
irregular mesh structure. Two different computation mesh configurations were used: a
simple regular mesh, and a mesh conforming to a lobe of grey and white matter. In
both cases, the material was modeled as an elastic-plastic solid with a low Poisson’s
ratio (E = 15%x10° Pa, v = 0.1, Oyiela = 15x10° Pa), allowing for both large volume
changes and large shear. Deformation of the template brain slice was constrained to
the plane of the image data. Dynamic Gaussian spatial filtering with a spatial
frequency that varied from 30 pixels initially, to 2 pixels at final registration was used
to avoid local minima during the registration process. Following registration, the
computed deformation field was interpolated from the template FE model to the

original spatial grid of the template data using Mapper3D.

Semi-automatic Construction of a Subject-Specific
Hexahedral Mesh of the Human Femur

The Warping method can also be applied to generate subject specific geometric
models, which is a problem equivalent to tissue segmentation. Two knees from male
cadavers were used in this study. The fresh-frozen specimens were thawed at room
temperature overnight before dissection and were inspected for signs of previous
injury or arthritis. All periarticular soft tissue was removed until only the medial
collateral, lateral collateral, anterior cruciate, and posterior cruciate ligaments and
medial and lateral menisci remained intact. During all dissection and testing, the
tissue was kept continuously moist with 0.9% buffered saline. All testing was
completed within 5 hours during which time no noticeable changes in the tissue were

observed.
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After dissection, a volumetric CT image dataset was obtained with the knee at
0° of flexion (SOMATOM Plus4; Siemens, Munich, Germany). The slices were
collected with a 1.0 mm slice thickness (12 bit resolution, 512x512 image matrix,
FOV=140x140 mm). The surface geometries of the femur of each knee were obtained
from the CT data. Polygonal surfaces of the femur were extracted using marching
cubes [18] with decimation [19]. Surfaces were imported into a FE pre-processing
program (TrueGrid®, XYZ Scientific, Livermore, CA) and block-structured,
hexahedral finite element meshes were constructed for each structure. During
registration, no other external boundary conditions were applied, except the position

dependent body force generated from the image data.

Results
Mechanics Validation Study: Compressed Circular Billet

Figure 4.1 shows the results from a mechanics validation study of a circular
billet. Panel A shows the theoretical test setup. The symmetry planes of the problem
are indicated with dotted lines. Panel B shows the discretized template FE model of
the symmetric section. Panels C and D show the template and target images,
respectively. The deformed template image following registration is shown in panel
E. Global alignment of the registered template image with the target image is shown
by subtraction (Panel F), and squared difference (Panel G) images. The corresponding
numerical values for these measures have been normalized by the size of the images
and the magnitude of the maximum possible intensity value: Subtraction (9.31 x 107,
SSD (5.18 x 10™"). Panels H and I show isocontours of the predicted Von Mises stress

field from the forward problem and the Warping problem, respectively. The displayed
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Figure 4.1. Compression of a circular billet. Panel A shows the theoretical test setup.
Panel B shows the "4 symmetry FE mesh. Panels C, D, and E show the template,
target, and deformed template images, respectively. Accuracy of registration is shown
by subtraction (Panel F) and squared difference (Panel G) images. Von Mises stress

results from the forward (Panel H) and Warping (Panel I) problems are shown on the
same scale.

results were mirrored about the symmetry planes. Results demonstrate excellent
correspondence between the forward and Warping stress fields. From a computational
standpoint, the problem is well-defined, since the interior stresses are completely

defined by the boundary deformation.

Mechanics Validation Study: Large Deformation Cantilever Beam
Figure 4.2 shows results from another validation study, deformation of a non-

homogenous cantilever beam. Panel A shows the theoretical test setup. A three layer
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Figure 4.2. Mechanics validation of a nonhomogenous cantilever beam. Panel A
shows the theoretical test setup. Panel B shows the discretized template model.
Panels C, D, and E show the template, target, and deformed template images,
respectively. Accuracy of registration is shown by subtraction (Panel F) and squared
difference (Panel G) images. Panel H shows Von Mises stress results as predicted
from the forward FE simulation. Panel I shows the Von Mises stress predictions from
the Warping problem.

beam was built in on the left side. A large nodal load is applied at the top right of the
beam. Panel B shows the discretized template model. Panels C and D show the
template and target images, respectively. The deformed template image following
registration is shown in panel E. Global alignment of the registered template image
with the target image is shown by subtraction (Panel F), and squared difference (Panel

G) images. The corresponding numerical values for these measures have been

normalized by the size of the images and the magnitude of the maximum possible
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intensity value: Subtraction (7.89 x 10%), SSD (4.66 x 10™"). Panels H and I show
isocontours of the predicted Von Mises stress field from the forward problem and the
Warping problem, respectively. Unlike the homogenous circular billet problem
described above, a homogenous image field did not provide sufficient constraint on
the problem to achieve acceptable stress field results. Additional textural information
was added to the problem in order to regularize the problem and achieve the excellent
correspondence in stress results between the forward and Warping problems as shown

in panels H and I of Figure 4.2.

Determining Strain Fields in a Human Spinal Disc in Compression

Figure 4.3 shows results from the registration of cross-sectional MR images of
the human spinal disc. Panels A, B, and C show the template, target, and registered
template images, respectively. Global image alignment is shown quantitatively by the
normalized squared difference image in Panel D (normalized SSD = 6.08 x 10™).
Panel E shows the discretized template model. Panels F, G, and H show pressure, Von
Mises strain, and Von Mises stress fields (respectively), as predicted by Warping.
Results show pressures of up to 1.7 MPa and Von Mises strain as high as 57% within
the disc. Results indicate that the compressive load applied to the bone-disc-bone

segment had a large shear component.

Determining Stress and Strain Fields in Human Distal Phalanx
During Indentation
The top row of Figure 4.4 provides image alignment results. Panels A and B

show the original MR images taken before and during deformation (respectively).
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Figure 4.3. Compression of a human spinal disc. Panels A, B, and C show the
template, target, and registered template images, respectively. Panel D shows SSD
results for the registration. Panel E shows the discretized subject-specific template
model. Panel F shows pressure results. Panels G and H show the Von Mises strain
and stress fields predicted by the registration.

Panel C shows the deformed template image after alignment as obtained using
Mapper3D. The normalized squared difference image from the registration is shown
in Panel D (normalized SSD = 5.14 x 10™"). Panel E shows the subject-specific FE
template model used for the Warping analysis. Pressure, Von Mises strain, and Von
Mises stress field results are provided in panels F, G, and H. It was apparent from the
strain field results (panel G), that there was significant blood flow in the interior
region of the finger during material deformation. Due to higher stiffness values

however, the largest Von Mises stress values occurred in the bone and the dermal area

immediately surrounding the indenter.
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Figure 4.4. Indentation of a human fingerpad. Panels A, B, and C show the template,
target, and registered template images, respectively. Panel D shows squared
difference results for the registration. Panel E shows the subject-specific FE mesh
used for the Warping analysis. Panels F, G, and H show pressure, Von Mises strain,
and Von Mises stress fields (respectively), as predicted by Warping.
Determining Strain Fields in the Mouse Tectorial Membrane

Figure 4.5 shows registration results obtained using Warping to analyze the strain that
developed in the tectorial membrane of a mouse cochlea when exposed to a sinusoidal
force. Panel A shows a high-resolution image of the membrane. Only a portion of the
image was analyzed as indicated by the template image in panel B. Panel C shows the
corresponding portion of the target image used for the analysis. The registered
template image shown in panel D was obtained using Mapper3D. The very finely
discretized mesh shown in panel E was used to take advantage of the full image
resolution within the analyzed section. Pressure, Von Mises strain, and Von Mises
stress results are given in panels F-G, respectively. Results indicate that during

results are not shown, because the differences in the final registered images were too

small to view with the naked eye (SSD = 4.8 x 10™).
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Figure 4.5. Strain prediction in the tectorial membrane of a mouse cochlea. Panel A
shows the high-resolution template image used for the analysis. Panel B shows the
area of the template image used for the registration problem. Panel C shows the
corresponding area of the target image. Panel D shows the deformed template image
following registration. The discretized template model is shown in panel E. Pressure,
Von Mises strain, and Von Mises stress are shown in panels F, G, and H, respectively.
Intersubject Registration of Macaque Neuroanatomies
Figures 4.6 and 4.7 present Warping results that were obtained using the same

template and target images, with different types of discretization used to generate the

template model.

Rectangular Mesh

Figure 4.6 provides results for a simple rectangular mesh constructed to span

the domain of the template image data shown in panel A. The target image is shown
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Figure 4.6. Intersubject registration of macaque neuroanatomies. Panels A, B, and C
show the template, target, and registered template images, respectively. Squared
difference results from the registration are shown in panel D. The discretized template
model is shown in panel E. Panel F shows pressure results. Displacement magnitude,
Von Mises strain, and pressure results are shown in panels G and H, respectively.

in panel B. The registered template image is shown in panel C, as obtained using
Mapper3D. Registration results are quantified by the squared difference image in
panel D (SSD = 6.83 x 10"). The discretized template model is shown in panel E.

Pressure, Von Mises strain, and Von Mises stress fields are given in panels F - H, as

predicted by Warping.

Lobe Mesh

Using a subject specific mesh allows a more direct automatic segmentation of
the neuroanatomy. Figure 4.7 provides results for an irregular mesh constructed to
span the white and grey matter between the central and rightmost sulci. The target
image is shown in panel B. The registered template image is shown in panel C, as

obtained using Mapper3D. Squared difference results from the registration are shown
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Figure 4.7. Intersubject registration of macaque brain section. Panels A, B, and C
show the template, target, and registered template images, respectively. Squared
difference results for the registration are shown in panel D. The discretized subject-
specific template model is shown in panel E. Panel F shows pressure results.
Displacement magnitude, Von Mises strain, and pressure results are shown in panels
G and H, respectively.
in panel D, although the normalized SSD value (SSD = 24.21 x 107) is not
representative of the alignment due to relatively small domain covered by the template
mesh. The discretized template model is shown in panel E. Pressure, Von Mises
strain, and Von Mises stress are shown in panels F - H.

Results were computed on the geometrical model and thus are not available

outside the spatial domain of the mesh. The deformed mesh aligns well with the same

region of the brain in the target anatomy, illustrating automatic segmentation.

Semi-automatic Construction of a Subject-Specific Hexahedral
Mesh of the Human Femur
Warping can also be applied to generate subject specific geometric models,

which is a problem equivalent to tissue segmentation. This is illustrated in Figure 4.8
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Figure 4.8. Intersubject registration of the human femur. Panels A and E show
surface projections of the volumetric X-Ray CT data used as the template and target
image, respectively. Panels B, C, and D, show orthogonal views of the discretized
subject-specific template model before registration. Panels F, G, H, show
corresponding orthogonal views of the deformed template model.

where a FE model, generated from the CT data of one human femur (template), is
mapped to a second subject (target). Panels A and E show rendered views of the 3D
CT data corresponding to the template and target respectively. Orthogonal views of
the template FE mesh used for the registration are shown in panels B-D.
Corresponding orthogonal views of the deformed template mesh are shown in panels
F-H. Note the elongation and torsion induced on the mesh configuration. As a
measure of mesh quality following the registration, the values of the relative Jacobians
of the hexahedral elements are graphed in Table 4.1. Squared difference images are

not shown due to the inadequacies of displaying 3D image data on paper, but the

quantitative SSD was 0.277. As in the case of the macaque lobe mesh, the SSD
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Figure 4.9. Relative Jacobian values of the femur FE mesh. Panel A shows the
relative Jacobian of the original subject-specific femur mesh. Panel B shows the
relative Jacobian values of the femur mesh following registration.

measure is not adequate to address the problem, due to the restricted domain of the

template model.

Discussion
It should be noted that because Warping is diffeomorphic, registration can be
difficult in cases where the template and target anatomies are fundamentally different.
Implicit in equation 4.1 is the assumption that the target is a deformed configuration of
the template. This is the case only when the template and target images are taken from

the same physical material. For problems where images are taken from different
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subjects, the mapping between them does not represent a physical deformation.
Rather, the mapping represents the optimized configuration of the FE mesh that aligns
the template and target data. Use of nonlinear continuum mechanics in the process
guarantees a one-to-one mapping of differential lines, areas, and volumes between the
template and its deformed configuration. This is required to ensure that anatomical
structures in the template remain continuous after the deformation.

Because of the large role the image data play in the strain tracking process, we
were interested in the extent to which the constitutive law actually changes the
numerical results. Sensitivity of results to the material properties is dependent upon
the specific problem under study. For registration problems that use images with high
textural content, the image data will tend to dominate the solution. Problems with
noisy or sparsely sampled images will be affected to a greater extent by the mechanics
of the problem (reference Chapter 6 of the present work). In several of the presented
example problems (the spinal disc, distal phalanx, tectorial membrane), we tested the
sensitivity of results to variations in the material model parameters. For these
problems, the computed deformation was largely insensitive to changes in the bulk
moduli, due to the path independent nature of the elastic response. This insensitivity
does not hold for the shear moduli, owing to the interplay between the volume ratio
and strain. Due to the lack of volumetric information in two-dimensional (2D)
problems, the computed strain field is sensitive to the compressibility of the material.
The most physically consistent results for 2D data are therefore obtained when the
material properties match actual tissue. Strain results for 3D data (such as the femur

test problem) are more robust to changes in material compressibility.
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Perhaps the most significant limitation to the technique is the need for an
experienced FE analyst to perform the Warping analysis. With the large number of
parameters that can be adjusted to guide the registration process, it is important to be
able to anticipate the response of the registration process to changes in any of these
parameters. Additionally, an experienced analyst can decide when it is appropriate to
apply the regularization tools presented in Chapter 3 of this dissertation.

The neuroanatomical registration results illustrate the difference in
segmentation results achieved by a rectangular mesh versus a mesh corresponding to
the tissue geometry. The rectangular mesh achieved unacceptable results because of
the presence of a local minimum in the combined energy functional (equation 4.1).
Experience has shown [17], [20] that local minima are more likely to occur during 2D
segmentations on rectangular grids due to competing regions in the image data.
Meshing only the ROI using an irregular mesh not only avoids such phenomena, but
also reduces the computational size of the problem. An additional advantage to the
irregular FE mesh is the direct segmentation afforded by the deformed template image
(Panel C in Figures 4.7 and 4.8).

The 3D capabilities of the present method are demonstrated in the distal femur
registration. In 3D segmentations, the independence of the computational mesh from
the voxel space of the image data is especially relevant. A small ROI in a data set can
be extracted without the computational burden of bringing the whole image space into
registration. This example further illustrates an important aspect of the present FE
method. Considerable effort is required to construct structured computational meshes

that accurately reflect the tissue geometry. The distal femur registration demonstrates
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a convenient way to automatically generate complex computational meshes by
mapping a canonical template model to conform to the anatomy of an individual
subject.

The examples in this chapter also illustrate the inadequacies of the current
standards in quantitative image analysis, subtraction and SSD, in dealing with subject-
specific template models. When the domain of the template does not include the
entire image domain, image information outside the domain cannot be interpolated to
the deformed template image. More comprehensive measures of image
correspondence are discussed in Chapters 5 and 6 of this dissertation.

In summary, we have shown that continuum mechanics provides an excellent
constraint system for guiding anatomical warping. The registrations achieved through
this technique are diffeomorphic and accommodate large changes in topology between
template and target anatomies. Additionally, the technique allows proper computation
of large deformation strain fields. This is especially important for biological problems

where large strains are the norm, rather than the exception.
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CHAPTER 5

ASSESSMENT OF DEFORMABLE IMAGE REGISTRATION

USING 3D SINGULAR VALUE DECOMPOSITION

Abstract

The primary goal of this work was to develop a quantitative technique to
evaluate the success of 3D deformable image registration. The technique is based on
singular value decomposition (SVD) and provides an objective method to compare the
topology of a deformed Template image with that of a Target image. A 3D extension
of the standard singular value decomposition was posed and applied. The technique
provides: 1) A hierarchical method to quantify image registration, 2) a method to
assess topological mismatch between image datasets, and 3) a means to rank image
registration solutions to distinguish local from global minima. Results demonstrate
application of the technique using magnetic resonance images of the heart and human
distal phalanx, as well as optical images of primate brain cryosections. Results
indicate the technique may also be appropriate for a priori identification of local

minima.

Introduction
Over the last two decades, a substantial body of research has been dedicated to

medical image registration -- the process of aligning anatomical features present in a
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Template image data set (a.k.a. reference, textbook, atlas) with those present in a
specific Target image data set (subject) [1-3]. This process is an essential step in
many applications, including quantitative image comparison, segmentation, strain
measurement, atlas construction, image fusion, motion correction, and image-guided
surgery

Several techniques have been brought to bear on this problem including
statistical pattern recognition [4-7], landmark/marker-based transformations [8],
principal axis registration [9], [10], and high-dimensional deformable templates [11-
18]. A common requirement for all of these techniques is the quantification of the
quality of image registration. Previous efforts to quantify the success of image
registration have focused on global comparisons of the mapped Template image
following registration with the Target. Examples include image subtraction [16],
misfit calculation (i.e., sum of the squared differences) [19], histogram comparisons
[20], wavelet transform comparisons [21], and mutual information [22]. Recently, the
Vista Project [23], the Retrospective Registration Evaluation Project [24], and the
National Library of Medicine Image Registration Toolkit (ITK) have been established
with the goal of quantifying the success of registration techniques.

Differences in the intensity histograms between Template and Target images
further confound the problems of deformable image registration and subsequent
quality assessment. In some common imaging modalities, signal intensity degrades
non-uniformly over time and space, resulting in not only a general change in image
intensity, but also a change in the intensity histogram. Additionally, and typical in the

case of intersubject registrations, the Template and Target images originate from



82

completely different imaging sequences, hardware and/or even modalities. Because of
these factors, the image histograms of the Template and Target may be significantly
different — a fact that and can present a serious challenge in the process of deformable
image registration.

The primary focus of the present work is to provide a nonbiased, hierarchical
technique to quantify the quality of image registration with specific attention to the
assessment of high-dimensional deformable image registrations. The technique is
based on comparison of singular value decomposition (SVD) of the Template and
Target images to decompose the image data into a hierarchical series of singular
modes. As the deformable registration proceeds, the Template singular modes evolve
and ultimately approach those of the Target. These modes provide a direct means to
assess the quality of registration through comparison of inner products defined by the
base vectors. The potential advantage of the technique comes largely because of the
ability to separate a specific spatial distribution of image intensity (referred to herein
as topology) from variations in intensity that are not associated with the topology of
interest. The method allows the topology of the registered Template to be compared
to the topology of the Target even in the presence of differences in image histograms.
The technique is demonstrated using magnetic resonance (MR) images of the heart
[25] and human distal phalanx [26], as well as optical images of primate brain

cryosections [18].
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Methods
In 1873-74 Eugenio Beltrami [27] and Camille Jordan [28], [29] independently

demonstrated that any real x-by-y matrix 4 can be decomposed such that

A=UzV". (5.1)

Here, U and V are orthonormal matrices whose columns contain the singular vectors
of the decomposition, and X = diag(o],...,o; ), r=min(x,y), with o, 2...20, 20,
contains the singular values of the decomposition (for clarity, a particular singular
value is referenced as o;). This is commonly referred to as singular value
decomposition (SVD). SVD has found application in image compression and for
evaluating the “noise-level” of a matrix system or image based on the singular values
[30].

To apply SVD to a 2D image, the intensity values of the pixels are placed into

the corresponding locations in 4. Thus, if the image contains (xx y) pixels, the
matrix 4 will have dimensions (xx y). The singular vectors then comprise a set of

basis vectors that combine with the singular values to decompose the image into a set
of modes. In the present work, the topology of the image is examined hierarchically
by reconstructing the image one singular mode at a time. The matrix representation of

the n™ singular mode (4,) is obtained by applying Eq. 5.1 to the n™ singular value,
A =UZ V", where the matrix ¥, is formed by zeroing all elements in T with the
exception of o;. In this manner, image data are represented as a series of decreasingly

significant components. Figure 5.1 illustrates this concept for a MRI neuroanatomical

slice.
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Figure 5.1. Singular value modes of a 2D image. Panel A shows a sagittal plane MR
image of a mouse neuroanatomy. Panels B-F show individual modes of the image in
panel A corresponding to 1, 2, 3, 10, and 20 singular values. Panels G-K show
truncated reconstructions of the image in panel A corresponding to the indicated
singular values.
3D Singular Value Decomposition

To apply SVD to 3D image data it was necessary to extend the concepts
beyond the classical 2D matrix framework. There are several ways in which this
could be done. In the present work the matrix containing the image intensity data 4

was arranged in a 3D rectangular format and decomposed separately for each image

slice k (&=1...K),

A® — gy ®p e’ (5.2)

to obtain a stacked set of 2D SVDs. The singular values from the stacked slices were

then assembled as columns of a new matrix A:

a=[z? zo . 3] (5.3)
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This matrix, containing slice-by-slice singular values, was then subjected to a second

SVD:
A=UV’ (5.4)

The n™ 3D singular mode (4,) is obtained by applying Egs. 5.2-5.4 to the n™

singular value. For the k™ slice this provides

A% — gz ol (5.5)
The matrix =) is constructed in 3D for the k™ slice of the n™ singular mode using
o=@ 7)1, (5.6)

where f‘;n is obtained by zeroing all elements in ¥ with the exception of &,, the

subscript k denotes the k™ column, and I is the identity matrix. Note that this reduces
to the 2D case described above if all slices are identical. Although this approach is not
the only possible 3D decomposition, it preserves the hierarchical property and has well

defined inner-products. Egs. 5.2-5.6 will be referred to herein as 3D SVD.

Hierarchical Quantification of Image Registration
We now turn attention to application of 3D SVD to deformable Template
registration. Our Lagrangian finite element (FE) based approach [16], [17] was used
to generate specific example problems to demonstrate 3D SVD registration assessment

and histogram normalization. In our method a one-to-one deformation map

p(X)e CI(Q, R’ ): det (0@ /6X )> 0 ,is applied to the reference
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configuration Q. Material points with initial coordinates X in the undeformed

Template are mapped to the coordinates x in the deformed configuration according to:

p(X)=X+u(X)=x. (5.7)

Here, u(X ) is the displacement field. For simplicity, we assume in the

present illustrative examples that the image data (intensity, spin, etc.) are convected
with the material and that the deformation of the material does not change the image
data. Upon completion of a perfect registration, the data attached to material in the

undeformed Template (denoted 7'(X)) would be mapped to match the data in the

Target (denoted s(x) ) according to:
T (X)=T"(x)—>s(x), (5.8)

where T' is the 3D scalar image intensity field of the deformed template. In the
present examples the Target and the Template are 3D scalar image intensity fields but,
in general, could be N-dimensional vector fields associated with multiple imaging
sequences or modalities.

Measuring the extent to which the deformed Template 7'(x) matches the
Target s(x) using SVD is the principle aim of the present work. For this, the Target
and the deformed Template fields are interrogated and interpolated to a discrete spatial
lattice to form 3D image data. We define a set of inner-products of the deformed

Template 7' with the n™ singular (column) vectors u, and v, of the Target s. In 2D,

the ratio of the scalar inner products «, = (unT T'v, ) / (u,f svn) = (unT T'v, ) / o, , for each
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target mode, approaches a value of 1 as the deformed template approaches the target
(a,>1as T'—>s). In3D, we define a single scalar for each 3D singular mode using

Eq.5.3:

= - )

where T' and § are obtained from the deformed Template and target images using

Eq. 5.3. The lower case singular vectors are from Eq. 5.3 computed for the target

matrix §. Consistent with the 2D degenerate case, , —1 as T'— 5. Numerical
evaluation of this inner product in simulated test problems confirms the property of
invariance under translation and rotation in the image space. This inner-product ratio
provides a scalar measure of the projection, or correspondence, between the n®
singular mode of the Target and that of the deformed Template. Comparison of the

inner-product ratios in ascending order provides a hierarchical method to quantify the

quality of the registration.

Ilustrative Examples

The illustrative examples presented in the results section were generated using
our continuum mechanics based imaged registration technique (Warping). A brief
description of the technique is given below, for additional details please reference
Rabbitt et al. [17], or Veress et al. [31]. Registration was accomplished by
minimization of a combined energy functional composed of both mechanical strain
energy and image energy terms — a general formulation that degenerates to the

Bayesian approach with appropriate assumptions on the likelihood of the data.
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Template data used here were static sets of medical images acquired from a reference
anatomical state. A FE model was then constructed to encompass the region of
interest in the Template. The image data from the Template were interpolated to the
nodes of the FE computational mesh. The geometry of the FE model was then
deformed until the deformed version of the Template registered with the Target.

Two types of example problems are presented. In the first, the Target data
were defined by a time sequence of images taken from a single subject — with the data
prior to deformation defining the Template. This case typifies strain-tracking
problems common in soft tissue biomechanics [16], [25], [26], [32]. In the second
case, the Template and Target data were taken from entirely different subjects. This
case typifies segmentation or registration problems frequently encountered in medical
imaging [18], [31], [33]. One goal is common to these problems: determine the
deformation map that aligns the deformed Template with the Target. Example results

applying SVD to problems of both types are provided below.

Circular Inclusion
Images of a circular inclusion were generated to illustrate the evolution of the
SVD inner products in a “perfectly” registered example problem. The images used for
the circular inclusion were computer-generated 8 bit grayscale images with a 256x256
image matrix. A circular portion of the images (radius of 16 pixels) was white while
the image background was black. The images were blurred by convolution with
standard Gaussian spatial filter with a 32 pixel radius (see Figure 5.2).

A FE mesh consisting of two regions was constructed. The first region
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Figure 5.2. Inner product tracking of a circular occlusion undergoing vertical
displacement. Panels A and B show the computer generated template and target
images, respectively. Panel C shows the evolution of the deformed Template inner
products (o) during the registration process. Panels D-J show the deforming
Template at specific registration iterations corresponding to the graph in panel C
(0,5,10,15,20,25,30 iterations).

corresponded to the circular inclusion while the second region consisted of the
surrounding image data. The boundary edges of the second region were constrained
from both vertical and horizontal motion. No other external boundary conditions were
applied. An additional spatial filter was initially applied (192 pixel radius) to the
image data so that gradient information from the Template and Target overlapped.
Following registration of these filtered images, the filtering was gradually removed as
the registration computations proceeded to completion (dynamic filtering) [31]. The
final registered Template image was obtained by interpolating the deformation

predicted by the FE model to the original spatial grid of the Template data (using tri-

linear interpolation).



90

®!

Inner Product Ratio i)

Figure 5.3. Inner product tracking of a distal phalanx under indentation. Panels A and
B show the Template and Target MR images, respectively. Panel C shows the
evolution of inner product ratios computed from the deformed template data using the
target singular vectors. Panels D-I show intermediate registration results at each
iteration of the registration process.
Distal Phalanx

High-resolution MR data from the distal phalanx were collected to demonstrate
the evolution of inner products in an anatomical registration problem. A 4.7 Tesla
magnet and a RARE sequence were used to obtain high-resolution (125 x 125um) MR
images of the healthy human male fingerpad [34]. The nail of the distal phalanx of the
subject was rigidly constrained using a specially constructed, nonmagnetic frame. The

Template image represented a cross-section of the finger (Figures 5.3A, 5.4A).

Mechanical indentation of 1-2 mm was applied to the finger pad with a nonmagnetic,
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Figure 5.4. Singular values of the distal phalanx Template and Target. Panels A and B
show the Template and Target MR images, respectively. Panel C shows the registered
(deformed) Template. Panel D compares the inner product of the deformed Template
with the singular vectors of the Target to the same inner product for the undeformed
Template.

rectangular indenter. Constant indentation was maintained by mounting the indenter
to the constraint frame. The Target image was obtained during a maintained
indentation of the finger pad (Figures 5.3B, 5.4B).

A FE mesh was constructed based on a manual segmentation of the
undeformed Template image. This mesh was divided into three regions based on
tissue type. Hypoelastic material properties were assigned from the literature [35] as
follows: bone (E = 15x10® Pa, v = 0.48), dermis (E = 15x10* Pa, v = 0.48), other

tissue (E = 15x10° Pa, v = 0.48). No externally applied loads or boundary conditions

were imposed on the model, thus deformation of the mesh was exclusively due to the
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image registration process. As described for the circular inclusion example, dynamic
spatial filtering was applied to both the Template and Target images during
registration. Following registration, the computed deformation field was interpolated

from the FE model to the original spatial grid of the Template data.

Macaque Neuroanatomy

Optical data from a Macaque monkey brain were used to illustrate the utility of
the present method to distinguish between local minima in the registration process.
The digital images of the macaque neuroanatomy were generated by block microtome
cryosectioning and CCD digitization of 100-um sections from two macaque monkeys
(images from D. VanEssen, [18]).

Registration of the macaque datasets was accomplished by first generating a
rectangular FE mesh corresponding to the domain of the Template data. An elastic-
plastic material model was applied to the FE mesh (E = 15x10° Pa, v = 0.1, Gyicld =
15x10° Pa). The outside edges of the mesh were constrained from both vertical and
horizontal motion. No other external boundary conditions were applied. Dynamic
spatial filtering was applied to the Template and Target image data during
deformation. The different registrations examined in panels C and D of Figure 5.5
were obtained by varying the degree of spatial filtering applied to the image data, with
all other parameters held constant. The registration shown in Figure 5.5C was
generated using a constant radius filter of 3 pixels, while that in Figure 5.5D was
generated using a dynamic filter, which evolved from 15 to 3 pixels during the

registration process.
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Figure 5.5. Singular values of the macaque neuroanatomy Template and Target.
Panels A and B show the Template and Target images, respectively. Panels C and D
show different registration solutions (local minima) of the same problem. Panel E
compares the inner product of the deformed Template with the singular vectors of the
Target to the same inner product for the undeformed Template.
Human Left Ventricle

Gated MR images of the left ventricle of a healthy human male subject [25]
were used to illustrate application of the 3D SVD. Briefly, two volumetric MR image
datasets were acquired using a 1.5T Siemens scanner (256x256 image matrix, 378 mm
FOV, 10 mm slice thickness, 10 slices). The volumetric MR data corresponding to

end-systole were designated as the Template and the data corresponding to end-

diastole were designated the Target. (Figure 5.6A, 5.6B)
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Figure 5.6. Singular values of the 3D human left ventricle Template and Target.
Panels A and B show surface renderings of the Template and Target image data,
respectively. Panels C shows a surface rendering of the registration solution. Panel D
quantifies the image registration by projecting the 3D singular vectors of the Target
image dataset onto the Template image dataset and the registered image dataset. The
inner products of the registered solution show close correspondence with the singular
values of the Target image dataset.

Contours of the left ventricular endocardial and epicardial surfaces were
segmented manually from the end-systolic MR image dataset and then used to
construct polygon surfaces via Delaunay triangulation [36]. A FE mesh was
constructed based on the surfaces. A transversely isotropic hyperelastic material
model was used to model the heart muscle tissue. The ventricle wall was divided
radially into four regions, each with a distinct fiber angle as described by Veress et al.
[25]. Fiber angle varied between 90 degrees on the endocardial surface to -90 degrees

on the epicardial surface of the left ventricle. The material properties of the

myocardial wall were determined from least squares curve fits of the biaxial test data



95

reported by Humphrey et al. [37], [38]. No external boundary conditions were applied

during registration.

Results
Circular Inclusion

Figure 5.2 shows results for the computer generated example problem of a
bright, circular inclusion that changes position vertically over time. Panels A and B
show the Template and Target images, respectively. Panels D-J correspond to the
deformed Template configuration at the registration iteration (computational timestep)
indicated directly above on the horizontal axis and show intermediate positions of the
inclusion during registration. The vertical axis of panel C shows the normalized inner
products (o) during the registration process. The horizontal axis corresponds to
computational iteration of the registration process. Results demonstrate that as the
position of the inclusion in the registered Template approaches that of the Target, the
values of «; converge to unity. Oscillations in the values of the normalized inner
products can be seen near the end of the registration process. The oscillations
demonstrate one consequence of images with non-unique registration solutions — i.e.
the lack of rotational orientation information present in this particular example

problem.

Distal Phalanx
Figure 5.3 shows results from registration of micro-MRI of a human distal
phalanx before and during indentation. A Template image was interrogated from a

cross-section of the finger (panel A). Mechanical indentation was applied to the finger
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pad and a Target image was interrogated (panel B). Panels D — I provide results at
intermediate steps in the registration process. At each solution increment, the
computed deformation field was applied to the Template image to produce a snapshot
in computational time. If perfect registration were achieved, panel J would be
identical to the Target image (panel B). The graph in panel C tracks the progression of
the Template topology towards that of the Target. The horizontal axis of the graph
shows the solution increment (directly corresponding to panels D-I), while the vertical
axis shows the computed normalized inner products (o). The four most significant
(lowest order) inner products are shown. Perfect agreement in singular vectors
between the Template and Target would correspond to a value of unity of each inner
product at the conclusion of the registration process. Note how the vectors uniformly
move toward this value, measuring success of the registration process.

Figure 5.4 presents an alternate depiction of the same results. The Template
(panel A), Target (panel B), and registered Template (panel C) are shown on the left.
The horizontal axis of panel D defines the singular index, while the vertical axis is
value of the inner product. The top solid curve shows the Target singular values. The
bottom dashed curve shows the Template inner products (an inner product map)
before registration. The dotted line shows the deformed Template inner products
following registration. Results demonstrate the improved agreement in topology
following registration. A logarithmic axis was used on the horizontal scale to
emphasize the decreasing importance of the higher order singular vectors and values

as the noise level of the images was approached.
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Macaque Cryosections

Figure 5.5 show results for the intersubject registration of optical images of
stained macaque brain cryosections [18]. Panels A and B show the Template and
Target images respectively. Panels C and D show two registration solutions, neither
exact, corresponding to local minima in the registration problem. Comparison of the
two solutions by other common registration assessment techniques such as subtraction,
SSD, and histogram comparison rank the registrations differently. The graph in Panel
E shows the inner products of the Template, Target, and both registrations. The axes
used are the same as in Figure 5.4D. Results demonstrate that the inner products can
identify particular modes of the registered Template that are out of correspondence
with the Target. Local minima in the energy functional are identified in the inner

product map as sharp changes in the curvature.

Human Left Ventricle

Figure 5.6 illustrates application to 3D registration of MR images of a human
left ventricle.  Panels A and B show surface renderings of the 3D Template and
Target data respectively. Panel C shows the registration solution. The 3D SVD
algorithm was used to decompose the Target. The 3D singular vectors were projected
onto the Template and registered Template image data sets. Panel D shows the inner
products of the Template, Target, and deformed Template. The inner products of the
deformed Template closely matched the Target and providing a quantitative measure

of the quality of the 3D registration.
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Discussion

The primary objective of this work was to develop an objective quantitative
assessment technique for evaluating the success of deformable image registration.
Specifically, the technique allows for hierarchical evaluation of the correspondence in
image topology between a Target and the deformed Template. Hierarchical evaluation
is important because many registration problems contain inadequate or conflicting
image data, as well as a multitude of possible solutions (local minima in the
functional). Although the examples in the present work use a mechanics-based
deformable Template registration technique, the assessment methods could be applied
to any image registration technique. Results demonstrate that inner products of the
deformed Template with the Target singular vectors provide an effective method of
quantifying registration quality.

The computer generated circular inclusion example presented in Figure 5.2
demonstrates several characteristics of the singular vector projection technique. The
technique tracks the progress of each Template singular vector towards registration
with the corresponding Target singular vector. Another notable characteristic of the
technique is that although singular values are always positive, inner products
(especially those corresponding to the higher order singular vectors), can be negative.
Oscillations in the solution occur due to lack of orientation information present in the
image data. Image data that contain a greater amount of texture data to orient the
registration do not exhibit this phenomenon (reference the fingerpad indentation

example in Figure 5.3).
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Further application of the method can be seen as a nonbiased evaluation
function to determine the degree of topological match between two images. In this
case it is appropriate to evaluate the complete set of singular values and corresponding
topology multipliers. In registration problems it is often insightful to compare the
Target image topology with the topologies of both the original Template image and
the registered Template image. The inner product map is a useful tool for graphically
displaying this information. The maps presented in Figures 5.4 - 5.6 show the
improvement in topological correspondence between the Template and Target images
that was obtained through the registration process. Because the technique is based on
the singular value decomposition, it is known that the highest order singular vectors
correspond to the noise level of the images. Thus assessment of registration results
can be based only on lower order singular vectors (i.e., where the information is above
the background noise level of the image).

In many cases inner product maps can identify local minima in the registration
process. Local minima are identified as sharp changes in the value of the inner
products between adjacent singular vectors (a sawtooth pattern in the inner product
map). For instance, in the macaque neuroanatomy registration example (Figure 5.5),
there are several local minima, which can be observed from the inner product map of
the Template. Local minima which correspond to lower order singular vectors are
significantly more important than those corresponding to higher order singular vectors.
The two quasi-registered solutions in panels C and D of Figure 5.5 show local minima
in their inner product maps, indicating they are not fully registered with the Target

image.
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CHAPTER 6

INFLUENCE OF LOCAL DATA ON DEFORMABLE

IMAGE REGISTRATION

Abstract

The primary goal of this work was to evaluate the local influence of image data
and registration parameters on deformable image registration results. To this end,
several quantitative measures of influence have been developed and evaluated. The
measures were derived from the variances of the terms and parameters of the
registration potential function. These measures were used to evaluate registration
results obtained using a continuum mechanics based image registration method.
lustrative examples include registration of a Gaussian blur, a human fingerpad, and a
human spinal disc. Results demonstrated that a ratio of the individual variances of the
image potential and the deformation potential with respect to the template
configuration provided insight into the relative local influence of registration data on

registration solutions.

Introduction
The goal in deformable image registration methods is to find a transformation
of the template image that best aligns the features of the image with those of a target

image. In the ideal case, the quantity and quality of the image texture present in the
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template and target images, as well as the similarity in underlying anatomical
structure, would yield a unique “best” transformation. In real problems, however, this
is not the case. Image registration is most often ill-posed in the sense of Hadamard
[1], [2]. No perfect transformation exists, and the solution depends on the choice of
registration method. The dependence is most significant in regions of the template
model where image texture is sparse or conflicting. In these regions, the registration
solution is computed based on minimizing the deformation potential (Bayesian prior
probability) portion of the particular registration cost functional [3]. Other
investigators have recognized this type of ambiguity. The Retrospective Registration
Evaluation Project [4], the Vista Project [5], and the National Library of Medicine
Image Registration Toolkit (ITK) have been established with the goal of quantifying
the success of image registration techniques. These projects have focused on ranking
the performance of image registration techniques using a set of predefined registration
problems. Many deformable image registration methods utilize a dual term potential
energy function (cost function) to guide registration [3], [6-15]. In these methods, one
term is associated with a measure of image alignment between the template and target
images (the image potential), while the other term is specific to the particular
registration method and defines the energy associated with deformation (the
deformation potential). Registration is accomplished by finding the configuration of
the template model that minimizes both energy terms simultaneously. The
deformation potential is formulated to regularize the registration problem and is often
based on a physical analog to a particular type of material behavior (e.g., a viscous

fluid or hyperelastic solid) [6], [7], [16-19]. This type of constraint ensures a one-to-
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one mapping between the template and target based on the principles of continuum
mechanics [20]. The particular type of regularization will influence the registration
results in local regions where the image-based energy does not result in significant
forces to drive the registration.

The objective of this study was to evaluate the relative local influence of the
image functional and the deformation functional on the results of deformable image
registration. The variances of the individual terms of the combined potential energy
function with respect to the final template configuration were used to construct scalar
measures that provided this information locally. For finite element based deformable

image methods, the variances are related to the tangent stiffness matrix.

Methods
Implementation

The present work was implemented into the continuum mechanics based image
registration method termed hyperelastic Warping, originally developed by Rabbitt and
Weiss [13], [15], [21], [22]. Only a brief review of the salient points is described in
the present work. Full implementation details for the method are given elsewhere
[13], [21]. The standard notation and symbols of modern continuum mechanics are
employed in the following presentation [23], [24]. In particular, direct notation is used
with boldface italics for vector and tensor fields. Index notation is incorporated for
quantities that cannot be readily written in direct notation. Where applicable, the
condensed Voigt notation typically employed in finite element analysis is utilized

[25].
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The objective is to deform a representation of a template image into alignment
with a target image. The formulation is Lagrangian and thus the deformation of the
template particles is tracked. Assume that the scalar intensity fields of the template
and target, 7 and S, are not changed by the deformation. 7 is defined in the reference
configuration and thus we write 7(X). Since the values of S at points associated with
the deforming template change as the template mesh deforms, we write S(@), where
AX) = X + u(X) is the deformation map from template to target, and u(X) is the
displacement field. A finite element (FE) mesh is constructed to correspond to all or
part of the template image (either rectilinear, or a “conforming” mesh that represents a
particular structure of interest in the Template image). The template intensity field 7
is interpolated to the nodes of the FE mesh. The intensity data for the template are
convected with the FE mesh and thus the nodal values do not change. As the FE mesh
deforms, we query the values of the target intensity S at the template nodes.

A combined potential energy functional is constructed that consists of two

potential energy terms:
E=[W(X,p)dV-[U(X,p)dV . (6.1)
Bo Bo
W is the standard strain energy density function from continuum mechanics that
defines the material constitutive behavior, while U represents an image energy density
functional. [ represents the volume of integration of the template model in the

reference configuration. The present work uses a Gaussian sensor model to describe

the image energy density functional as:
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U(X.p) =%(T(X)—S(¢))2. (6.2)

A is a Lagrange multiplier [26], which enforces the alignment of the template model
with the target image data.

The weak form of the momentum equations (Euler-Lagrange equations) is
obtained by taking the first variation of E(¢@) with respect to the deformation ¢. This
can be though of as a “virtual displacement” — a small variation in the current
coordinates x, denoted 7. Here ¢1is an infinitesimal scalar. The variation of the first
term in (1) yields the standard weak from of the momentum equations for nonlinear
solid mechanics (see, e.g., [23]). The functional in (2) gives rise to an image-based
force term. The first variation of (2) with respect to the deformation @(X) in direction

7 is denoted:

DU(¢7)-17=D[§(T(X)—S(¢))z]n. 6.3)

This is calculated using the Gateaux derivative [23] by taking the derivative of the

functional U evaluated at @ + i with respect to ¢ and then letting £ — 0:

DU(go)-n:A[(T(X)—S(¢+gn))%(T(X)—S(¢+317))} : (6.4)

>0

Noting that

frreo-stevem)] -|-GE A L2 o
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we can combine (3) and (4) to get:
DU (p)-n=-A|(T(X)-S(p))——>7n|. (6.6)

This term gives rise to the image-based body force that drives the deformation.
A similar computation for the term W leads to the Euler-Lagrange equations.

After tranformation to the current (deformed) configuration,

_ rl n 611) { [ aSJ }dv_
G(p,m) =DE(@)-n=|— d MT-S) —— —=0. (6.7
) ®)n iz (aq) o0 )"~ I,, 00 )77 (6.7)

Here, ois the 2™ order symmetric Cauchy stress tensor. Thus, the forces due to the
image data balance with the forces derived from the deformation of the material
through the constitutive model.

An incremental-iterative solution method is used to obtain the configuration ¢
that satisfies equation (6.7) [27]. Assuming that the solution at a configuration @’ is
known, we seek the solution at some increment @ + Au. To achieve this, we require

the linearization of (7) at ¢~ to get an initial estimate for Au :

L.G(pn)= G(o",n)+DG(9",n)-Au. (6.8)

In the finite element method, shape functions are used to describe the element
shape and variation in displacements over the element domain. After FE
discretization, the linearization on the element level yields a system of linear algebraic

equations:
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=
=

N nods

Zl "°1°S(KM+G(¢*)+KI () -Au= Zl‘f(FeX‘((p*)+Fim (¢)  ©9
== i i= !

The term in parentheses on the left-hand side of (9) is the tangent stiffness
matrix, the vector Au is the vector of unknown incremental nodal displacements, Fey;
is the vector of external forces arising from the differences in the image intensities and
gradients as per equation (6.6), and Fjy is the vector of internal forces resulting from
the stress divergence. The contribution of the strain energy density to the tangent

stiffness (in terms of the FE nodal coordinate system) may be expressed as:

K9 = [(B™) 6B dv+[(B") cBdv, (6.10)
; )
where B" and B"" represent the FE linear and nonlinear strain-displacement matrices,
and c is the spatial elasticity tensor [25]:
4 o'W
c,=—FF, F,F, ———. 6.11
ijkl J il* jJ* kK* IL a CU a CKL ( )
In computational solid mechanics, the two terms on the right-hand side of (10)
are referred to as the material and geometric stiffness matrices, respectively [25]. The
contribution of the image energy to the tangent stiffness is given as
@
J b

’K:—jNTkN (6.12)
B
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where N is the matrix representation of the FE shape functions and k is the 2™ spatial

variation of the image energy density :

k=Y :z[(”j{”j-(r-s)( oS ﬂ 6.13)
dPo@ p )\ dp 22

as computed at each node in the discretized template model. The term 'K defined in

(9) is referred to as the image stiffness. Together, the terms in (10) and (12) form the
tangent stiffness matrix. The variance terms are readily available at each degree of
freedom in the template model through the diagonal terms of the tangent stiffness
matrix [25]. Equation (6.9) is solved for an initial estimate of the unknown
incremental nodal displacements Au and this solution is then iteratively improved
using a Newton (or quasi-Newton) method [27].

The tangent stiffness matrix contains detailed information about how the nodal
forces would vary in response to a small variation in the template model configuration.
The inverse of the tangent stiffness matrix is an approximation to the covariance
matrix, and defines the stability of the configuration to changes in applied loads (or
changes in image data) [28].

The values of the tangent stiffness matrix (and the residual array) depend on
the current configuration of the deforming template model, and thus vary throughout
the nonlinear solution process. At the end of the solution process, the norm of the
right-hand side of equation (6.9) is minimized. The values of the image stiffness and
material and geometric stiffness matrices can then used to evaluate the variance of the

template configuration with respect to the image data and the deformation potential.
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Image Influence Measures

The present work examined four influence measures: image force multiplier,
image data variance, template model variance, and a ratio of image data variance to
total variance. The image force multiplier reflects the spatial distribution of the
weighting given to the image force as shown by the Lagrange multipliers A; at each
node (N). The image data variance, ‘o, shows the variance of the final template
configuration with respect to the image data as obtained through the main diagonal
entries of the image stiffness matrix.

. dU
i 09,00,

(6.14)

The template model variance, "o, shows the variance of the final template
configuration with respect to the template model parameters (i.e., material properties,
boundary conditions) as obtained through the main diagonal entries of the material and

geometric stiffness matrix.

MG, o'w

= 6.15
l 09,09, ( )

The final measure is a ratio of the image data variance to the combined image
data and template model variances and will be referred to in the present work as the

ratio . .

image influence, " a.

ratioa. — et S (6.16)
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Ilustrative Examples

The illustrative examples selected for the present work were chosen for their
ability to demonstrate typical characteristics of registration problems. The examples
include both homogeneous and inhomogeneous template models, variations in image

texture quantity and quality and different imaging modalities.

Gaussian Blur

A simple problem in deformable image registration involves registration of 2D
Gaussian blurs (point spread functions) with distinct variance values. For the present
work, a template image (256x256) was constructed using a Gaussian with unequal
variances in the two principal directions (54x12). The target was similarly constructed
with a distinct center point, but with a symmetric variance (32x32). The problem was
selected to provide an intuitive example for exploring the various influence measures
described above.

The entire template image domain was discretized using a rectilinear FE mesh.
Arbitrary homogeneous hypoelastic material properties were selected to constrain the
field of possible deformations. Deformation was limited to the plane of the image data

and the edges of the image space were fixed.

Human Distal Phalanx
The second example examined deformable registration of sequential high-
resolution MR images taken during indentation of the human fingerpad. The problem
demonstrates the effect of an inhomogeneous template model on the described

influence measures.
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A 4.7 Tesla magnet and a RARE sequence were used to obtain high-resolution
(125 x 125 um) MR images of the cross-section of a healthy human male fingerpad
[29]. The nail of the distal phalanx of the subject was rigidly constrained using a
nonmagnetic frame. Mechanical indentation of 1-2 mm was applied to the fingerpad
with a non-magnetic, rectangular indenter. Constant indentation was achieved by
mounting the indenter to the constraint frame. The target image was acquired during a
maintained indentation of the finger pad.

A FE mesh was constructed based on a manual segmentation of the
undeformed template image. This mesh was divided into three regions based on tissue
type. Hypoelastic material properties were assigned from the literature [30] as
follows: bone (E = 15x10® Pa, v = 0.48), dermis (E = 15x10* Pa, v = 0.48), other
tissue (E = 15x10° Pa, v = 0.48). No externally applied loads or boundary conditions
were imposed on the model; thus deformation of the mesh was exclusively due to the

image registration process.

Human Spinal Disc

The final example problem examines registration of sequential images of the
human spinal disc taken before and during compression. Similar to the distal phalanx
problem, the template model was inhomogeneous, with the additional complication of
using an orthotropic material to describe the complex character of the spinal disc.

Using a nonmagnetic compression frame and a MR scanner, MR images of a
L2-L3 motion segment were obtained before (Template) and after (Target) application
of a compressive load (image data supplied by Chiu et al. [31]). The Template image

was manually segmented to obtain contours corresponding to the bone and disc.



115

These contours were used to generate a FE mesh corresponding to the specific
anatomy of the subject. Image data were spatially filtered at the spatial Nyquist
frequency of the FE mesh to avoid aliasing. Representative hypoelastic material
properties were estimated from the literature [32]. Similar to the previous problems,

no externally applied loads or boundary conditions were imposed on the model.

Results

Quantitative results from the Gaussian blur example problem are shown in
Figure 6.1. The top row shows the standard reported image registration results, from
left to right: template (T), target (S), initial difference image (T-S), registered template
(T*), final difference image (T*-S). The homogenous template model spanning the
entire template image domain is shown in panel F. The rest of the bottom row (panels
G-J) shows the various influence measures for the computed registration. The image
force multiplier results (panel G) indicate inconsistencies in the magnitude of the
registration force generated by the image data. For this problem, the magnitude was
largest in the areas of the template model that were not completely aligned with the
target image (compare to panel E). For this homogenous problem, the magnitude of
the template model variance (panel H) closely corresponds to template deformation
field. The magnitude of the image data variance (panel I) is indicative of the
correspondence between the template and target image data, with their corresponding
gradients and Laplacians. For this particular problem, the image influence results
mirror the image data variance due to the homogeneity of the underlying template

model.
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Figure 6.1. Influence measures for registration of a Gaussian blur. Panels A and B
show the template (T) and target (S) images, respectively. Panel C shows initial
subtraction results (T-S). Panel D shows the registered template image (T*). Panel E
shows final subtraction results (T*-S). The homogeneous template model covering
the entire span of the template image is shown in panel F. Different measures of
image influence are demonstrated in panels G-J: image force multiplier, template
model variance, image data variance, and image influence, respectively.

Results from the distal phalanx registration are shown in Figure 6.2.
Consistent with all the figures, standard registration results are shown along the top
row. The inhomogeneous template model is shown in panel F, with different
grayscale values corresponding to the regions of defined material properties. Image
force multiplier results in panel G emphasize inconsistencies in the registration force.
In this particular case, the magnitude of the image force multiplier may represent an
inability of the chosen material model to accurately represent the complex deformation
in the pulp portion of the finger. The bright portions of the multiplier in the central

portion of the model could also indicate that the elastic modulus selected for the bone

was probably too low. The template model variance results in panel H directly
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Figure 6.2. Influence measures for registration of the human distal phalanx. Panels A
and B show the template (T) and target (S) images, respectively. Panel C shows initial
subtraction results (T-S). Panel D shows the registered template image (T*). Panel E
shows final subtraction results (T*-S). The homogeneous template model covering
the entire span of the template image is shown in panel F. Different measures of
image influence are demonstrated in panels G-J: image force multiplier, template
model variance, image data variance, and image influence, respectively.
correspond to the relative stiffness of the different portions of the template model.
The image data variance (panel I) is indicative of the correspondence in image
intensity, gradient, and Laplacian between the registered template and target images.
It is especially valuable to notice the brightest areas of the panel, since these areas
have the highest correspondence. The image influence results in panel J reflect the
image data variance results as scaled by the total variance to give insight into the
relative importance of the image correspondence to the final registration result.

Figure 6.3 gives quantitative results from the spinal disc registration example.
The standard registration results are again presented along the top row of the figure.
The different grayscale values in panel F correspond to the regions of different

material parameters. Image force multiplier results given in panel G show

inconsistencies in registration force along the cortex areas of the spinal bones, an
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indication that the material stiffness in these regions is significantly higher than was
assigned to the template model. The template model variance results (panel H)
correspond closely with the relative stiffness values assigned to the template model.
Image data variance results in panel I indicate regions of the registered template model
where differences in image intensity, gradient, and Laplacian values between the
template and target images were smallest. Image influence results (panel J)
demonstrate the image data surrounding the disc played the most significant role in the

computed registration.

Discussion

In many image segmentation and intersubject registration problems (e.g., the
Gaussian blur example), it is desirable to maximize the influence of the image data on
the registration. For these types of problems, there is usually no known physical
correspondence between the template and target images. The registration constraints,
such as the material model parameters, serve only to regularize the problem. In this
case, a high image influence with a relatively uniform value across the domain of the
template model may be an indicator of good image alignment.

In strain tracking and tissue growth problems however, there are known
physical relationships between the template and target material configurations. In
general, less image texture is required to accurately compute stress and strain fields for
problems with well-defined material characteristics. For example, the image influence
results for the spinal disc registration in Figure 6.3J show that the image texture in the

bone portions of the template model was largely superfluous. Registration was
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Figure 6.3. Influence measures for registration of the human spinal disc. Panels A
and B show the template (T) and target (S) images, respectively. Panel C shows initial
subtraction results (T-S). Panel D shows the registered template image (T*). Panel E
shows final subtraction results (T*-S). The homogeneous template model covering
the entire span of the template image is shown in panel F. Different measures of
image influence are demonstrated in panels G-J: image force multiplier, template
model variance, image data variance, and image influence, respectively.

controlled predominantly by the image data on the interior border of the disc, while
the bone portions were pulled into position by the strength of the disc deformation.
For problems such as these, the image influence can indicate which areas of the
solution are most reliant upon the chosen registration parameters.

Another interesting observation from the two physically based registration
examples (the distal phalanx and spinal disc), is that the image force multiplier
A, seems to be indicative of local variation from the chosen material parameter values.
This could potentially allow future work in estimating unknown material parameters
for problems with known boundary conditions.

It is valuable to discuss the importance of using the full tangent stiffness matrix

(true Hessian) to calculate the image influence. It is common in many FE methods to
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use an approximated, or incomplete version of the tangent stiffness matrix during the
nonlinear solution process. Often a modified Newton, or quasi-Newton (i.e., DFP,
BFGS), solution strategy will be used [27]. These solution strategies use approximate
versions of the tangent stiffness matrix or the inverse tangent stiffness matrix. For
example, many of the examples in the present work were solved using a BFGS
solution strategy. BFGS updates have a much lower computational cost than full
Newton stiffness reformations, and demonstrate a super-linear convergence rate. The
approximate stiffness matrix does not, however, contain the same information about
the relationship between the residual forces and the incremental nodal displacements.
Prior to computation of the image influence field, it was necessary to reconstruct the
true tangent stiffness matrix, with and without the image stiffness terms.

The previous paradigm in evaluating image registration algorithms has been
focused upon determining if'a method is able to achieve acceptable registration results.
The growth in the maturity of image registration methods indicates that the time has
come to change the paradigm. Most modern registration methods can achieve
registration of most image problems. The paradigm shift is to understand which
registration method is most appropriate for dealing with inadequacies in image data
for particular registration problems. Understanding the nature of the transformations
that are common to a particular class of registration problems, can naturally lead to an

appropriate choice of method.
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CHAPTER 7

DISCUSSION

The research described in this dissertation has investigated deformable
template based image registration methods in general, and Warping in specific. A
series of regularization tools were developed which have application to practical
image registration problems. These tools were incorporated into the continuum
mechanics based deformable template registration method known as Warping.
Warping was then used to solve a variety of typical registration problems, utilizing
regularization tools when needed.

Two novel techniques were developed for examining and evaluating
registration results. The singular value decomposition (SVD) was used to quantify the
success of image registration through hierarchical evaluation of the topological
correlation between the target and registered template images. The second technique
used the Hessian of the registration potential energy to evaluate the relative influence
of the image data versus registration constraints on deformable template based image
registration solutions.

The purpose of this chapter is to briefly discuss the application, limitations,

and future directions of the work described in this dissertation. The chapter is
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organized to address these items with respect to each topic of research, followed by a

few concluding remarks.

Regularization of Image Registration Problems

In contrast to simple registration methods such as landmark and principal axis,
solution of image registration problems using deformable template methods is largely
the purview of the specialist. These methods have enormous potential, and can
achieve accurate registration results for a wide variety of difficult problems.
Unfortunately, they are also susceptible to local minima, and registration must be
monitored and evaluated by an expert in order to achieve complete registration.

The regularization tools presented in Chapter 3 of the present work provide a
step towards the automation of deformable template methods. Different classes of
registration problems present different types of difficulties during registration. For
example, many of the strain tracking registration results presented in this work were
obtained using a similar pattern of regularization: 1) match image histograms, 2) apply
dynamic spatial filtering through the solution process, 3) evaluate solution results
using Mapper3D and repeat, while adjusting the degree of spatial filtering and the
value of the penalty parameter. Intersubject registration problems often required an
additional rezoning step in the problem iteration process. As the difficulties associated
with each class of registration problem become more thoroughly characterized, it will
be possible to anticipate the types of regularization (and the appropriate parameters),
needed in order to solve the problems automatically.

Automatic identification and solution of regularization difficulties is critical

to the future of deformable template based image registration. The problem is largely



126

ignored in the literature, but is a matter of great practical concern. For example, it is
not atypical for a registration problem to require ten or more iterations to achieve an
acceptable registration solution. For small, 2D problems, this iteration process can be
an annoyance. For large, 3D problems, this can mean days or weeks of solution time.
Solution times reported in the literature are often deceptive, in that only the time
required for the final iteration of the problem is reported, after the registration
parameters have been optimized and any needed regularization tools have been
applied. There is a need for future work in characterization and optimization of

registration and regularization parameters.

Evaluation of Image Registration Results Using SVD

Global measures of accuracy have become the de facto standard for evaluating
image registration results. They are easy to compute, and intuitive to understand.
Although these measures are adept at showing differences in image data, they do little
to help the researcher identify causes of misregistration, and ranking of solution results
based on these measures can be inconsistent with expert evaluation.

The SVD topology tracking technique presented in Chapter 5 presents an
alternative means of evaluating the accuracy of image registration results. The
individual elements of the topology of the deformed template image are compared
hierarchically with the corresponding elements of the target image topology. This
approach can allow the researcher to identify the relative spatial frequency of elements
of the topology that are out of correspondence. With this information, registration and

regularization parameters can be adjusted to improve registration results.
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The primary limitation of the technique is that it is difficult to establish that a
particular registration solution is the best possible. Because the technique uses the
registered template image, the accuracy in correspondence between the inner products
of the registered template with the target singular values is limited by the effectiveness
of the software used to apply the computed template deformation field to the image
data (e.g., Mapper3D).

Current implementation of the technique is limited, in that it is used as a post-
processing evaluation tool. It is anticipated that future work could incorporate the
technique into the solution process, perhaps for use as a stopping criterion, or to allow

automatic adjustment of regularization and registration parameters.

Determining the Relative Influence of Image Registration Constraints

There are a multitude of available image registration methods, each with
different strengths and weaknesses. Each of these methods affects the computed
solutions in a different manner. In Chapter 6, a novel technique for determining the
relative contributions of image data and registration method to the registration solution
was presented. The technique utilizes the terms of the registration potential energy in
order to evaluate the relative importance of the terms to the registration solution.
Using this information, it is possible to identify regions of the template model that
were heavily influenced by the image data, as well as regions where the registration
constraints dominated the solution.

Application of the technique may be limited by the particular registration
method, because the Hessian is expensive computationally to calculate. For FE based

techniques, this is not a concern, since the terms of the Hessian are used in the tangent
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stiffness matrix. It is possible however, that other useful information in the stiffness
matrix is being ignored by the technique, and that future modifications may utilize the
individual terms of this matrix more completely.

Future extension of the technique may take advantage of the fact that the
inverse of the Hessian is directly related to the covariance matrix. The covariance
matrix contains information about the response of the deformed configuration to
variation in the image data. This information could be used to estimate the mean error
associated with the deformed template configuration.

In the future, the technique may play a role in characterizing unknown material
parameters. The hypothesis would be that image data could be combined with known
boundary conditions and an assumed material model to predict unknown material
parameters. The general procedure would involve: 1) approximation of the unknown
material parameters, 2) solution of a Warping image registration problem, with the
known boundary conditions applied, 3) an iterative optimization procedure that strives
to minimize the scalar stiffness ratio by adjusting the material parameters, while
simultaneously examining the Lagrangian multipliers A, associated with the image

potential.

Concluding Remarks

I suppose that it is common for most graduating PhDs to pause and reflect on
the nature and size of the task that has been completed. Reality harshly decrees that
very few theses have ever made the best-seller lists, and most gather dust on forgotten
shelves in university libraries. Occasionally, however, an enterprising reader stumbles

upon something that can enlighten or inspire. At the end of this work, it is my
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romantic notion that the work contained in this dissertation might be a stepping-stone
for those who wish to utilize the tools and techniques that have proven valuable to me
in deformable template based image analysis. It is to you that I address my
concluding remarks. To paraphrase a statement that has become part of the vernacular
(and was my credo during this journey known as graduate school):

... to boldly Warp what no one has Warped before



