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ABSTRACT 

 
Medical imaging sensors can be used to noninvasively probe tissue 

morphology and monitor material deformations associated with growth, disease, or 

normal physiology.  Deformable image registration provides a framework for 

extracting and quantifying this information.  Image registration is, however, an 

inherently ill-posed inverse problem.  The research in this dissertation investigates 

techniques to regularize image registration problems.  Preprocessing, integral and 

post-processing tools were developed to complement existing image registration 

techniques.  These tools included techniques for dynamic (sequential) spatial filtering, 

histogram-matching, sequential image tracking, rezoning, and other techniques that 

allow the solution of difficult practical registration problems.  These tools have been 

incorporated into the continuum mechanics based deformable template registration 

method known as Warping.  Warping was then used to solve a variety of typical 

registration problems, utilizing regularization tools when needed.   

Additionally, two quantitative techniques for assessing image registration 

results have been developed and implemented.  The singular value decomposition 

(SVD) topology tracking technique hierarchically assesses the match in topology 

between image data sets.  The technique also provides a systematic method of tracking 

the evolving topology of the deformed template data during registration and 

comparing it with the topology of the target image data.  In order to apply the 

 



 

technique to volumetric image data, a three-dimensional (3D) extension of the SVD 

was formulated.  The technique was applied to registration problems using both 

simulated and real image data.  Results indicated that spikes in the inner product map 

of the template may correspond to potential difficulties in the registration.  

The second technique utilized the variances of the registration potential energy 

to evaluate the relative influence of image data and registration method on image 

registration solutions.  An image influence parameter was defined, which provided a 

regional measure of the relative influences of the image energy and registration 

method over the domain of the template model.  The technique was applied to several 

representative image registration problems.  Results indicated that choice of image 

registration method played a significant role in registration results in image regions of 

conflicting or inadequate image texture. 
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CHAPTER 1 

INTRODUCTION 

Motivation 

Since the discovery of X-Rays, medical imaging has become a vital part of 

biological and medical research.  As techniques for acquiring images improve, so does 

the amount of information that can be extracted from these images.  The role of 

medical imaging continues to evolve far beyond simple inspection and visualization of 

biological structures.  It has become a tool for disease diagnosis and tracking, surgical 

planning, evaluation of organ function, and a myriad of other uses.   

In some cases, the best method for examining biological structure and function 

is through comparison of medical images with those taken from similar structures that 

have been more thoroughly characterized.  Often, additional insights may be obtained 

through comparison of images of a biological structure in deformed stress states with 

images of the same structure in a reference configuration. 

With recent advances in image acquisition techniques, medical imaging is now 

in a position to offer improved insights into biomechanics.  Although many physical 

quantities may be measured directly using modern imaging techniques, extracting 

stress and strain fields from medical images remains a challenge.  Recently, 

deformable image registration methods have emerged that use medical images in 
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combination with computational methods to determine nonlinear deformation fields 

(and in some cases the corresponding strain and stress fields).  These methods are 

compatible with modern imaging modalities (e.g., CT, MR, PET, SPECT, optical 

microscopy), and allow accurate estimation of in vivo strain fields, without the need 

for exact material properties or invasive surgery. 

The overall objectives of this research are to develop a set of practical 

techniques for regularizing and evaluating the efficacy of image registration problems, 

specifically applied to the deformable image registration method referred to herein as 

“Warping” [1-4].  The specific aims of the research are to: 1) develop and implement a 

suite of practical tools for regularizing image registration, 2) develop, implement, and 

evaluate quantitative techniques for evaluating the success of image registration, 3) 

demonstrate the efficacy of aims 1 and 2 using a series of simulated and actual image 

registration problems. 

 
Summary of Chapters 

 Chapter 2 introduces the process of image registration, with specific emphasis 

on the methods for deformable image registration.  The ill-posed nature of the image 

registration problem is described and discussed.  A review of the literature on image 

registration is presented, including current registration techniques and regularization 

strategies, and related fields of research are identified.  The relevance of the present 

work to current image registration techniques is established. 

 Chapter 3 details the development and implementation of several 

regularization tools created during the course of the present research.  These tools are 

characterized as preprocessing, processing, or postprocessing tools.  Preprocessing 
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tools address inconsistencies in medical image data due to the stochastic nature of 

image acquisition devices, as well as differences in acquisition techniques that can 

occur in intersubject registration.  Processing tools are applied during the image 

registration process to avoid local minima solutions.  Postprocessing tools facilitate 

accurate visualization and evaluation of the computed registration solution.  

Additionally, because image registration is often an iterative process, postprocessing 

tools often guide variation in registration parameters during iterations, as well as 

providing stopping criteria.   

 Chapter 4 addresses the practical aspects of image registration.  A brief 

description of the mathematical basis of Warping, as well as some details of the 

implementation are presented.  A collection of both simulated and real example 

problems demonstrate application of the techniques described in Chapter 3.  A 

combination of simulated nonlinear forward problems and image registration problems 

are used to validate the Warping method for computing strain and stress fields.  

Warping is then used to compute strain and stress fields in a human spinal disc, human 

distal phalanx, and a mouse tectorial membrane.  Since a large portion of medical 

image registration problems deal with mapping various study anatomies into 

alignment with a template anatomy, Warping is also used to examine intersubject 

registration of both macaque and mouse neuroanatomies.  An additional application of 

the method is demonstrated through semiautomatic generation of a subject-specific 

hexahedral mesh for the human distal femur.   

 A paper detailing a new topology tracking technique for evaluating the success 

of medical image registration is presented in Chapter 5.  The technique is based on 
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singular value decomposition (SVD) and provides an objective method to compare the 

topology of a deformed template image with that of a target image.  A 3D extension of 

the standard singular value decomposition is posed and applied.  The technique 

provides: 1) A hierarchical method to quantify image registration, 2) a method to 

assess topological mismatch between image datasets, and 3) a means to rank image 

registration solutions to distinguish local from global minima.  Results demonstrate 

application of the technique using magnetic resonance images of the heart and human 

distal phalanx, as well as optical images of primate brain cryosections.  Results 

indicate that the technique may also be useful for a priori identification of local 

minima. 

 In Chapter 6, a novel technique for assessing the interaction of image data and 

registration method in deformable image registration is presented.  The technique 

utilizes the characteristics of the Hessian of the energy functional (cost function).  An 

image influence parameter is defined that quantitates the regional variance in the 

influence of the image data over the domain of the template model.  A variety of 

practical registration problems are evaluated using the technique.  The value of the 

technique lies in its ability to indicate the reliance of the computed solution on the 

image data as compared to the constraint system. 

 Chapter 7 provides a cohesive discussion of the work from previous chapters.  

The overall significance of the present work is emphasized and the strengths and 

limitations of the work are presented.  An outline of future work stemming from the 

current research is also presented. 
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 The attached appendix details the derivation of the fundamental Warping 

equations in indicial form.  Although the warping derivation has been previously 

published [2-4] in direct notation, the indicial notation equations are a valuable 

reference for those interested in the practical aspects of coding. 
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CHAPTER 2 

BACKGROUND 

Biomedical image registration plays an important role in a wide variety of 

medical applications, including image comparison [1]-[3], image fusion [4], 

segmentation [5]-[10], image-guided surgery [11], and strain field computation [12]-

[16].  In its simplest form, it is the process of aligning anatomical features present in a 

template image data set (a.k.a. reference, textbook, atlas) with those present in a 

specific target (subject) image data set.  While the premise is simple, implementation 

can be challenging.  The problem is ill-posed in the sense of Hadamard [17], [18] 

because there is not a unique solution to the registration and some form of 

regularization must be used to constrain the manipulation [19].  Various constraints 

have been used towards this goal.  Image registration methods are typically classified 

according to the technique used to limit the field of acceptable solutions. 

 
Registration Techniques 

There are numerous techniques for achieving image registration, e.g., [20]-

[23].  Recent efforts follow three distinct lines:  1) Landmark or marker based 

identification techniques that align key points from a template image set with those in 
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a target image set [24], 2) Principal axis registration methods based on low-

dimensional translation, rotation, and scaling operations [5], [25], and 3) Deformable 

image registration methods (deformable shape models) [26].   

 
Landmark Based Registration 

The use of fiducial markers or anatomical landmarks to achieve intersubject or 

multimodality registration has been well established [23], [27]-[31].  Distinct 

anatomical landmarks (or markers) are selected on both of the image datasets that are 

to be aligned.  A transformation map between the images is obtained by interpolation 

between these key landmarks, which are constrained to align perfectly.   

Landmark based registrations have a low computational cost and are currently 

favored in clinical situations where quick answers are desired.  A drawback to these 

techniques is that they rely heavily on expert interaction to determine appropriate 

anatomical points to use as landmarks, as well as to define the location of those points.  

Additionally, because the technique relies upon interpolation between the chosen 

landmark points, the quality of the registration obtained is highly dependent upon the 

quantity and spacing of these landmarks.  

 
Principal Axis Registration 

Principal axis registration [5], [25], [32], [33] is often used for extremely quick 

registration of medical images.  Binary versions of the 3D image data are created 

using a threshold algorithm.  Principal axes of these binary template and target image 

datasets are computed using the eigenvectors of the inertia matrix [32], [5].  Volume 

centroids of the binary image datasets are computed in the standard manner.  
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Registration is obtained by translation and rotation of the template image dataset to 

align centroids and principal axes.  The template image volume is then scaled to 

complete the registration. 

Principal axis registration is extremely fast compared to other image 

registration techniques, and may be appropriate for applications where the template 

and target images are taken from the same anatomy using different imaging 

techniques.  However, the technique is often inappropriately applied to segmentation 

or intersubject registration problems.  Considering the enormous anatomical 

variability present in even the normal population, failure to address fundamental 

differences in structure between subjects during registration makes this method 

inadequate for all but the most global image comparisons.  Some researchers have 

used Principal Axis registration as a preliminary step to remove global rigid body 

differences [34].  

 
Deformable Image Registration 

Deformable image registration is rapidly gaining preference for many image 

registration applications.  In deformable image registrations, a geometrical model of 

the template image dataset is created and subsequently deformed to align with the 

target.  The template is typically a static set of image data.  The target can either come 

from a time sequence of image data taken of the template anatomy during 

deformation, or from entirely different subjects.  The first case represents a strain-

tracking problem common in experimental biomechanics, e.g., ventricular mechanics 

[35]-[39], plaque mechanics [40]-[51], knee mechanics [48], [51]-[61], and muscle 

mechanics [50], [62]-[68].  The second case represents a segmentation or registration 
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problem frequently encountered in medical imaging, e.g., tracking tumor growth [69], 

[70], brain mapping [24], [71]-[73], or anatomical metric tracking [74]-[76].  One goal 

is common: generate a transformation map (registration) between the reference image 

set (the template), and the target image set.  This transformation map allows direct 

comparison of tissue geometrical structures as represented by the image sets.  

Registration can also provide 3D spatio-temporal strain field information based on 

inhomogeneities in the deforming tissue as interrogated by the imaging sensors. 

When deformable image methods are rigorously applied, the template 

transformation is governed by principles of nonlinear differential geometry or 

continuum mechanics.  Some methods focus on border information, such as the 

deformable contour models of Kass [66], [77]-[80].  Others have used full volumetric 

approaches subject to the laws of linear solid mechanics [81]-[86], fluid 

mechanics[87]-[89], nonlinear continuum mechanics [7], [12], [13], [16], [90], [91], or 

free-form deformation [92], [93].  Although deformable image methods are robust 

enough to solve most problems without user interaction, many of these techniques also 

allow stipulation of known correlation points (landmarks) in both the template and 

target image datasets.  

The advantages of deformable image registration methods are due to their 

ability to automatically generate very high resolution (often voxel level) 

transformation maps between the template and target image datasets.  A primary use 

of such techniques to date has been medical image segmentation and registration [7]-

[10], [66], [94], [95].  The methods have also been applied to a wide range of 

problems including handwriting recognition [96], [97], vehicle classification [98], 
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facial feature recognition [99], [100], fish identification [30], military target 

identification [101], manufacturing [102], and nonlinear strain computation [12]-[16], 

[47].     

Deformable image registration methods typically require significantly more 

computational effort than landmark or principal axes methods.  Additionally, stopping 

criteria for these methods are often ad-hoc and there is the potential for generation of 

incomplete registrations (local minima solutions) due to premature termination of the 

registration process. 

A significant portion of the present work has been devoted to techniques for 

quantifying the success of deformable image registration techniques.  Previous efforts 

to quantify the success of these techniques have focused on global comparisons of the 

mapped image following registration with the target image.  Examples include image 

subtraction [16], misfit calculation (a.k.a. sum of the squared differences) [103], 

histogram comparisons [104], wavelet transform comparisons [105], and mutual 

information [106].  A potential drawback of global measures is that they do not show 

the regions of the registered image where the registration scheme is highly dependent 

upon the registration constraints (rather than the image data).  Additionally, global 

measures can be inconsistent with expert observer evaluations.   

 
Related Fields of Research 

The technology underlying deformable image registration has direct 

application to three major fields of research: pattern recognition, biomechanics, and 

medical imaging.  To provide context for the present work, related contributions from 

each field are summarized briefly below. 
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Pattern Recognition 

Significant effort has been devoted to establishing methods for recognizing 

distinct patterns present in image data.  Applications to the medical field are abundant.  

For example, a radiologist might recognize that certain intensity patterns are indicative 

of a tumor, while other patterns represent a benign cyst.  Numerous techniques have 

been proposed for attempting automated or semiautomated pattern recognition, such as 

nearest neighbor [107], clustering [108], neural networks [109], support vector 

machines [110], [111], and statistical techniques [112], [113], [63].   

Many of the image registration methods currently in use can trace their roots to 

pattern recognition techniques.  Indeed, image registration can be classified as a 

pattern recognition technique, and the literature is often intertwined.  In many cases, 

new algorithms that simplify the pattern recognition process can also be applied to 

image registration. 

 
Biomechanics 

An important problem in biomechanics is the extraction of three-dimensional 

(3D) strain tensor fields from biological tissues undergoing deformation.  Tissue 

deformation described by the strain field has been used to study function of the heart 

[114]-[116], joint dysfunction [117], and other physiologically relevant problems 

[118]-[121]. 

Previous attempts to estimate nonlinear strains in biological tissues and cells 

have typically employed fiducial markers [65], [122]-[129].  3D strains can be 

estimated directly from changes in the distances between groups of markers making 
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up tetrahedral sets.  Inhomogeneous strain fields and physical dimensions of the 

markers, however, can limit applicability of marker-based methods [36], [122], [123].  

Some techniques attempt measurement of biological strain fields using direct imaging 

methods such as tagged MRI [115], intravascular ultrasound [43], [46], spatial 

modulation of magnetization (SPAMM) MR [39], or other methods [114], [130], 

[131].  These techniques allow direct, in vivo measurement of strain fields.  However, 

each of these methods makes assumptions about homogeneity of the deformation 

field, similar to marker-based techniques.  Additionally, image resolution is generally 

poor and extended image acquisition times are often required.  

Many researchers currently use computational techniques such as finite 

element analysis (FEA) for predicting the strain and stress fields developed in 

biological tissue during deformation [41], [61], [68], [132]-[134].  These techniques 

have obvious advantages over invasive experimental methods, which would otherwise 

be required to obtain this information.  The techniques are also able to deal with a 

tremendous variety of complex tissue geometries and nonlinear material properties 

[135].  A drawback to purely computational techniques is that material property data 

for biological tissues are often poorly characterized.  Additionally, both material 

properties and geometry can vary widely between subjects, making generalized 

models inadequate in many instances.  Verification of results is also challenging. 

Some of the most successful techniques to date have used a combination of 

computational, experimental, and imaging methods to calculate stress and strain fields 

in biological tissue [37], [136], [137].  Subject-specific computational models are 

created directly from image data that correspond to the biological structures of 
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interest.  Material property values are then measured experimentally directly from 

explanted tissue.  Marker-based imaging methods are used to verify the computational 

results as far as possible.  The most obvious disadvantage of these techniques is that 

they must generally be performed on cadavers because of the necessity of obtaining 

accurate material properties and applying markers to the tissue of interest. 

 
Medical Imaging 

Part of the usefulness of medical imaging sensors stems from their ability to 

interrogate the 3D structure of biological tissue.  The process of medical imaging 

generally involves a measurement process, followed by an image reconstruction 

process.  Stochastic noise and systematic errors in these processes propagate to the 

reconstructed image.  The statistical properties of imaging sensors can influence the 

ability of both intrasubject and intersubject image registrations to achieve acceptable 

results [7], [13], [66].  Examples of stochastic sources of error related to imaging 

sensors include X-ray interaction effects and attenuation effects, magnification effects, 

and tomographic reconstruction approximations.  Systematic errors can also influence 

registration methods.  Examples of systematic sources of error [138] include 

calibration errors, differences in imaging scanner settings, differences in exposure 

time, and differences in tomographic reconstruction techniques. 

 
Relation to Present Work 

The continuum mechanics origins of the deformable image registration 

(Warping) method developed by Rabbitt and Weiss [16], [90] present several 

advantages over other registration techniques, albeit at a computational cost.  The 
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registration obtained is a one-to-one (diffeomorphic) mapping of differential lines, 

areas and volumes from the target image set to the template.  Thus all features 

associated with the template (labels, functional information, segmentation information, 

etc.) are easily transferred to the target.  Relative volume results are readily available, 

providing a means to identify subject abnormalities and/or tracking tumor growth over 

time.  Because of these features the method was used as a test bed for implementation 

and evaluation of the tools developed in the present work. 
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CHAPTER 3 

REGULARIZATION TOOLS FOR DEFORMABLE TEMPLATE  

BASED IMAGE REGISTRATION METHODS 

Introduction 

In 1902 Jacques Hadamard classified mathematical problems as either “well-

posed” or “ill-posed.”  He defined a “well-posed” problem as one with an existing, 

unique and well-conditioned solution [1], [2].  Hadamard believed that all naturally 

occurring problems fell into this category and were considered to be solvable.  A 

problem that did not meet these criteria was considered “ill-posed,” and unsolvable.   

Contrary to Hadamard’s belief, ill-posed problems of practical interest arise 

naturally in many areas of science and engineering.  Many biomedical image 

registration problems do not have a unique solution, and fall into this category.  In 

order to solve these problems, the solution space must be restricted using some form 

of applied constraints or optimization criteria (a.k.a. image similarity measure).  As 

was discussed in Chapter 2 of the present work, image registration techniques are 

defined by their applied constraint system.  In many cases, however, restricting the 

solution space still does not guarantee a unique solution.  The problem is most 

common in deformable template based registration methods, where the problem 

solution is guided by optimization of a potential function.  Local similarities in image 
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data (regions of the template and target images that are similar in intensity, gradient, 

border information, etc.) can confound global registration of the image data.  

Mathematically these similarities appear as local minima in the potential function that 

is being optimized.  In theory, the higher the dimension of the transformation, the 

more local minima present in the potential function [3]. 

During registration, the template image is deformed to align with the target 

image field.  The magnitude of the registration force is based on both the difference in 

absolute pixel intensities between these fields and on gradient information (see 

Appendix).  In the ideal case, the target represents a “perfect” transformation of the 

template and registration progresses until the template image is perfectly aligned with 

the target (and the registration forces are brought into balance with the internal energy 

of the deformation).   

Real image data, however, present a greater challenge.  No perfect 

transformation exists. Thus, the registration consists of balancing conflicting image 

information (due to imaging artifacts or variability between subjects) and internal 

energy generated during deformation.  Locations on the template and target images 

containing similar intensity and gradient information will attract each other, whether 

or not the deformation represents a correct registration.  Thus, local image information 

can interfere with global registration.  This represents a local minima in the combined 

energy functional used for registration and is common to most deformable template 

registration techniques [4-6]. 

In this chapter, several techniques for regularization of image registration 

problems are presented.  The techniques were developed and applied to a deformable 
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template based image registration algorithm, which was implemented into the 

nonlinear, implicit FE code, NIKE3D [7-9].  The code was designed to align a 

template model (consisting of both a material representation of the image space and 

the template image data) with target image data.  The target image space was assumed 

to be a transformed version of the template image field.  The mathematical problem 

was to search through all admissible deformed configurations of the template for the 

one that minimized the difference between the transformed template and target data, 

while simultaneously minimizing the strain energy of the deformation.  Mathematical 

details of the implementation are given in Appendix. 

Details of the development and implementation of a series of regularization 

tools are given below.  Practical application of these tools to a variety of both 

simulated and real problems is presented in Chapter 4 of this dissertation.  The 

regularization tools detailed in this chapter are characterized as preprocessing, 

integral, or postprocessing tools. 

 
Regularization Tools: Preprocessing 

Preprocessing tools address inconsistencies in medical image data due to the 

stochastic nature of image acquisition devices, as well as differences in acquisition 

techniques, which can occur in intersubject registration.  These tools are primarily 

concerned with adjusting for overall differences in image intensity and contrast 

between the template and target images. 
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Histogram Stretching 

In many medical imaging modalities, signal intensity decays non-uniformly 

over time, not only resulting in a general decrease in image intensity, but also 

affecting the composition of the intensity histogram.  Additionally, in the case of inter-

subject registrations, template and target images have often been acquired with 

different hardware or imaging parameters (e.g., in X-Ray CT the peak voltage, current, 

and exposure time may be different).  Because of these factors, the image histograms 

of the template and target may be significantly different and can result in incorrect 

image registration.  One way to partially accommodate such difficulties is to match the 

centroids of template and target image intensity histograms.  A simplified version of 

the technique used by Dale-Jones and Tjahjadi [10] is utilized in the present work.  

First the area centroids and extreme values of the intensity histograms of both 

the template and target image datasets are computed.  For an arbitrary image 

histogram with singularly spaced discrete intensity values i ranging from Imin to Imax 

and frequency of occurrence v(i), the area centroids of the histogram may be computed 

using 
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For an arbitrary image A with intensity values A(n), containing N voxels the 

histogram area centroids may be computed more directly as: 
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Following calculation of these values for both the template, (T) and target, (s) image 

datasets, the target voxel intensity values s(n) are scaled in order to match the target 

histogram intensity centroid ( )(si ) with that of the template ( )(Ti ): 
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The frequency centroid of intensity histogram ( *)(sv ) of the adjusted target (s*) 

is then computed and scaled to match that of the template image intensity histogram. 
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Results obtained using this technique were reported by Bowden [5], [11].   

 
Singular Value Replacement 

Improvements in correspondence between the histogram of the target data with 

the template image can also be accomplished by replacing the singular values of the 

target image with those of the deformed template image.  The technique is based on 

the Singular Value Decomposition (SVD) [12-14].  The premise is that any real x-by-y 

matrix A can be decomposed such that 
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T=A U VΣ .      (3.5) 

Here, U and V are orthonormal matrices whose columns contain the singular 

vectors of the decomposition, and the diagonal matrix, ( )r1 ,σ...,σdiag=Σ , 

 with min(x,y)r = 01 ≥≥≥ rσσ ... , contains the singular values of the decomposition.  

For clarity, a particular singular value is referenced as σi.  SVD has found wide 

application in image compression and for evaluating the “noise level” of a matrix 

system or image based on the singular values [15]. 

The original matrix A is easily retrieved following decomposition by 

multiplication of the component matrices.  An interesting observation is that the U and 

V matrices represent positional data, essentially a topological mapping of intensity 

information contained in the Σ matrix to the A matrix.  This observation is the basis of 

the singular value topology tracking technique discussed in Chapter 5 of this 

dissertation. 

Since a fundamental assumption of all deformable template based image 

registration methods is that the target image is a transformed version of the template, 

containing the same elements as the template, but at different spatial locations within 

the image data, it follows that Σ(T) =Σ(s).  Real variability between sensors and subjects 

will of course influence the actual values of Σ(T) and Σ(s), but by enforcing this 

constraint, we can improve the correspondence between the histogram of the target 

image with that of the Template image.  In 2D, 
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where the lower case singular vectors (un , vn ) correspond to individual (column) 

vectors of the target s, but the singular values (T )σ n  are those of the deformed 

template.  This operation has the effect of changing the overall intensity of each target 

mode to match the corresponding mode in the deforming template without changing 

the topology or spatial distribution within the mode.  In refers to a depleted identity 

matrix containing zeroes in all matrix locations, except the main diagonal entry in the 

nth position.   

To apply SVD to 3D image data it is necessary to extend the concepts beyond 

the classical 2D matrix framework.  There are several ways in which this could be 

done.  In the present work the matrix containing the image intensity data A was 

arranged in a 3D rectangular format and decomposed separately for each image slice k 

(k=1…K), 

  
( ) ( ) ( ) ( )Tk k k k=A U VΣ      (3.7) 

to obtain a stacked set of 2D SVDs.  The singular values from the stacked slices were 

then assembled as columns of a new matrix Ã: 

 
[ ](1)(1)(1)A ΣΣΣ= K

~     (3.8) 

This matrix, containing slice-by-slice singular values, was then subjected to a second 

SVD: 

 
TVUA ~~~~

Σ=       (3.9) 
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The nth 3D singular mode (Ãn) was obtained by applying Eqs. 3.7 - 3.9 to the nth 

singular value.  For the kth slice this provides 

 
( ) ( ) ( ) ( )Tk k k
n n=A U VΣ k .     (3.10) 

The matrix Σ  was constructed in 3D for the k)(k
n

th slice of the nth singular mode using 
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where nΣ~  was obtained by zeroing all elements in Σ~  with the exception of ˜ σ n , the 

subscript k denotes the kth column, and I is the identity matrix.  Note that this reduces 

to the 2D case described above if all slices are identical.  Although this approach is not 

the only possible 3D decomposition, it preserves the hierarchical property and has 

well-defined inner-products.  Eqs. 3.7 - 3.11 will be referred to herein as 3D SVD. 

Using these equations, a 3D singular value replacement may be defined as: 
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Results obtained using this technique were reported by Bowden [5]. 

 
Regularization Tools: Integral 

Integral tools are applied during the image registration process to avoid local 

minima solutions.  In general, two types of local minima solutions are likely to occur 

during the Warping process.  Euphemistically, they could be referred to as the “train 
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wreck” and the “shoving match.”  As part of the present work, tools have been 

developed to deal with each type. 

The train wreck occurs when several portions of the template and target images 

contain similar intensity and gradient values.  This situation is common in many 

biological problems, but it is especially common in neuroanatomical registrations.  

The analogy to a train wreck follows:  Two trains are traveling along the same track, 

both carrying similar cargo, but bound for different destinations.  Unfortunately, the 

first train mistakenly stops at the first city, leaving the second train unable to reach its 

destination (since the first train is already there), but unable to travel to the second city 

(because there is only one track).  Similarly, sometimes during image registration, 

local template image information must pass through regions of similar intensity in the 

target in order to reach the appropriate destination.  If the correspondence between 

template and target is high enough, the registration process can get “stuck”, making 

further progress in the registration impossible, because of the penalty imposed on 

deviating from the current template configuration.  Figure 3.1 shows an example of 

train wreck local minima that occurred during registration of macaque brain 

cryosections (macaque cryosection data provided by D.C. Van Essen of Washington 

University).  The arrows indicate the particular areas of the images that cause the 

problem.   

The second type of local minima that commonly occurs during registration is 

the shoving match.  The shoving match is more often encountered during nonphysical 

registration problems, such as intersubject registration.  The analogy hearkens to a 
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Figure 3.1. Examples of typical local minima solutions.  Panels A and B show the 
template and target images from a macaque neuroanatomical registration.  Panel C 
shows the “train wreck” local minima solution.  Note that many of the sulcal regions 
have similar image intensity/gradient.  These regions can interfere with global 
registration.  Panels D and E show the template and target images, which resulted in a 
“shoving match” type local minima solution.  The dark occlusions do not overlap, and 
surrounding areas of the images lack sufficient gradient and image texture to drive 
deformation.  Panel F shows the discretized template model before deformation.  
Panel G shows discretized template in a local minima solution.  The FE mesh cannot 
deform further without element inversion. 
 
 
schoolyard quarrel where the two combatants face off, neither willing to move.  The 

first combatant pushes the other, lightly at first, the other responds in kind.  Push turns 

to shove until both are shoving the other as hard as they can.  Similarly, sometimes 

image information would dictate continued deformation of the template model, 

however material constraints placed on the deformation (most commonly related to the 

bulk modulus in Warping problems), penalize that mode of deformation.  As the 

penalty parameter is increased (see equation A.6 in the appendix), the associated 

Warping force increases.  Incremental deformation of the FE mesh simply increases 

the material resistance to further deformation (often because surrounding elements 

have already become locked into place), until finally an element is inverted, causing 
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premature termination of the solution process.  Figure 3.1 also shows an example of a 

“shoving match” type problem that cannot be solved without regularization.  A dense 

occlusion in a soft billet was subjected to gravity loading such that following 

deformation the occlusions did not overlap.  The regions of the images corresponding 

to the billet lack sufficient texture to drive deformation.  Panel F shows the discretized 

template model before deformation.  Panel G shows discretized template in a local 

minima solution.  The FE mesh cannot deform further without element inversion.  

Without regularization, the Warping algorithm attempted to expand the region 

surrounding the target inclusion, while simultaneously shrinking the region 

surrounding the template inclusion. 

 
Dynamic Spatial Filtering (FFT & SVD)  

One way to regularize the registration problem and potentially overcome “train 

wreck” (and some “shoving match”) type of local minima is to spatially filter the 

template and target image data during the registration process.  Smaller image features 

are obscured in favor of more dominant ones.  The registration can then proceed to 

smoothly align these dominant, global features and lock them into place.  The filtering 

is gradually removed, allowing registration of higher frequency detail, until the 

registration is complete.   

One method of spatially filtering 3D image data is by convolution of the image 

with a filtering kernel k(X): 
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where t(X) and t*(X) are the original image data and the filtered data respectively, X is a 

vector containing the material coordinates and Z is the frequency representation of X.  Since 

convolution in the spatial domain is equivalent to multiplication in the frequency 

domain, an efficient way to accomplish this calculation is through the use of the 

discrete Fourier transform.  

 
( ) )(K)(T}t{)(T ** ZZXZ =ℑ=              (3.14) 

Once the data are in Fourier space, a simple multiplication is applied and then the 

transform is inverted to obtain the convolved image in the spatial domain.  

 

)}(K)(T{)(t* ZZX 1−ℑ=                (3.15) 

Because of the highly optimized algorithms developed for applying Fourier 

transforms [16], this method is significantly faster than computing the convolution in 

normal image space.  Changes in the filter are applied by changing the convolution 

function k.  Different filter kernels have been successfully used, including a Gaussian 

kernel and a simple Heaviside function.  The technique has been used extensively in 

the Musculoskeletal Research Labs at the University of Utah [4], [5], [17-19].  An 

example of using dynamic Gaussian spatial filtering during registration of macaque 

cryosection images is given in Figure 3.2. 

As part of the present work, we have developed and applied another dynamic 

spatial filtering technique based on SVD.  The technique exploits the hierarchical 

nature of the decomposition, in that the most significant image information is 
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Figure 3.2.  Dynamic Gaussian spatial filtering.  Panels A, B, and C show the 
Template, Target, and initial subtraction (Template-Target) images, respectively.  
During the solution process, the Template and Target images are convolved with  
Gaussian kernel functions.  Initially large variance values for the kernel are used, then 
progressively smaller values as registration nears completion.  Rows D, E, and F show 
the filtered versions of the Template, Target, and subtraction images at incremental 
points in solution time. 
 
 
contained in the first singular values/vectors.  To utilize the technique, both the 

template and target images are decomposed using the SVD (Eq. 3.5, 3.9).  The images 

are then reconstructed with a truncated version of Σ: 

( ) T
n

m

n
nnn vIuA ∑

=

=
1

* σ     (3.16) 

where m <  N and un, σn, and vn are all from SVD of the corresponding template or 

target image.  When only the few largest singular values are used for reconstructing 
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the regularized images, the images are reduced to their most basic components and 

local details are obscured.  Following registration of these regularized images, new 

versions of the template and target images are generated with progressively more 

singular values.  The process continues until all of the singular values are included 

( ), and the complete images are registered.  The 3D version is applied 

similarly as: 

Nm →

( ) T
n

m

n
nnn vIuA ~~~~

1

* ∑
=

= σ     (3.17) 

In this manner, the most significant singular values from the most significant slices are 

registered first, and then progressively more image detail is added during the 

registration process. 

The evolution of the macaque cryosection registration problem using the 

progressive SVD filter is shown in Figure 3.3.  The technique may be used in 

conjunction with the Singular Value Replacement technique described previously.  

Although computation of the SVD algorithm is somewhat time-consuming, it need 

only be performed once for each image set.  Reconstruction of the image data at each 

change in the number of included singular values m, is a simple matrix multiplication 

process.  This is in contrast to other spatial filter algorithms, which generally involve 

major computational effort at each change in filter dimension. For example, the 

convolution of an image with a Gaussian filter of 5 voxels cannot be directly obtained 

from knowledge of the convolution result with a Gaussian filter of 3 voxels without 

performing another convolution operation.  Thus the SVD algorithm is often more 

efficient than these techniques. 
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Figure 3.3.  Dynamic SVD spatial filtering.  Panels A, B, and C show the Template, 
Target, and initial subtraction (Template-Target) images, respectively.  The Template 
and Target images are decomposed using the SVD.  During the solution process, the 
images are reconstructing using progressively more singular values.  Rows D, E, and F 
show the filtered versions of the Template, Target, and subtraction images at 
incremental points in solution time. 
 
 
 The potential advantage of using an SVD filter over a Gaussian filter is that 

registration progresses naturally through the principal modes of the image data.  

Practically, the technique is susceptible to local minima during the intermediate steps 

(for example, reference panels B-F of Figure 3.2).  

 
FE Rezoning 

During large deformation registration problems, FE discretization levels can be 

insufficient to track kinematics of very complicated displacement patterns.  Rezoning 
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allowed for larger nodal displacements and more complicated element deformation 

fields by periodically restoring the finite element mesh to its undeformed state during 

computation.  At this point, material stresses were reset to zero, and template image 

intensity and nodal displacements were interpolated from the nodes of the deformed 

FE mesh to those of the reset mesh.  The analysis then continued until the convergence 

criteria were met or another rezoning was required.  Strain values were computed 

following registration using standard FE techniques from the accumulated nodal 

displacements computed at each remesh point. 

 The rezoning procedures required interpolation of the template image data T 

and the accumulated nodal displacements u(X) from the deformed FE mesh to the 

nodes of the reset mesh.  For each node N in the undeformed mesh, the element in 

deformed mesh that contains the node is located by comparing the natural coordinates 

(ξN, ηN, and ζN ) of the node in each deformed element (successful location requires  –

1 < ξN, ηN, ζN  < 1).  Once the natural coordinates of the node in the element local 

coordinate system were determined, the value of the quantity to be interpolated could 

be obtained for the node of the reset mesh by interpolation using the trilinear shape 

functions for the eight-noded hexahedral element [20]. 

The relationship between the global coordinates and the local element 

coordinates was required to perform the interpolation.  For this, the local coordinates 

of the eight nodes of the element containing N were assembled into an 8x3 matrix 

φ(ξi,ηi,ζi), where ξi, ηi, and ζi are the local element coordinates of the nodes 

composing the element; for instance, node 1 has local coordinates (-1, -1, -1).  An 8x8 

matrix G was assembled to contain the global nodal coordinates and the products of 
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these coordinates as per the shape function definitions.  The local coordinates were 

related to the global coordinates via the interpolating polynomial constants arising 

from the shape functions as follows: 
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 (3.18) 

Here, α is an 8x3 matrix containing the polynomial coefficients and (xi, yi, zi) 

are the coordinates of the corner nodes of the deformed element in the global 

coordinate system.  The matrix α was determined for each element in the reset mesh: 

 
[ ] [ ] [ ]φα 1−= G  .    (3.19) 

The local element coordinates (ξN, ηN, ζN) of node N follow from α and the global 

coordinates (xN, yN, zN): 
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The interpolated values can then be computed from the local coordinates, the nodal 

values, and the trilinear shape functions.  For example, the interpolated template 

intensity was computed using 
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where the Ti are intensity values at each node in the deformed element and hi are the 

shape functions corresponding to each node evaluated at ( )N N N, ,ξ η ζ  [20]: 

 

( )( )( iNiNiNih ζζηηξξ −−−= 111
8
1 ) .    (3.22) 

As an example, for node 8 with local coordinates (1,1,1) the shape function would be 

 

8
1 (1 )(1 )(1 )
8 N Nh Nζ η ξ= − − − .    (3.23) 

The accumulated nodal displacements u(X) were interpolated using the same 

procedure.  Note that this interpolation strategy is consistent with the shape functions 

used in the FE solution process.  A graphic illustration of the technique is given in 

Figure 3.4. Panels A and B of the figure show the template and target images, 

respectively.  The template evolution Results using the technique on mouse 

neuroanatomies have been reported in the literature [17].  

 
Sequential Image Registration 

In strain-tracking registration problems, it is often possible to avoid train wreck 

type local minima by using additional target images acquired at intermediate stress 

states during the deformation.  Utilizing additional images also allows more accurate 

computation of developed stress for materials that have path dependent material 

characteristics (such as viscoelastic and elastic-plastic materials). 
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Figure 3.4  Rezoning during mouse neuroanatomy registration.  Panels A and B show 
the Template and Target images, respectively.  Panels C-G show the deforming FE 
mesh overlaid onto the deforming template image.  At panel D, the mesh has almost 
become sufficiently distorted to start inverting elements.  A rezoning operation is 
performed and the mesh reset to its initial configuration (Panel E).  Registration then 
continues to completion. 
 
 

This regularization technique has been implemented into the Warping code 

using the restart capabilities of NIKE3D [9].  Accumulated nodal displacements and 

element stresses (as well as template image information) are stored to disk following 

registration of the template image with the first sequential target image.  The 

registration problem is then restarted from the previous termination point, but with the 

next sequential target image.  The procedure continues until registration of the 

template with the final target image has been completed.   

For accurate stress computation using rate-dependent material models, it is 

important to accurately specify the acquisition time of each sequential target image.  

This is in contrast to a typical quasi-static Warping problem, where time is irrelevant 
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and simply used for gradually increasing the penalty parameter λ (see Eq. A.6 in 

Appendix A).   

 
Regularization Tools: Postprocessing   

Postprocessing tools facilitate accurate visualization and evaluation of the 

computed registration solution.  Additionally, because image registration is often an 

iterative process, postprocessing tools often guide variation in registration parameters 

during iterations, as well as providing stopping criteria. 

 
Mapper3D 

In most cases, the nodal points of the computational FE mesh used for image 

registration are not co-located with the image voxels.  Following image registration, 

the computed registration map must be applied to the original template image in order 

to accurately view the results and compare the registered template image with the 

target image.  For simple equi-spaced rectilinear meshes, tools such as the 

visualization toolkit (vtk) [21] are available.  Many registration problems, however, 

are more suited to a FE mesh that conforms to specific areas of interest within the 

template image data.  In some cases, a subject-specific mesh that excludes the spatial 

domain of irrelevant background image data, can avoid shoving match type local 

minima that occur using a rectilinear mesh.  For these problems, custom software 

(Mapper3D) was written to map the computed deformations into the template image 

space.   

Mapper3D uses an optimized version of the technique described for rezoning 

(Eq. 3.18  – 3.23) to locate the particular deformed finite element corresponding to the 
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Figure 3.5.  Mapper3D.  Mapper3D uses the trilinear FE shape functions to apply a 
computed displacement field to an image.   
 
 
location of each image voxel in the deformed template image.  The standard tri-linear 

shape functions from isoparametric finite element analysis are then used to determine 

the original location of that voxel in the undeformed template image.  The template 

image intensity from that voxel is then applied to the deformed template image voxel 

(see Figure 3.5).   

A special case occurs for medical imaging sensors that compute image 

intensity based on the density of the biological tissue under consideration (CT, 

ultrasound, etc.).  For these types of images, Mapper3D can adjust the intensity of the 

voxel in the deformed template image by utilizing the change in volume of the 

corresponding finite element in the deformed finite element mesh.   

In addition to allowing direct visualization of the deformed template following 

registration, this custom software allows segmentation and classification of 

information computed on the template image to be accurately applied to the target 

image.  Versions of this software have been utilized heavily in the Musculoskeletal 
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Research Labs at the University of Utah and were used to report results in several 

publications [4], [5], [11], [17], [19], [22-25].   

 
Ports to Other Operating Systems 

In order to take advantage of more efficient hardware solutions, the Warping 

code (and the tools described above) has been successfully ported to Compaq Alpha 

(Tru64 Unix) and x86 Linux (Redhat 8.0) platforms.  The Compaq Alpha version of 

the code uses the PARDISO massively parallel, sparse matrix solver [26].  It was 

compiled using the native Fortran compilers for that system.  SVD and FFT library 

functions are used from the Compaq extended math library (cmxl).  The x86 Linux 

platform uses the PCSMS sparse matrix solvers developed by NASA [27].  It was 

compiled using the Portland Group compiler [28].  SVD and FFT library functions are 

used from the LAPACK library [29] and the GNU Scientific Library [30]. 
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CHAPTER 4 

A CONTINUUM MECHANICS BASED DEFORMABLE  

TEMPLATE REGISTRATION METHOD: WARPING 

 
Introduction 

In 1995, Rabbitt and Weiss first presented a method for using the fundamental 

principles of continuum mechanics to guide deformable template based image 

registration [1].  The method, known as Warping, possesses several desirable 

characteristics.  The general approach does not require the definition of landmarks, 

fiducials or surfaces, although it can accommodate these if available.  Perhaps most 

significantly, Warping is formulated to naturally accommodate accurate stress and 

strain field computation during nonlinear material deformations, which are typical of 

many registration problems.  Additionally, the method is diffeomorphic, in that one-

to-one correspondence of differential lines, areas, and volumes is guaranteed between 

the registered images.   

During the course of the research described in this dissertation, considerable 

effort has been exerted to validate Warping and extend its application.  To this end, 

several techniques have been developed for regularization and evaluation of practical 

image registration problems.  The purpose of this chapter is to demonstrate the 

application of Warping to a series of both simulated and real image registration 
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problems.  Solution of these problems has been facilitated by development of the 

regularization tools described in Chapter 3 of this work. 

The Warping examples presented in this chapter can be classified into three 

general categories: strain tracking, image segmentation and registration, and semi-

automatic hexahedral mesh generation.  Strain tracking results are provided for tip 

deflection of a cantilever beam, compression of a circular billet, indentation of a 

human distal phalanx, compression of a human spinal disc, and deflection of a mouse 

tectorial membrane.  Segmentation and registration results are provided for a macaque 

neuroanatomy.  Warping was also used to automatically generate a subject-specific 

hexahedral FE mesh of the human femur.  

 
Methods 

Mathematical Basis 

Only a descriptive outline of the mathematical basis of the method is presented 

here.  For a more thorough treatment of the derivation, please refer to Appendix A (or 

reference [1-3]).  Standard notation from finite deformation theory is employed [4], 

[5].  In general, lowercase letters refer to quantities associated with the spatial 

(current) configuration.  Uppercase letters denote quantities associated with the 

material (reference) configuration.  Vector and tensor fields are presented in boldface 

italic type. 

A deformation map ϕ was defined that related a reference (template) 

configuration with material coordinates X to a target configuration with mapped 

material coordinates x.   
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xX =)(ϕ      (4.1) 

A suitable large-deformation material model (e.g., hyperelastic) was used such that the 

strain energy density function W(X, C(ϕ)) was defined, where C(ϕ) is the right Cauchy 

strain tensor [6].  In addition to the strain energy density function, an image-based 

energy density function U(X, ϕ) was used to relate spatial information from the 

template to the target data [1], [3], [7].  This spatial information was obtained by 

mathematically interrogating the template and target anatomies using medical imaging 

sensors.  The image energy density function penalized all configurations of the 

template that were in conflict with the target image data.  Both energy terms were 

incorporated into a combined energy density functional:  

 

∫∫ −=
ββ

VXVCX d),(Ud))(,(W)(E ϕϕϕ ,    (4.2) 

which was used to derive the weak form Euler-Lagrange equations.  The domain of 

the template space was discretized; and the template image data was interpolated onto 

the corresponding discretized version of the template model.  The FE method was 

used to iteratively deform the template model into alignment with the target image 

data, while simultaneously minimizing the internal strain energy of the model.  When 

solved using the penalty method [8], this is equivalent to a Bayesian approach [9], 

where W defines the Gibbs form of the prior probability and U defines the likelihood.   

 
Implementation 

Solution of the problem was divided into three phases: preprocessing, 

processing, and postprocessing.  In the preprocessing phase, a geometric model was 
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constructed, boundary conditions were specified, and material properties were 

assigned.  If needed, preliminary image regularization was applied at this phase of the 

analysis.   

First, a geometric model was constructed to span the region of interest (ROI) in 

the template image.  For all of the example problems presented in this chapter, the 

geometric models were constructed using the commercial FE preprocessor TrueGrid 

(XYZ Software, Livermore CA).  The software is an extremely robust interactive 

hexahedral mesh generator, and allows parametric definition of mesh characteristics 

and applied boundary conditions.  TrueGrid uses a projection technique for aligning 

nodes of the FE mesh along imported curves and surfaces.  The software also supports 

various methods of automatic mesh relaxation and evaluation.   

In general, the template model was sampled more sparsely than the image data.   

In some cases, the model was constructed to directly correspond to individual 

anatomical structures represented in the image data; in others, the model covered the 

entire domain of the template image data.  For registration problems where accurate 

stress calculations were required, it was important to use subject-specific meshes in 

order to apply appropriate material parameters to the relevant anatomical structures as 

represented in the template model.  Image data were interpolated over the domain of 

each element to generate a continuum representation of the “image field” in the 

reference configuration.  The evolution of the image field was a function of the 

deformation and the material mapping.   

Due to differences in imaging scanner settings, intersubject anatomical 

variation, and other sources of error, it was sometimes necessary to perform various 
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image processing operations on the image data prior to registration.  For instance, in 

some cases it was necessary to histogram equalize the template and target images to 

correct for differences between scanners and data collection techniques.  This was 

done with either the histogram stretching technique or singular value replacement 

technique as described in Chapter 3.  Because the image data were usually acquired at 

a finer resolution than that of the computational mesh, often the image data were 

downsampled.  The downsampling was governed by the Nyquist frequency 

corresponding to the nodal spacing of the template mesh and was obtained by 

convolution of the image data with a Gaussian kernel of appropriate dimension 

(reference Chapter 3, Eqs. 3.13 - 3.15). 

During the processing phase of registration, the combined energy functional 

(equation 4.2) was minimized using the nonlinear FE code NIKE3D [10].  NIKE3D is 

a large deformation, implicit FE solver developed and maintained by Lawrence 

Livermore National Lab.  Implementation of the Warping algorithms into such a well-

developed FE package allowed for broad variation in both applied boundary 

conditions and material constitutive parameters, which were used to guide the 

registration process.  For example, in some subject-specific registration problems, 

contact conditions can be important.  It also allowed independence of the 

computational mesh from the spatial discretization of the image data.  This 

independence was important for reduction of the computational size of the geometrical 

model and in cases where the region of interest did not include the entire image data 

set.   



 56

Template and target images were interpolated from voxel coordinates to the FE 

model to define continuous mathematical representations of the data.  The interpolated 

images were updated as the material deformed through the spatially fixed image 

coordinates.  Differences between intensity of the target and template images, as well 

as their gradients, contributed a spatially dependent body force that drives the 

registration process.  These differences also contributed to the tangent stiffness in the 

FE implementation (reference Appendix A, Eqs. A.15 – A.18).  It was also during the 

processing stage of the registration that the regularization techniques discussed in 

Chapter 3 of this dissertation were used to avoid local minima in the combined energy 

functional.  Some of the techniques used were: dynamic spatial filtering, rezoning, and 

sequential image registration. 

After the processing phase of Warping, field variables, including displacement, 

relative volume, and strain, were viewed using the FE postprocessor GRIZ [11].  

Additional custom postprocessing software was written to output the deformed 

template as an image data set (reference Chapter 3: Mapper3D).  This required 

interpolation of Lagrangian nodal displacements in order to generate pixel locations 

and intensities within the Eulerian image-based coordinate frame.  If the registration 

were perfect, the mapped template image would exactly align with the target image.  

Thus, visual inspection of the mapped template image provided a qualitative means to 

assess the registration.  Global quantitative measures such as subtraction and sum of 

the squared difference (SSD) were also used to demonstrate image alignment [3].  

Other quantitative means of assessing image registration are presented and discussed 

in Chapters 5 and 6 of this dissertation. 
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Illustrative Examples 

Mechanics Validation Study: Compressed Circular Billet   

The first example problem was a homogeneous circular billet compressed 

between two parallel plates.  The problem was highly nonlinear in that it accounts for 

both large strain as well as contact between the billet and the parallel plates during the 

deformation.  Hypoelastic material properties were assigned to the billet (E= 1MPa, 

ν=0.48).  A FE mesh was constructed to model 1/4 of the billet in the reference 

configuration with symmetry boundary conditions applied to the appropriate surfaces.  

The objective of this analysis was to verify the ability of the Warping code to 

accurately predict stress and strain for a simulated example problem with well-defined 

material properties and known loading conditions. 

For the forward simulation, a prescribed displacement condition was applied to 

the parallel plates so as to impose 50% axial compression on the billet.  Simple black 

and white Template and target images were generated from the forward solution using 

images of the FE mesh in the reference and deformed configurations (without mesh 

lines).   

To validate the warping algorithm, the boundary conditions and the applied 

loads were removed, and the image terms were added to the energy functional (Eq. 

4.2).  The problem was then re-run with the two images driving the process.  An 

augmented Lagrangian approach was used to enforce correspondence between the 

template and target images.  As with all problems presented in this chapter, this 

example problem was solved using a static analysis.  For this simulated registration 

problem, no additional regularization techniques were needed.  
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Mechanics Validation Study: Large Deformation Cantilever Beam 

A classic problem in solid mechanics is the cantilever beam.  For this analysis, 

a three-material hypoelastic beam was used.  The objective was to verify the ability of 

the Warping code to accurately predict stress and strain for a simulated example 

problem with well-defined material properties and known loading conditions.  In 

contrast to the compressed billet problem described previously, the computed 

deformation was nonhomogenous in nature and interior stress and strain fields cannot 

easily be determined from border information alone.  Young’s Modulus values for the 

top, middle and bottom layers respectively were specified as: E = 20GPa, E = 20MPa, 

E = 2GPa. Poisson’s ratio was set at 0.3 for all layers of the beam.  The beam was 

modeled in a plane strain configuration with the left end of the beam constrained from 

motion.  A FE mesh was constructed to directly correspond with the material layers of 

the beam.   

First a forward mechanics problem was solved, with a prescribed loading 

applied to the top node on the right end of the beam (50kPa ↓).  Unlike the 

compressed billet problem described previously, the nonhomogenous nature of the 

cantilever beam required adequate image textural content to effectively predict stress.  

To this end, arbitrary textured image data were generated to correspond with the 

undeformed configuration of the beam.  This image data served as the template image 

for the image registration problem.  The target image for the registration problem was 

generated using Mapper3D by applying the deformation field computed from the 

forward solution to the template image data.   
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Once the forward solution was complete, the prescribed loading conditions 

were removed and the problem was solved using Warping to drive the deformation.  

Additional regularization was not necessary for this simulated problem.  Following 

registration of the image data, the stress fields from the forward and Warping 

problems were compared in order to validate the solution process. 

 
Determining Strain Fields in a Human Spinal Disc during Compression 

The human vertebral disc is a complex combination of materials including 

collagen, water, and a proteoglycan matrix.  Material characterization and strain 

measurement are extremely difficult for the disc.  Using a nonmagnetic compression 

frame and a MR scanner, MR images of a L2-L3 motion segment were obtained 

before (template) and after (target) application of a compressive load (image data 

supplied by Chiu et al. [12]).  The objective of the analysis was to compute the strain 

field present in the spinal disc during the deformation from the supplied image data.   

The template image was manually segmented to obtain contours corresponding 

to the bone and disc.  These contours were used to generate a FE mesh corresponding 

to the specific anatomy of the subject.  Image data were filtered at the spatial Nyquist 

frequency (6 pixels) of the FE mesh to avoid aliasing.  Representative hypoelastic 

material properties were estimated from the literature [13].  Differences between the 

template and target images described the only input force driving the deformation of 

the disc and bone.  A penalty method was used to apply the registration force.  As the 

warping code registered the two images, strains developed in the spinal disc.  

Following registration, the computed deformation field was applied to the template 
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image using Mapper3D, in order to obtain the deformed template image following 

registration.   

 
Determining Stress and Strain Fields in Human Distal Phalanx 

 During Indentation 

High-resolution MR data from the distal phalanx were collected in order to 

estimate material response of the human fingerpad to indentation.  A 4.7 Tesla magnet 

and a RARE sequence were used to obtain high-resolution (125 x 125µm) MR images 

of the cross-section of a healthy human male fingerpad [14].  The nail of the distal 

phalanx of the subject was rigidly constrained using a specially constructed, non-

magnetic frame.  Mechanical indentation of 1-2 mm was applied to the fingerpad with 

a nonmagnetic, rectangular indenter.  Constant indentation was maintained by 

mounting the indenter to the constraint frame.  The target image was obtained during a 

maintained indentation of the fingerpad.  The objective of the analysis was to examine 

stress and strain fields in the fingerpad under the described loading conditions. 

In order to examine the stress developed in the fingerpad due to the applied 

indentation, it was necessary to develop a template model that reflected the specific 

anatomy underlying the images.  A FE mesh was constructed based on a manual 

segmentation of the undeformed template image.  This mesh was divided into three 

regions based on tissue type.  Hypoelastic material properties were assigned from the 

literature [15] as follows: bone (E = 15×108 Pa, ν = 0.48), dermis (E = 15×104 Pa, ν = 

0.48), other tissue (E = 15×103 Pa, ν = 0.48).  No externally applied loads or boundary 

conditions were imposed on the model; thus deformation of the mesh was exclusively 

due to the image registration process.  Dynamic spatial filtering was applied to both 
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the template and target images during registration.  An augmented Lagrangian method 

was used to enforce correspondence between the template and target images.  

Following registration, the computed deformation field was interpolated from the 

template FE model to the original spatial grid of the template data using Mapper3D. 

 
Determining Strain Fields in the Mouse Tectorial Membrane 

Abnet and Freeman isolated tectorial membranes from the mouse cochlea and 

obtained a series of high-resolution video microscopy images [16].  The cochlea was 

isolated and placed in an artificial endolymph solution.  An apical section of the 

membrane was affixed to the bottom of a cylindrical glass chamber using a tissue 

adhesive.  A single magnetizable bead 20 µm in diameter was fixed to the free surface 

of the membrane with tissue adhesive.  Polystyrene beads 1 to 2 µm in diameter were 

dispersed along the surface to serve as motion markers.   

The preparation was placed in a magnetic field created by two electromagnets.  

A computer was used to control the waveform and the magnitude of the current 

applied to the magnets.  The method produced up to 1 µN of force for frequencies 

from DC to more than 100Hz.  The snapshot images were taken with a scientific grade 

CCD camera and light microscope with strobed illumination.  The voxel size in the 

obtained images was about 0.2255 µm. 

Tectorial membrane is composed of a mucopolysaccharide matrix with aligned 

collagen fibers.  Hypoelastic property data were used in the problem (E=1.2 Pa, 

ν=0.2).  The testing situation seemed to warrant the use of a low Poisson’s ratio to 

allow for water extrusion from the matrix.  Because of the significant anisotropic 

impact of the collagen fibers in the membrane, the applied FE mesh was dense (one 



 62

element per pixel).  This approach avoided aliasing while fully utilizing the texture of 

the membrane as reflected in the image data.  At such a high mesh resolution, 

however, the computational cost was greatly increased.  A subsection of the 

membrane was examined.  The histogram of the target image was adjusted to match 

that of the template image using histogram stretching. During the registration process, 

the bottom surface of the 3D mesh was fixed in all direction.  No other external 

boundary conditions were applied except the position dependent body force generated 

from the image data.  Following registration, the computed deformation field was 

interpolated from the template FE model to the original spatial grid of the template 

data using Mapper3D.  The objective of this problem was to examine fiber-matrix 

interaction in the membrane during the described deformation.  The problem also 

demonstrated the ability of Warping to distinguish between rigid body motion and 

deformation in the membrane. 

 
Intersubject Registration of Macaque Neuroanatomies 

One of the most common applications of image registration techniques is 

neuroanatomical segmentation and registration.  The complexity of brain structure 

presents numerous challenges for deformable template based registration techniques.  

Neuroanatomical structure varies widely between subjects; and as a consequence, 

most of these problems display numerous local minima during image registration. 

The digital images of the macaque neuroanatomy were generated by block 

microtome cryosectioning and CCD digitization of 100-µm sections from two 

macaque monkeys (images from D. VanEssen, [17]).  Results appearing previously in 

the literature for neuroanatomical registration often use rectilinear computational grids 
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associated with image voxels.  The present FE method allows for both rectilinear and 

irregular mesh structure.  Two different computation mesh configurations were used: a 

simple regular mesh, and a mesh conforming to a lobe of grey and white matter.  In 

both cases, the material was modeled as an elastic-plastic solid with a low Poisson’s 

ratio (E = 15×103 Pa, ν = 0.1, σyield = 15×103 Pa), allowing for both large volume 

changes and large shear.  Deformation of the template brain slice was constrained to 

the plane of the image data.  Dynamic Gaussian spatial filtering with a spatial 

frequency that varied from 30 pixels initially, to 2 pixels at final registration was used 

to avoid local minima during the registration process.  Following registration, the 

computed deformation field was interpolated from the template FE model to the 

original spatial grid of the template data using Mapper3D. 

 
Semi-automatic Construction of a Subject-Specific  

Hexahedral Mesh of the Human Femur 

The Warping method can also be applied to generate subject specific geometric 

models, which is a problem equivalent to tissue segmentation.  Two knees from male 

cadavers were used in this study.  The fresh-frozen specimens were thawed at room 

temperature overnight before dissection and were inspected for signs of previous 

injury or arthritis.  All periarticular soft tissue was removed until only the medial 

collateral, lateral collateral, anterior cruciate, and posterior cruciate ligaments and 

medial and lateral menisci remained intact.  During all dissection and testing, the 

tissue was kept continuously moist with 0.9% buffered saline.  All testing was 

completed within 5 hours during which time no noticeable changes in the tissue were 

observed. 
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After dissection, a volumetric CT image dataset was obtained with the knee at 

0° of flexion (SOMATOM Plus4; Siemens, Munich, Germany).  The slices were 

collected with a 1.0 mm slice thickness (12 bit resolution, 512x512 image matrix, 

FOV=140x140 mm).  The surface geometries of the femur of each knee were obtained 

from the CT data.  Polygonal surfaces of the femur were extracted using marching 

cubes [18] with decimation [19].  Surfaces were imported into a FE pre-processing 

program (TrueGrid, XYZ Scientific, Livermore, CA) and block-structured, 

hexahedral finite element meshes were constructed for each structure.  During 

registration, no other external boundary conditions were applied, except the position 

dependent body force generated from the image data. 

  
Results 

Mechanics Validation Study: Compressed Circular Billet 

Figure 4.1 shows the results from a mechanics validation study of a circular 

billet.  Panel A shows the theoretical test setup.  The symmetry planes of the problem 

are indicated with dotted lines.  Panel B shows the discretized template FE model of 

the symmetric section.  Panels C and D show the template and target images, 

respectively.  The deformed template image following registration is shown in panel 

E.  Global alignment of the registered template image with the target image is shown 

by subtraction (Panel F), and squared difference (Panel G) images. The corresponding 

numerical values for these measures have been normalized by the size of the images 

and the magnitude of the maximum possible intensity value: Subtraction (9.31 × 10-4), 

SSD (5.18 × 10-1).  Panels H and I show isocontours of the predicted Von Mises stress 

field from the forward problem and the Warping problem, respectively.  The displayed 
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results were mirrored about the symmetry planes.  Results demonstrate excellent 

correspondence between the forward and Warping stress fields.  From a computational 

standpoint, the problem is well-defined, since the interior stresses are completely 

defined by the boundary deformation. 

Figure 4.1.  Compression of a circular billet.  Panel A shows the theoretical test setup.  
Panel B shows the ¼ symmetry FE mesh.  Panels C, D, and E show the template, 
target, and deformed template images, respectively.  Accuracy of registration is shown 
by subtraction (Panel F) and squared difference (Panel G) images.  Von Mises stress 
results from the forward (Panel H) and Warping (Panel I) problems are shown on the 
same scale. 
 
 

Mechanics Validation Study: Large Deformation Cantilever Beam 

Figure 4.2 shows results from another validation study, deformation of a non-

homogenous cantilever beam.  Panel A shows the theoretical test setup.  A three layer 
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Figure 4.2.  Mechanics validation of a nonhomogenous cantilever beam.  Panel A 
shows the theoretical test setup.  Panel B shows the discretized template model.  
Panels C, D, and E show the template, target, and deformed template images, 
respectively.  Accuracy of registration is shown by subtraction (Panel F) and squared 
difference (Panel G) images.  Panel H shows Von Mises stress results as predicted 
from the forward FE simulation.  Panel I shows the Von Mises stress predictions from 
the Warping problem. 
 
 
beam was built in on the left side.  A large nodal load is applied at the top right of the 

beam.  Panel B shows the discretized template model.  Panels C and D show the 

template and target images, respectively.  The deformed template image following 

registration is shown in panel E.  Global alignment of the registered template image 

with the target image is shown by subtraction (Panel F), and squared difference (Panel 

G) images. The corresponding numerical values for these measures have been 

normalized by the size of the images and the magnitude of the maximum possible 
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intensity value: Subtraction (7.89 × 10-4), SSD (4.66 × 10-1).  Panels H and I show 

isocontours of the predicted Von Mises stress field from the forward problem and the 

Warping problem, respectively.  Unlike the homogenous circular billet problem 

described above, a homogenous image field did not provide sufficient constraint on 

the problem to achieve acceptable stress field results.  Additional textural information 

was added to the problem in order to regularize the problem and achieve the excellent 

correspondence in stress results between the forward and Warping problems as shown 

in panels H and I of Figure 4.2. 

 
Determining Strain Fields in a Human Spinal Disc in Compression 

Figure 4.3 shows results from the registration of cross-sectional MR images of 

the human spinal disc.  Panels A, B, and C show the template, target, and registered 

template images, respectively.  Global image alignment is shown quantitatively by the 

normalized squared difference image in Panel D (normalized SSD = 6.08 × 10-1).  

Panel E shows the discretized template model.  Panels F, G, and H show pressure, Von 

Mises strain, and Von Mises stress fields (respectively), as predicted by Warping.  

Results show pressures of up to 1.7 MPa and Von Mises strain as high as 57% within 

the disc.  Results indicate that the compressive load applied to the bone-disc-bone 

segment had a large shear component. 

Determining Stress and Strain Fields in Human Distal Phalanx  

During Indentation 

The top row of Figure 4.4 provides image alignment results.  Panels A and B 

show the original  MR  images  taken  before  and  during  deformation  (respectively).    
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 Panel C shows the deformed template image after alignment as obtained using 

Mapper3D.  The normalized squared difference image from the registration is shown 

in Panel D (normalized SSD = 5.14 × 10-1).  Panel E shows the subject-specific FE 

template model used for the Warping analysis.  Pressure, Von Mises strain, and Von 

Mises stress field results are provided in panels F, G, and H.  It was apparent from the 

strain field results (panel G), that there was significant blood flow in the interior 

region of the finger during material deformation.  Due to higher stiffness values  

however, the largest Von Mises stress values occurred in the bone and the dermal area 

immediately surrounding the indenter.   

Figure 4.3.  Compression of a human spinal disc.  Panels A, B, and C show the 
template, target, and registered template images, respectively.  Panel D shows SSD 
results for the registration.  Panel E shows the discretized subject-specific template 
model.  Panel F shows pressure results.  Panels G and H show the Von Mises strain 
and stress fields predicted by the registration. 
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Figure 4.4.  Indentation of a human fingerpad.  Panels A, B, and C show the template, 
target, and registered template images, respectively.  Panel D shows squared 
difference results for the registration.  Panel E shows the subject-specific FE mesh 
used for the Warping analysis.  Panels F, G, and H show pressure, Von Mises strain, 
and Von Mises stress fields (respectively), as predicted by Warping. 
 
 

 Determining Strain Fields in the Mouse Tectorial Membrane  

Figure 4.5 shows registration results obtained using Warping to analyze the strain that 

developed in the tectorial membrane of a mouse cochlea when exposed to a sinusoidal 

force.  Panel A shows a high-resolution image of the membrane.  Only a portion of the 

image was analyzed as indicated by the template image in panel B.  Panel C shows the 

corresponding portion of the target image used for the analysis.  The registered 

template image shown in panel D was obtained using Mapper3D.  The very finely 

discretized mesh shown in panel E was used to take advantage of the full image 

resolution within the analyzed section.  Pressure, Von Mises strain, and Von Mises 

stress results are given in panels F-G, respectively.  Results indicate that  during 

results are not shown, because the differences in the final registered images were too 

small to view with the naked eye (SSD = 4.8 × 10-4). 
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Figure 4.5.  Strain prediction in the tectorial membrane of a mouse cochlea.  Panel A 
shows the high-resolution template image used for the analysis.  Panel B shows the 
area of the template image used for the registration problem.  Panel C shows the 
corresponding area of the target image.  Panel D shows the deformed template image 
following registration.  The discretized template model is shown in panel E.  Pressure, 
Von Mises strain, and Von Mises stress are shown in panels F, G, and H, respectively. 
 
 

Intersubject Registration of Macaque Neuroanatomies 

Figures 4.6 and 4.7 present Warping results that were obtained using the same 

template and target images, with different types of discretization used to generate the 

template model. 

Rectangular Mesh  

Figure 4.6 provides results for a simple rectangular mesh constructed to span 

the domain of the template image data shown in panel A.   The target  image is  shown 
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Figure 4.6.  Intersubject registration of macaque neuroanatomies.  Panels A, B, and C 
show the template, target, and registered template images, respectively.  Squared 
difference results from the registration are shown in panel D.  The discretized template 
model is shown in panel E.  Panel F shows pressure results.  Displacement magnitude, 
Von Mises strain, and pressure results are shown in panels G and H, respectively. 
 
 
in panel B.  The registered template image is shown in panel C, as obtained using 

Mapper3D.  Registration results are quantified by the squared difference image in 

panel D (SSD = 6.83 × 10-1).  The discretized template model is shown in panel E.  

Pressure, Von Mises strain, and Von Mises stress fields are given in panels F - H, as 

predicted by Warping.      

Lobe Mesh  

Using a subject specific mesh allows a more direct automatic segmentation of 

the neuroanatomy.  Figure 4.7 provides results for an irregular mesh constructed to 

span  the  white  and  grey matter  between  the central and rightmost sulci.  The target  

image is shown in panel B.  The registered template image is shown in panel C, as 

obtained using Mapper3D.  Squared difference results from the registration are shown 
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Figure 4.7.  Intersubject registration of macaque brain section.  Panels A, B, and C 
show the template, target, and registered template images, respectively.  Squared 
difference results for the registration are shown in panel D.  The discretized subject-
specific template model is shown in panel E.  Panel F shows pressure results.  
Displacement magnitude, Von Mises strain, and pressure results are shown in panels 
G and H, respectively. 
 
 
in panel D, although the normalized SSD value (SSD = 24.21 × 10-1) is not 

representative of the alignment due to relatively small domain covered by the template 

mesh.  The discretized template model is shown in panel E.  Pressure, Von Mises 

strain, and Von Mises stress are shown in panels F - H. 

Results were computed on the geometrical model and thus are not available 

outside the spatial domain of the mesh.  The deformed mesh aligns well with the same 

region of the brain in the target anatomy, illustrating automatic segmentation.  

 
Semi-automatic Construction of a Subject-Specific Hexahedral  

Mesh of the Human Femur  

Warping can also be applied to generate subject specific geometric models, 

which is a problem equivalent to tissue segmentation.   This is illustrated in Figure 4.8  
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Figure 4.8.  Intersubject registration of the human femur.  Panels A and E show 
surface projections of the volumetric X-Ray CT data used as the template and target 
image, respectively.  Panels B, C, and D, show orthogonal views of the discretized 
subject-specific template model before registration.  Panels F, G, H, show 
corresponding orthogonal views of the deformed template model. 

 
 
where a FE model, generated from the CT data of one human femur (template), is 

mapped to a second subject (target).  Panels A and E show rendered views of the 3D 

CT data corresponding to the template and target respectively.  Orthogonal views of 

the template FE mesh used for the registration are shown in panels B-D.  

Corresponding orthogonal views of the deformed template mesh are shown in panels 

F-H.  Note the elongation and torsion induced on the mesh configuration.  As a 

measure of mesh quality following the registration, the values of the relative Jacobians 

of the hexahedral elements are graphed in Table 4.1.  Squared difference images are 

not shown due to the inadequacies of displaying 3D image data on paper, but the 

quantitative  SSD  was  0.277.   As  in  the  case  of  the  macaque lobe mesh,  the SSD  
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A 

A 

 

B  

Figure 4.9.  Relative Jacobian values of the femur FE mesh. Panel A shows the 
relative Jacobian of the original subject-specific femur mesh.  Panel B shows the 
relative Jacobian values of the femur mesh following registration.  

 
 
 measure is not adequate to address the problem, due to the restricted domain of the 

template model.  

 
Discussion 

It should be noted that because Warping is diffeomorphic, registration can be 

difficult in cases where the template and target anatomies are fundamentally different.  

Implicit in equation 4.1 is the assumption that the target is a deformed configuration of 

the template.  This is the case only when the template and target images are taken from 

the same physical material.  For problems where images are taken from different  
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subjects, the mapping between them does not represent a physical deformation.  

Rather, the mapping represents the optimized configuration of the FE mesh that aligns 

the template and target data.  Use of nonlinear continuum mechanics in the process 

guarantees a one-to-one mapping of differential lines, areas, and volumes between the 

template and its deformed configuration.  This is required to ensure that anatomical 

structures in the template remain continuous after the deformation.   

Because of the large role the image data play in the strain tracking process, we 

were interested in the extent to which the constitutive law actually changes the 

numerical results.  Sensitivity of results to the material properties is dependent upon 

the specific problem under study.  For registration problems that use images with high 

textural content, the image data will tend to dominate the solution.  Problems with 

noisy or sparsely sampled images will be affected to a greater extent by the mechanics 

of the problem (reference Chapter 6 of the present work).  In several of the presented 

example problems (the spinal disc, distal phalanx, tectorial membrane), we tested the 

sensitivity of results to variations in the material model parameters.  For these 

problems, the computed deformation was largely insensitive to changes in the bulk 

moduli, due to the path independent nature of the elastic response.  This insensitivity 

does not hold for the shear moduli, owing to the interplay between the volume ratio 

and strain. Due to the lack of volumetric information in two-dimensional (2D) 

problems, the computed strain field is sensitive to the compressibility of the material.  

The most physically consistent results for 2D data are therefore obtained when the 

material properties match actual tissue.  Strain results for 3D data (such as the femur 

test problem) are more robust to changes in material compressibility. 
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 Perhaps the most significant limitation to the technique is the need for an 

experienced FE analyst to perform the Warping analysis.  With the large number of 

parameters that can be adjusted to guide the registration process, it is important to be 

able to anticipate the response of the registration process to changes in any of these 

parameters.  Additionally, an experienced analyst can decide when it is appropriate to 

apply the regularization tools presented in Chapter 3 of this dissertation. 

 The neuroanatomical registration results illustrate the difference in 

segmentation results achieved by a rectangular mesh versus a mesh corresponding to 

the tissue geometry.  The rectangular mesh achieved unacceptable results because of 

the presence of a local minimum in the combined energy functional (equation 4.1).  

Experience has shown [17], [20] that local minima are more likely to occur during 2D 

segmentations on rectangular grids due to competing regions in the image data.  

Meshing only the ROI using an irregular mesh not only avoids such phenomena, but 

also reduces the computational size of the problem.  An additional advantage to the 

irregular FE mesh is the direct segmentation afforded by the deformed template image 

(Panel C in Figures 4.7 and 4.8).   

The 3D capabilities of the present method are demonstrated in the distal femur 

registration.  In 3D segmentations, the independence of the computational mesh from 

the voxel space of the image data is especially relevant.  A small ROI in a data set can 

be extracted without the computational burden of bringing the whole image space into 

registration.  This example further illustrates an important aspect of the present FE 

method.  Considerable effort is required to construct structured computational meshes 

that accurately reflect the tissue geometry.  The distal femur registration demonstrates 
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a convenient way to automatically generate complex computational meshes by 

mapping a canonical template model to conform to the anatomy of an individual 

subject.  

The examples in this chapter also illustrate the inadequacies of the current 

standards in quantitative image analysis, subtraction and SSD, in dealing with subject-

specific template models.  When the domain of the template does not include the 

entire image domain, image information outside the domain cannot be interpolated to 

the deformed template image.  More comprehensive measures of image 

correspondence are discussed in Chapters 5 and 6 of this dissertation. 

In summary, we have shown that continuum mechanics provides an excellent 

constraint system for guiding anatomical warping.  The registrations achieved through 

this technique are diffeomorphic and accommodate large changes in topology between 

template and target anatomies.  Additionally, the technique allows proper computation 

of large deformation strain fields.  This is especially important for biological problems 

where large strains are the norm, rather than the exception.   
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CHAPTER 5 

 
ASSESSMENT OF DEFORMABLE IMAGE REGISTRATION  

USING 3D SINGULAR VALUE DECOMPOSITION 

 
Abstract 

The primary goal of this work was to develop a quantitative technique to 

evaluate the success of 3D deformable image registration.  The technique is based on 

singular value decomposition (SVD) and provides an objective method to compare the 

topology of a deformed Template image with that of a Target image.  A 3D extension 

of the standard singular value decomposition was posed and applied.  The technique 

provides: 1) A hierarchical method to quantify image registration, 2) a method to 

assess topological mismatch between image datasets, and 3) a means to rank image 

registration solutions to distinguish local from global minima.  Results demonstrate 

application of the technique using magnetic resonance images of the heart and human 

distal phalanx, as well as optical images of primate brain cryosections.  Results 

indicate the technique may also be appropriate for a priori identification of local 

minima. 

 
Introduction 

Over the last two decades, a substantial body of research has been dedicated to 

medical image registration -- the process of aligning anatomical features present in a 
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Template image data set (a.k.a. reference, textbook, atlas) with those present in a 

specific Target image data set (subject) [1-3].  This process is an essential step in 

many applications, including quantitative image comparison, segmentation, strain 

measurement, atlas construction, image fusion, motion correction, and image-guided 

surgery 

Several techniques have been brought to bear on this problem including 

statistical pattern recognition [4-7], landmark/marker-based transformations [8], 

principal axis registration [9], [10], and high-dimensional deformable templates [11-

18].  A common requirement for all of these techniques is the quantification of the 

quality of image registration.  Previous efforts to quantify the success of image 

registration have focused on global comparisons of the mapped Template image 

following registration with the Target.  Examples include image subtraction [16], 

misfit calculation (i.e., sum of the squared differences) [19], histogram comparisons 

[20], wavelet transform comparisons [21], and mutual information [22].  Recently, the 

Vista Project [23], the Retrospective Registration Evaluation Project [24], and the 

National Library of Medicine Image Registration Toolkit (ITK) have been established 

with the goal of quantifying the success of registration techniques. 

Differences in the intensity histograms between Template and Target images 

further confound the problems of deformable image registration and subsequent 

quality assessment.  In some common imaging modalities, signal intensity degrades 

non-uniformly over time and space, resulting in not only a general change in image 

intensity, but also a change in the intensity histogram.  Additionally, and typical in the 

case of intersubject registrations, the Template and Target images originate from 
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completely different imaging sequences, hardware and/or even modalities.  Because of 

these factors, the image histograms of the Template and Target may be significantly 

different – a fact that and can present a serious challenge in the process of deformable 

image registration. 

The primary focus of the present work is to provide a nonbiased, hierarchical 

technique to quantify the quality of image registration with specific attention to the 

assessment of high-dimensional deformable image registrations.  The technique is 

based on comparison of singular value decomposition (SVD) of the Template and 

Target images to decompose the image data into a hierarchical series of singular 

modes.  As the deformable registration proceeds, the Template singular modes evolve 

and ultimately approach those of the Target.  These modes provide a direct means to 

assess the quality of registration through comparison of inner products defined by the 

base vectors.  The potential advantage of the technique comes largely because of the 

ability to separate a specific spatial distribution of image intensity (referred to herein 

as topology) from variations in intensity that are not associated with the topology of 

interest.  The method allows the topology of the registered Template to be compared 

to the topology of the Target even in the presence of differences in image histograms.  

The technique is demonstrated using magnetic resonance (MR) images of the heart 

[25] and human distal phalanx [26], as well as optical images of primate brain 

cryosections [18]. 
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Methods 

In 1873-74 Eugenio Beltrami [27] and Camille Jordan [28], [29] independently 

demonstrated that any real x-by-y matrix A can be decomposed such that 

T=A U VΣ .       (5.1) 

Here, U and V are orthonormal matrices whose columns contain the singular vectors 

of the decomposition, and ( ) ),min(,,,diag 1 yxrr ==Σ σσ ... , with 01 ≥≥≥ rσσ ... , 

contains the singular values of the decomposition (for clarity, a particular singular 

value is referenced as σi).  This is commonly referred to as singular value 

decomposition (SVD).  SVD has found application in image compression and for 

evaluating the “noise-level” of a matrix system or image based on the singular values 

[30]. 

To apply SVD to a 2D image, the intensity values of the pixels are placed into 

the corresponding locations in A.  Thus, if the image contains  pixels, the 

matrix A will have dimensions 

( yx× )

( )yx× .  The singular vectors then comprise a set of 

basis vectors that combine with the singular values to decompose the image into a set 

of modes.  In the present work, the topology of the image is examined hierarchically 

by reconstructing the image one singular mode at a time.  The matrix representation of 

the nth singular mode (An) is obtained by applying Eq. 5.1 to the nth singular value, 

T
n n=A U VΣ , where the matrix nΣ  is formed by zeroing all elements in Σ with the 

exception of σn.  In this manner, image data are represented as a series of decreasingly 

significant components.  Figure 5.1 illustrates this concept for a MRI neuroanatomical 

slice. 
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Figure 5.1.  Singular value modes of a 2D image.  Panel A shows a sagittal plane MR 
image of a mouse neuroanatomy.  Panels B-F show individual modes of the image in 
panel A corresponding to 1, 2, 3, 10, and 20 singular values.  Panels G-K show 
truncated reconstructions of the image in panel A corresponding to the indicated 
singular values. 
 
 

3D Singular Value Decomposition 

To apply SVD to 3D image data it was necessary to extend the concepts 

beyond the classical 2D matrix framework.  There are several ways in which this 

could be done.  In the present work the matrix containing the image intensity data A 

was arranged in a 3D rectangular format and decomposed separately for each image 

slice k (k=1…K), 

  
( ) ( ) ( ) ( )Tk k k=A U VΣ k      (5.2) 

to obtain a stacked set of 2D SVDs.  The singular values from the stacked slices were 

then assembled as columns of a new matrix Ã: 

 
[ ](1)(1)(1)A ΣΣΣ= K

~     (5.3) 
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This matrix, containing slice-by-slice singular values, was then subjected to a second 

SVD: 

 
TVUA ~~~~

Σ=       (5.4) 

The nth 3D singular mode (Ãn) is obtained by applying Eqs. 5.2-5.4 to the nth 

singular value.  For the kth slice this provides 

 
( ) ( ) ( ) ( )Tk k k
n n=A U VΣ k .     (5.5) 

The matrix Σ  is constructed in 3D for the k)(k
n

th slice of the nth singular mode using 

 
( ) IVU

T

k
T

n
k

n
~~~)( Σ=Σ  ,     (5.6) 

where nΣ~  is obtained by zeroing all elements in Σ~  with the exception of ˜ σ n , the 

subscript k denotes the kth column, and I is the identity matrix.  Note that this reduces 

to the 2D case described above if all slices are identical.  Although this approach is not 

the only possible 3D decomposition, it preserves the hierarchical property and has well 

defined inner-products.  Eqs. 5.2-5.6 will be referred to herein as 3D SVD.  

 
Hierarchical Quantification of Image Registration 

We now turn attention to application of 3D SVD to deformable Template 

registration.  Our Lagrangian finite element (FE) based approach [16], [17] was used 

to generate specific example problems to demonstrate 3D SVD registration assessment 

and histogram normalization.   In our method a one-to-one deformation map 

( ) ( ) ( ) 0/det:, 31 >∂∂ℜ∈ XX ϕϕ ΩC  , is applied to the reference 
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configuration Ω.  Material points with initial coordinates X in the undeformed 

Template are mapped to the coordinates x in the deformed configuration according to: 

 
( )( ) = + =X X u X xϕ .     (5.7) 

Here,  is the displacement field.  For simplicity, we assume in the 

present illustrative examples that the image data (intensity, spin, etc.) are convected 

with the material and that the deformation of the material does not change the image 

data.  Upon completion of a perfect registration, the data attached to material in the 

undeformed Template (denoted T

( )u X

( )X ) would be mapped to match the data in the 

Target (denoted ) according to: ( )s x

 
    T ,    (5.8) )())(( 1 xxX s)('T= →−ϕ

where  is the 3D scalar image intensity field of the deformed template.  In the 

present examples the Target and the Template are 3D scalar image intensity fields but, 

in general, could be N-dimensional vector fields associated with multiple imaging 

sequences or modalities.  

'T

Measuring the extent to which the deformed Template T  matches the 

Target  using SVD is the principle aim of the present work.  For this, the Target 

and the deformed Template fields are interrogated and interpolated to a discrete spatial 

lattice to form 3D image data.  We define a set of inner-products of the deformed 

Template T  with the n

'( )x

( )s x

' th singular (column) vectors  and v  of the Target s.  In 2D, 

the ratio of the scalar inner products 

nu n

( ) ( ) ( )T T
n n n n

T' 'nn n nα σ= u T v u sv u T= v , for each 
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target mode, approaches a value of 1 as the deformed template approaches the target 

(αn →1 as T ).  In 3D, we define a single scalar for each 3D singular mode using 

Eq. 5.3: 

' →

~T s~

s~

s

 

n

n
T
n

n
T
n

n
T
n

n σ
α ~

~'~~
~~~
~'~~ vTu
vsu
vTu

==  ,     (9) 

where '  and  are obtained from the deformed Template and target images using 

Eq. 5.3.  The lower case singular vectors are from Eq. 5.3 computed for the target 

matrix .  Consistent with the 2D degenerate case, αn →1 as T s~'~ → .  Numerical 

evaluation of this inner product in simulated test problems confirms the property of 

invariance under translation and rotation in the image space.  This inner-product ratio 

provides a scalar measure of the projection, or correspondence, between the nth 

singular mode of the Target and that of the deformed Template.  Comparison of the 

inner-product ratios in ascending order provides a hierarchical method to quantify the 

quality of the registration. 

 
Illustrative Examples 

The illustrative examples presented in the results section were generated using 

our continuum mechanics based imaged registration technique (Warping).  A brief 

description of the technique is given below, for additional details please reference 

Rabbitt et al. [17], or Veress et al. [31].  Registration was accomplished by 

minimization of a combined energy functional composed of both mechanical strain 

energy and image energy terms – a general formulation that degenerates to the 

Bayesian approach with appropriate assumptions on the likelihood of the data. 
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Template data used here were static sets of medical images acquired from a reference 

anatomical state.  A FE model was then constructed to encompass the region of 

interest in the Template.  The image data from the Template were interpolated to the 

nodes of the FE computational mesh.  The geometry of the FE model was then 

deformed until the deformed version of the Template registered with the Target. 

Two types of example problems are presented.  In the first, the Target data 

were defined by a time sequence of images taken from a single subject – with the data 

prior to deformation defining the Template.  This case typifies strain-tracking 

problems common in soft tissue biomechanics [16], [25], [26], [32].  In the second 

case, the Template and Target data were taken from entirely different subjects.  This 

case typifies segmentation or registration problems frequently encountered in medical 

imaging [18], [31], [33].  One goal is common to these problems: determine the 

deformation map that aligns the deformed Template with the Target.  Example results 

applying SVD to problems of both types are provided below.    

 
Circular Inclusion 

Images of a circular inclusion were generated to illustrate the evolution of the 

SVD inner products in a “perfectly” registered example problem.  The images used for 

the circular inclusion were computer-generated 8 bit grayscale images with a 256x256 

image matrix.  A circular portion of the images (radius of 16 pixels) was white while 

the image background was black.  The images were blurred by convolution with 

standard Gaussian spatial filter with a 32 pixel radius (see Figure 5.2). 

A FE mesh consisting of two regions was constructed.  The first region 
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Figure 5.2.  Inner product tracking of a circular occlusion undergoing vertical 
displacement.  Panels A and B show the computer generated template and target 
images, respectively.  Panel C shows the evolution of the deformed Template inner 
products (αn) during the registration process.  Panels D-J show the deforming 
Template at specific registration iterations corresponding to the graph in panel C 
(0,5,10,15,20,25,30 iterations). 
 
 
 corresponded to the circular inclusion while the second region consisted of the 

surrounding image data.  The boundary edges of the second region were constrained 

from both vertical and horizontal motion.  No other external boundary conditions were 

applied.  An additional spatial filter was initially applied (192 pixel radius) to the 

image data so that gradient information from the Template and Target overlapped.  

Following registration of these filtered images, the filtering was gradually removed as 

the registration computations proceeded to completion (dynamic filtering) [31].  The 

final registered Template image was obtained by interpolating the deformation 

predicted by the FE model to the original spatial grid of the Template data (using tri-

linear interpolation). 
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Figure 5.3.  Inner product tracking of a distal phalanx under indentation.  Panels A and 
B show the Template and Target MR images, respectively.  Panel C shows the 
evolution of inner product ratios computed from the deformed template data using the 
target singular vectors.  Panels D-I show intermediate registration results at each 
iteration of the registration process. 
 
 

Distal Phalanx 

High-resolution MR data from the distal phalanx were collected to demonstrate 

the evolution of inner products in an anatomical registration problem.  A 4.7 Tesla 

magnet and a RARE sequence were used to obtain high-resolution (125 x 125µm) MR 

images of the healthy human male fingerpad [34].  The nail of the distal phalanx of the 

subject was rigidly constrained using a specially constructed, nonmagnetic frame.  The 

Template image represented a cross-section of the finger (Figures 5.3A, 5.4A).  

Mechanical indentation of 1-2 mm was applied to the finger pad with a nonmagnetic,  
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Figure 5.4. Singular values of the distal phalanx Template and Target.  Panels A and B 
show the Template and Target MR images, respectively.  Panel C shows the registered 
(deformed) Template.  Panel D compares the inner product of the deformed Template 
with the singular vectors of the Target to the same inner product for the undeformed 
Template. 
 
 
rectangular indenter.  Constant indentation was maintained by mounting the indenter 

to the constraint frame.  The Target image was obtained during a maintained 

indentation of the finger pad (Figures 5.3B, 5.4B).  

A FE mesh was constructed based on a manual segmentation of the 

undeformed Template image.  This mesh was divided into three regions based on 

tissue type.  Hypoelastic material properties were assigned from the literature [35] as 

follows: bone (E = 15×108 Pa, ν = 0.48), dermis (E = 15×104 Pa, ν = 0.48), other 

tissue (E = 15×103 Pa, ν = 0.48).  No externally applied loads or boundary conditions 

were imposed on the model, thus deformation of the mesh was exclusively due to the 
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image registration process.  As described for the circular inclusion example, dynamic 

spatial filtering was applied to both the Template and Target images during 

registration.  Following registration, the computed deformation field was interpolated 

from the FE model to the original spatial grid of the Template data. 

 
Macaque Neuroanatomy 

Optical data from a Macaque monkey brain were used to illustrate the utility of 

the present method to distinguish between local minima in the registration process. 

The digital images of the macaque neuroanatomy were generated by block microtome 

cryosectioning and CCD digitization of 100-µm sections from two macaque monkeys 

(images from D. VanEssen, [18]). 

Registration of the macaque datasets was accomplished by first generating a 

rectangular FE mesh corresponding to the domain of the Template data.  An elastic-

plastic material model was applied to the FE mesh (E = 15×103 Pa, ν = 0.1, σyield = 

15×103 Pa).  The outside edges of the mesh were constrained from both vertical and 

horizontal motion.  No other external boundary conditions were applied.  Dynamic 

spatial filtering was applied to the Template and Target image data during 

deformation.  The different registrations examined in panels C and D of Figure 5.5 

were obtained by varying the degree of spatial filtering applied to the image data, with 

all other parameters held constant.  The registration shown in Figure 5.5C was 

generated using a constant radius filter of 3 pixels, while that in Figure 5.5D was 

generated using a dynamic filter, which evolved from 15 to 3 pixels during the 

registration process. 
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Figure 5.5.  Singular values of the macaque neuroanatomy Template and Target. 
Panels A and B show the Template and Target images, respectively.  Panels C and D 
show different registration solutions (local minima) of the same problem.  Panel E 
compares the inner product of the deformed Template with the singular vectors of the 
Target to the same inner product for the undeformed Template. 
 
 

Human Left Ventricle 

Gated MR images of the left ventricle of a healthy human male subject [25] 

were used to illustrate application of the 3D SVD.  Briefly, two volumetric MR image 

datasets were acquired using a 1.5T Siemens scanner (256x256 image matrix, 378 mm 

FOV, 10 mm slice thickness, 10 slices).  The volumetric MR data corresponding to 

end-systole were designated as the Template and the data corresponding to end-

diastole were designated the Target. (Figure 5.6A, 5.6B) 
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Figure 5.6. Singular values of the 3D human left ventricle Template and Target. 
Panels A and B show surface renderings of the Template and Target image data, 
respectively.  Panels C shows a surface rendering of the registration solution.  Panel D 
quantifies the image registration by projecting the 3D singular vectors of the Target 
image dataset onto the Template image dataset and the registered image dataset.  The 
inner products of the registered solution show close correspondence with the singular 
values of the Target image dataset. 
 
 

Contours of the left ventricular endocardial and epicardial surfaces were 

segmented manually from the end-systolic MR image dataset and then used to 

construct polygon surfaces via Delaunay triangulation [36].  A FE mesh was 

constructed based on the surfaces.  A transversely isotropic hyperelastic material 

model was used to model the heart muscle tissue.  The ventricle wall was divided 

radially into four regions, each with a distinct fiber angle as described by Veress et al. 

[25].  Fiber angle varied between 90 degrees on the endocardial surface to -90 degrees 

on the epicardial surface of the left ventricle.  The material properties of the 

myocardial wall were determined from least squares curve fits of the biaxial test data 
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reported by Humphrey et al. [37], [38].  No external boundary conditions were applied 

during registration. 

 
Results 

Circular Inclusion 

Figure 5.2 shows results for the computer generated example problem of a 

bright, circular inclusion that changes position vertically over time.  Panels A and B 

show the Template and Target images, respectively.  Panels D-J correspond to the 

deformed Template configuration at the registration iteration (computational timestep) 

indicated directly above on the horizontal axis and show intermediate positions of the 

inclusion during registration.  The vertical axis of panel C shows the normalized inner 

products (αi) during the registration process.  The horizontal axis corresponds to 

computational iteration of the registration process.  Results demonstrate that as the 

position of the inclusion in the registered Template approaches that of the Target, the 

values of αi converge to unity.  Oscillations in the values of the normalized inner 

products can be seen near the end of the registration process.  The oscillations 

demonstrate one consequence of images with non-unique registration solutions – i.e. 

the lack of rotational orientation information present in this particular example 

problem. 

 
Distal Phalanx 

Figure 5.3 shows results from registration of micro-MRI of a human distal 

phalanx before and during indentation.  A Template image was interrogated from a 

cross-section of the finger (panel A).  Mechanical indentation was applied to the finger 
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pad and a Target image was interrogated (panel B).  Panels D – I provide results at 

intermediate steps in the registration process.  At each solution increment, the 

computed deformation field was applied to the Template image to produce a snapshot 

in computational time.  If perfect registration were achieved, panel J would be 

identical to the Target image (panel B).  The graph in panel C tracks the progression of 

the Template topology towards that of the Target.  The horizontal axis of the graph 

shows the solution increment (directly corresponding to panels D-I), while the vertical 

axis shows the computed normalized inner products (αi).  The four most significant 

(lowest order) inner products are shown.  Perfect agreement in singular vectors 

between the Template and Target would correspond to a value of unity of each inner 

product at the conclusion of the registration process.  Note how the vectors uniformly 

move toward this value, measuring success of the registration process. 

Figure 5.4 presents an alternate depiction of the same results.  The Template 

(panel A), Target (panel B), and registered Template (panel C) are shown on the left.  

The horizontal axis of panel D defines the singular index, while the vertical axis is 

value of the inner product.   The top solid curve shows the Target singular values.  The 

bottom dashed curve shows the Template inner products (an inner product map) 

before registration.  The dotted line shows the deformed Template inner products 

following registration.  Results demonstrate the improved agreement in topology 

following registration.  A logarithmic axis was used on the horizontal scale to 

emphasize the decreasing importance of the higher order singular vectors and values 

as the noise level of the images was approached. 
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Macaque Cryosections 

Figure 5.5 show results for the intersubject registration of optical images of 

stained macaque brain cryosections [18].  Panels A and B show the Template and 

Target images respectively.  Panels C and D show two registration solutions, neither 

exact, corresponding to local minima in the registration problem.  Comparison of the 

two solutions by other common registration assessment techniques such as subtraction, 

SSD, and histogram comparison rank the registrations differently.  The graph in Panel 

E shows the inner products of the Template, Target, and both registrations.  The axes 

used are the same as in Figure 5.4D.  Results demonstrate that the inner products can 

identify particular modes of the registered Template that are out of correspondence 

with the Target.  Local minima in the energy functional are identified in the inner 

product map as sharp changes in the curvature. 

 
Human Left Ventricle   

Figure 5.6 illustrates application to 3D registration of MR images of a human 

left ventricle.    Panels A and B show surface renderings of the 3D Template and 

Target data respectively.  Panel C shows the registration solution.  The 3D SVD 

algorithm was used to decompose the Target.  The 3D singular vectors were projected 

onto the Template and registered Template image data sets.  Panel D shows the inner 

products of the Template, Target, and deformed Template.  The inner products of the 

deformed Template closely matched the Target and providing a quantitative measure 

of the quality of the 3D registration. 
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Discussion 

The primary objective of this work was to develop an objective quantitative 

assessment technique for evaluating the success of deformable image registration.  

Specifically, the technique allows for hierarchical evaluation of the correspondence in 

image topology between a Target and the deformed Template.  Hierarchical evaluation 

is important because many registration problems contain inadequate or conflicting 

image data, as well as a multitude of possible solutions (local minima in the 

functional).  Although the examples in the present work use a mechanics-based 

deformable Template registration technique, the assessment methods could be applied 

to any image registration technique.  Results demonstrate that inner products of the 

deformed Template with the Target singular vectors provide an effective method of 

quantifying registration quality. 

The computer generated circular inclusion example presented in Figure 5.2 

demonstrates several characteristics of the singular vector projection technique.  The 

technique tracks the progress of each Template singular vector towards registration 

with the corresponding Target singular vector.  Another notable characteristic of the 

technique is that although singular values are always positive, inner products 

(especially those corresponding to the higher order singular vectors), can be negative.  

Oscillations in the solution occur due to lack of orientation information present in the 

image data.  Image data that contain a greater amount of texture data to orient the 

registration do not exhibit this phenomenon (reference the fingerpad indentation 

example in Figure 5.3). 
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Further application of the method can be seen as a nonbiased evaluation 

function to determine the degree of topological match between two images.  In this 

case it is appropriate to evaluate the complete set of singular values and corresponding 

topology multipliers.  In registration problems it is often insightful to compare the 

Target image topology with the topologies of both the original Template image and 

the registered Template image.  The inner product map is a useful tool for graphically 

displaying this information.  The maps presented in Figures 5.4 - 5.6 show the 

improvement in topological correspondence between the Template and Target images 

that was obtained through the registration process.  Because the technique is based on 

the singular value decomposition, it is known that the highest order singular vectors 

correspond to the noise level of the images.  Thus assessment of registration results 

can be based only on lower order singular vectors (i.e., where the information is above 

the background noise level of the image). 

In many cases inner product maps can identify local minima in the registration 

process.  Local minima are identified as sharp changes in the value of the inner 

products between adjacent singular vectors (a sawtooth pattern in the inner product 

map).  For instance, in the macaque neuroanatomy registration example (Figure 5.5), 

there are several local minima, which can be observed from the inner product map of 

the Template.  Local minima which correspond to lower order singular vectors are 

significantly more important than those corresponding to higher order singular vectors.  

The two quasi-registered solutions in panels C and D of Figure 5.5 show local minima 

in their inner product maps, indicating they are not fully registered with the Target 

image. 
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CHAPTER 6 

 
INFLUENCE OF LOCAL DATA ON DEFORMABLE  

IMAGE REGISTRATION 

 
Abstract 

The primary goal of this work was to evaluate the local influence of image data 

and registration parameters on deformable image registration results.  To this end, 

several quantitative measures of influence have been developed and evaluated.  The 

measures were derived from the variances of the terms and parameters of the 

registration potential function.  These measures were used to evaluate registration 

results obtained using a continuum mechanics based image registration method.  

Illustrative examples include registration of a Gaussian blur, a human fingerpad, and a 

human spinal disc.  Results demonstrated that a ratio of the individual variances of the 

image potential and the deformation potential with respect to the template 

configuration provided insight into the relative local influence of registration data on 

registration solutions.  

 
Introduction 

The goal in deformable image registration methods is to find a transformation 

of the template image that best aligns the features of the image with those of a target 

image.  In the ideal case, the quantity and quality of the image texture present in the 
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template and target images, as well as the similarity in underlying anatomical 

structure, would yield a unique “best” transformation.  In real problems, however, this 

is not the case.  Image registration is most often ill-posed in the sense of Hadamard 

[1], [2].  No perfect transformation exists, and the solution depends on the choice of 

registration method.  The dependence is most significant in regions of the template 

model where image texture is sparse or conflicting.  In these regions, the registration 

solution is computed based on minimizing the deformation potential (Bayesian prior 

probability) portion of the particular registration cost functional [3]. Other 

investigators have recognized this type of ambiguity.  The Retrospective Registration 

Evaluation Project [4], the Vista Project [5], and the National Library of Medicine 

Image Registration Toolkit (ITK) have been established with the goal of quantifying 

the success of image registration techniques.  These projects have focused on ranking 

the performance of image registration techniques using a set of predefined registration 

problems.  Many deformable image registration methods utilize a dual term potential 

energy function (cost function) to guide registration [3], [6-15].  In these methods, one 

term is associated with a measure of image alignment between the template and target 

images (the image potential), while the other term is specific to the particular 

registration method and defines the energy associated with deformation (the 

deformation potential).  Registration is accomplished by finding the configuration of 

the template model that minimizes both energy terms simultaneously.  The 

deformation potential is formulated to regularize the registration problem and is often 

based on a physical analog to a particular type of material behavior (e.g., a viscous 

fluid or hyperelastic solid) [6], [7], [16-19].  This type of constraint ensures a one-to-
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one mapping between the template and target based on the principles of continuum 

mechanics [20].  The particular type of regularization will influence the registration 

results in local regions where the image-based energy does not result in significant 

forces to drive the registration. 

The objective of this study was to evaluate the relative local influence of the 

image functional and the deformation functional on the results of deformable image 

registration.  The variances of the individual terms of the combined potential energy 

function with respect to the final template configuration were used to construct scalar 

measures that provided this information locally.  For finite element based deformable 

image methods, the variances are related to the tangent stiffness matrix.  

 
Methods 

Implementation 

The present work was implemented into the continuum mechanics based image 

registration method termed hyperelastic Warping, originally developed by Rabbitt and 

Weiss [13], [15], [21], [22].  Only a brief review of the salient points is described in 

the present work.  Full implementation details for the method are given elsewhere 

[13], [21].  The standard notation and symbols of modern continuum mechanics are 

employed in the following presentation [23], [24].  In particular, direct notation is used 

with boldface italics for vector and tensor fields.  Index notation is incorporated for 

quantities that cannot be readily written in direct notation.  Where applicable, the 

condensed Voigt notation typically employed in finite element analysis is utilized 

[25]. 



 107

The objective is to deform a representation of a template image into alignment 

with a target image.  The formulation is Lagrangian and thus the deformation of the 

template particles is tracked.  Assume that the scalar intensity fields of the template 

and target, T and S, are not changed by the deformation.  T is defined in the reference 

configuration and thus we write T(X).  Since the values of S at points associated with 

the deforming template change as the template mesh deforms, we write S(ϕ), where 

ϕ(X) = X + u(X) is the deformation map from template to target, and u(X) is the 

displacement field.  A finite element (FE) mesh is constructed to correspond to all or 

part of the template image (either rectilinear, or a “conforming” mesh that represents a 

particular structure of interest in the Template image).  The template intensity field T 

is interpolated to the nodes of the FE mesh.  The intensity data for the template are 

convected with the FE mesh and thus the nodal values do not change.  As the FE mesh 

deforms, we query the values of the target intensity S at the template nodes. 

A combined potential energy functional is constructed that consists of two 

potential energy terms: 

 
( ) ( )

0 0

, ,E W dV U d= −∫ ∫
β β

X Xϕ Vϕ .           (6.1) 

W is the standard strain energy density function from continuum mechanics that 

defines the material constitutive behavior, while U represents an image energy density 

functional.  β0 represents the volume of integration of the template model in the 

reference configuration.  The present work uses a Gaussian sensor model to describe 

the image energy density functional as: 
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( ) ( ) ( )( 2
,

2
U T S )λ

= −X Xϕ ϕ .     (6.2) 

λ is a Lagrange multiplier [26], which enforces the alignment of the template model 

with the target image data. 

The weak form of the momentum equations (Euler-Lagrange equations) is 

obtained by taking the first variation of E(ϕ) with respect to the deformation ϕ.  This 

can be though of as a “virtual displacement” – a small variation in the current 

coordinates x, denoted εη .  Here ε is an infinitesimal scalar.  The variation of the first 

term in (1) yields the standard weak from of the momentum equations for nonlinear 

solid mechanics (see, e.g., [23]).  The functional in (2) gives rise to an image-based 

force term.  The first variation of (2) with respect to the deformation ϕ(X) in direction 

η is denoted: 

 

( ) ( ) ( )( 2

2
DU D T Sλ ) ⋅ = − ⋅  

Xϕ η ϕ η .   (6.3) 

This is calculated using the Gateaux derivative [23] by taking the derivative of the 

functional U evaluated at ε+ϕ η  with respect to ε  and then letting 0ε → : 

 

( ) ( ) ( )( ) ( ) ( )(
0

DU T S T S
ε

λ ε
ε →

∂ ⋅ = − + − + ∂ 
X Xϕ η ϕ η ϕ η )ε .  (6.4) 

Noting that 

 

( ) ( )( ) ( )
( )

( ) ( )
0 0

S S
T S

ε ε

ε ε
ε

ε ε ε→ →

 ∂ + ∂ + ∂∂ − + = − ⋅ = − ⋅  ∂ ∂ + ∂   
X

ϕ η ϕ η ϕ
∂

ϕ η η
ϕ η ϕ

,    (6.5) 
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we can combine (3) and (4) to get: 

 

( ) ( ) ( )( ) ( )S
DU T Sλ

∂ 
⋅ = − − ⋅ ∂ 

X
ϕ

ϕ η ϕ
ϕ

η .  (6.6) 

This term gives rise to the image-based body force that drives the deformation.   

A similar computation for the term W leads to the Euler-Lagrange equations.  

After tranformation to the current (deformed) configuration, 

 

.η)(ηηση)(η),( ∫∫ =







⋅




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


∂
∂

−−−







∂
∂

+
∂
∂

=⋅=
ββ

λ 0
2
1:

J
dvSSTdvDEG

ϕϕϕ
ϕϕ      (6.7) 

Here, σ is the 2nd order symmetric Cauchy stress tensor.  Thus, the forces due to the 

image data balance with the forces derived from the deformation of the material 

through the constitutive model. 

An incremental-iterative solution method is used to obtain the configuration ϕ  

that satisfies equation (6.7) [27].  Assuming that the solution at a configuration *ϕ is 

known, we seek the solution at some increment * + ∆uϕ .  To achieve this, we require 

the linearization of (7) at *ϕ  to get an initial estimate for ∆u : 

 
( ) ( ) ( )*L G G DG= + u∗ ∗

ϕ
ϕ,η ϕ ,η ϕ ,η ⋅ ∆ .     (6.8) 

In the finite element method, shape functions are used to describe the element 

shape and variation in displacements over the element domain.  After FE 

discretization, the linearization on the element level yields a system of linear algebraic 

equations: 
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( ) ( )( ) ( ) ( )( )
nodes nodes nodes

* * ext * int *

1 1 1

N N N
M G I

i j i iij

F F+

= = =

+ ⋅ ∆ = +∑ ∑ ∑K K uϕ ϕ ϕ ϕ        (6.9) 

The term in parentheses on the left-hand side of (9) is the tangent stiffness 

matrix, the vector  is the vector of unknown incremental nodal displacements, F∆u ext 

is the vector of external forces arising from the differences in the image intensities and 

gradients as per equation (6.6), and Fint is the vector of internal forces resulting from 

the stress divergence.  The contribution of the strain energy density to the tangent 

stiffness (in terms of the FE nodal coordinate system) may be expressed as: 

 

( ) ( )( ) TM G NL NL L Ldv dv+ = +∫ ∫
β β

K B σB B Bc
T

,   (6.10) 

where BL and BNL represent the FE linear and nonlinear strain-displacement matrices, 

and c is the spatial elasticity tensor [25]: 

 
24

iI jJ kK lL
IJ KL

WF F F F
J C

∂
=

∂ ∂ijklc
C

.   (6.11) 

In computational solid mechanics, the two terms on the right-hand side of (10) 

are referred to as the material and geometric stiffness matrices, respectively [25].  The 

contribution of the image energy to the tangent stiffness is given as 

 

J
I T dv

β

= −∫K N Nk ,     (6.12) 
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where N is the matrix representation of the FE shape functions and k is the 2nd spatial 

variation of the image energy density : 

 

( )
2 2

: U S S T S∂ ∂ ∂ ∂λ
∂ ∂ ∂ ∂

S    
= = − −    ∂ ∂      ϕ ϕ ϕ ϕ ϕ

k
ϕ

.       (6.13) 

as computed at each node in the discretized template model.  The term IK defined in 

(9) is referred to as the image stiffness.  Together, the terms in (10) and (12) form the 

tangent stiffness matrix.  The variance terms are readily available at each degree of 

freedom in the template model through the diagonal terms of the tangent stiffness 

matrix [25].  Equation (6.9) is solved for an initial estimate of the unknown 

incremental nodal displacements ∆u  and this solution is then iteratively improved 

using a Newton (or quasi-Newton) method [27]. 

The tangent stiffness matrix contains detailed information about how the nodal 

forces would vary in response to a small variation in the template model configuration.  

The inverse of the tangent stiffness matrix is an approximation to the covariance 

matrix, and defines the stability of the configuration to changes in applied loads (or 

changes in image data) [28].   

The values of the tangent stiffness matrix (and the residual array) depend on 

the current configuration of the deforming template model, and thus vary throughout 

the nonlinear solution process.  At the end of the solution process, the norm of the 

right-hand side of equation (6.9) is minimized.  The values of the image stiffness and 

material and geometric stiffness matrices can then used to evaluate the variance of the 

template configuration with respect to the image data and the deformation potential. 
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Image Influence Measures 

The present work examined four influence measures:  image force multiplier, 

image data variance, template model variance, and a ratio of image data variance to 

total variance.  The image force multiplier reflects the spatial distribution of the 

weighting given to the image force as shown by the Lagrange multipliers λi at each 

node (N).  The image data variance, Iαi, shows the variance of the final template 

configuration with respect to the image data as obtained through the main diagonal 

entries of the image stiffness matrix.   

 

ii
i

I U
ϕϕ

α
∂∂

∂
=

2

      (6.14) 

The template model variance, MGαi, shows the variance of the final template 

configuration with respect to the template model parameters (i.e., material properties, 

boundary conditions) as obtained through the main diagonal entries of the material and 

geometric stiffness matrix. 
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     (6.15) 

The final measure is a ratio of the image data variance to the combined image 

data and template model variances and will be referred to in the present work as the 

image influence, ratioαi. 
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Illustrative Examples 

The illustrative examples selected for the present work were chosen for their 

ability to demonstrate typical characteristics of registration problems.  The examples 

include both homogeneous and inhomogeneous template models, variations in image 

texture quantity and quality and different imaging modalities. 

 
Gaussian Blur 

A simple problem in deformable image registration involves registration of 2D 

Gaussian blurs (point spread functions) with distinct variance values.  For the present 

work, a template image (256x256) was constructed using a Gaussian with unequal 

variances in the two principal directions (54x12).  The target was similarly constructed 

with a distinct center point, but with a symmetric variance (32x32).  The problem was 

selected to provide an intuitive example for exploring the various influence measures 

described above. 

The entire template image domain was discretized using a rectilinear FE mesh.  

Arbitrary homogeneous hypoelastic material properties were selected to constrain the 

field of possible deformations.  Deformation was limited to the plane of the image data 

and the edges of the image space were fixed. 

 
Human Distal Phalanx 

The second example examined deformable registration of sequential high-

resolution MR images taken during indentation of the human fingerpad.  The problem 

demonstrates the effect of an inhomogeneous template model on the described 

influence measures. 
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A 4.7 Tesla magnet and a RARE sequence were used to obtain high-resolution 

(125 x 125 µm) MR images of the cross-section of a healthy human male fingerpad 

[29].  The nail of the distal phalanx of the subject was rigidly constrained using a 

nonmagnetic frame.  Mechanical indentation of 1-2 mm was applied to the fingerpad 

with a non-magnetic, rectangular indenter.  Constant indentation was achieved by 

mounting the indenter to the constraint frame.  The target image was acquired during a 

maintained indentation of the finger pad.   

A FE mesh was constructed based on a manual segmentation of the 

undeformed template image.  This mesh was divided into three regions based on tissue 

type.  Hypoelastic material properties were assigned from the literature [30] as 

follows: bone (E = 15×108 Pa, ν = 0.48), dermis (E = 15×104 Pa, ν = 0.48), other 

tissue (E = 15×103 Pa, ν = 0.48).  No externally applied loads or boundary conditions 

were imposed on the model; thus deformation of the mesh was exclusively due to the 

image registration process.     

 
Human Spinal Disc 

The final example problem examines registration of sequential images of the 

human spinal disc taken before and during compression.  Similar to the distal phalanx 

problem, the template model was inhomogeneous, with the additional complication of 

using an orthotropic material to describe the complex character of the spinal disc.   

Using a nonmagnetic compression frame and a MR scanner, MR images of a 

L2-L3 motion segment were obtained before (Template) and after (Target) application 

of a compressive load (image data supplied by Chiu et al. [31]).  The Template image 

was manually segmented to obtain contours corresponding to the bone and disc.  
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These contours were used to generate a FE mesh corresponding to the specific 

anatomy of the subject.  Image data were spatially filtered at the spatial Nyquist 

frequency of the FE mesh to avoid aliasing.  Representative hypoelastic material 

properties were estimated from the literature [32].  Similar to the previous problems, 

no externally applied loads or boundary conditions were imposed on the model.     

 
Results 

Quantitative results from the Gaussian blur example problem are shown in 

Figure 6.1.  The top row shows the standard reported image registration results, from 

left to right: template (T), target (S), initial difference image (T-S), registered template 

(T*), final difference image (T*-S).  The homogenous template model spanning the 

entire template image domain is shown in panel F.  The rest of the bottom row (panels 

G-J) shows the various influence measures for the computed registration.  The image 

force multiplier results (panel G) indicate inconsistencies in the magnitude of the 

registration force generated by the image data.  For this problem, the magnitude was 

largest in the areas of the template model that were not completely aligned with the 

target image (compare to panel E).  For this homogenous problem, the magnitude of 

the template model variance (panel H) closely corresponds to template deformation 

field.  The magnitude of the image data variance (panel I) is indicative of the 

correspondence between the template and target image data, with their corresponding 

gradients and Laplacians.  For this particular problem, the image influence results 

mirror the image data variance due to the homogeneity of the underlying template 

model. 
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Figure 6.1.  Influence measures for registration of a Gaussian blur.  Panels A and B 
show the template (T) and target (S) images, respectively.  Panel C shows initial 
subtraction results (T-S).  Panel D shows the registered template image (T*).  Panel E 
shows final subtraction results (T*-S).  The homogeneous template model covering 
the entire span of the template image is shown in panel F.  Different measures of 
image influence are demonstrated in panels G-J: image force multiplier, template 
model variance, image data variance, and image influence, respectively. 
 
 

Results from the distal phalanx registration are shown in Figure 6.2.  

Consistent with all the figures, standard registration results are shown along the top 

row.  The inhomogeneous template model is shown in panel F, with different 

grayscale values corresponding to the regions of defined material properties.  Image 

force multiplier results in panel G emphasize inconsistencies in the registration force.  

In this particular case, the magnitude of the image force multiplier may represent an 

inability of the chosen material model to accurately represent the complex deformation 

in the pulp portion of the finger.  The bright portions of the multiplier in the central 

portion of the model could also indicate that the elastic modulus selected for the bone 

was probably too low.  The template model variance results in panel H directly 
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Figure 6.2.  Influence measures for registration of the human distal phalanx.  Panels A 
and B show the template (T) and target (S) images, respectively.  Panel C shows initial 
subtraction results (T-S).  Panel D shows the registered template image (T*).  Panel E 
shows final subtraction results (T*-S).  The homogeneous template model covering 
the entire span of the template image is shown in panel F.  Different measures of 
image influence are demonstrated in panels G-J: image force multiplier, template 
model variance, image data variance, and image influence, respectively. 
 
 
correspond to the relative stiffness of the different portions of the template model.  

The image data variance (panel I) is indicative of the correspondence in image 

intensity, gradient, and Laplacian between the registered template and target images.  

It is especially valuable to notice the brightest areas of the panel, since these areas 

have the highest correspondence.  The image influence results in panel J reflect the 

image data variance results as scaled by the total variance to give insight into the 

relative importance of the image correspondence to the final registration result. 

Figure 6.3 gives quantitative results from the spinal disc registration example.  

The standard registration results are again presented along the top row of the figure.  

The different grayscale values in panel F correspond to the regions of different 

material parameters.  Image force multiplier results given in panel G show 

inconsistencies in registration force along the cortex areas of the spinal bones, an 
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indication that the material stiffness in these regions is significantly higher than was 

assigned to the template model.  The template model variance results (panel H) 

correspond closely with the relative stiffness values assigned to the template model.  

Image data variance results in panel I indicate regions of the registered template model 

where differences in image intensity, gradient, and Laplacian values between the 

template and target images were smallest.  Image influence results (panel J) 

demonstrate the image data surrounding the disc played the most significant role in the 

computed registration. 

 
Discussion 

In many image segmentation and intersubject registration problems (e.g., the 

Gaussian blur example), it is desirable to maximize the influence of the image data on 

the registration.  For these types of problems, there is usually no known physical 

correspondence between the template and target images.  The registration constraints, 

such as the material model parameters, serve only to regularize the problem.  In this 

case, a high image influence with a relatively uniform value across the domain of the 

template model may be an indicator of good image alignment. 

In strain tracking and tissue growth problems however, there are known 

physical relationships between the template and target material configurations.  In 

general, less image texture is required to accurately compute stress and strain fields for 

problems with well-defined material characteristics.  For example, the image influence 

results for the spinal disc registration in Figure 6.3J show that the image texture in the 

bone portions of the template model was largely superfluous.  Registration was 
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Figure 6.3.  Influence measures for registration of the human spinal disc.  Panels A 
and B show the template (T) and target (S) images, respectively.  Panel C shows initial 
subtraction results (T-S).  Panel D shows the registered template image (T*).  Panel E 
shows final subtraction results (T*-S).  The homogeneous template model covering 
the entire span of the template image is shown in panel F.  Different measures of 
image influence are demonstrated in panels G-J: image force multiplier, template 
model variance, image data variance, and image influence, respectively. 
 
 
controlled predominantly by the image data on the interior border of the disc, while 

the bone portions were pulled into position by the strength of the disc deformation.  

For problems such as these, the image influence can indicate which areas of the 

solution are most reliant upon the chosen registration parameters.   

Another interesting observation from the two physically based registration 

examples (the distal phalanx and spinal disc), is that the image force multiplier 

λ, seems to be indicative of local variation from the chosen material parameter values.  

This could potentially allow future work in estimating unknown material parameters 

for problems with known boundary conditions. 

It is valuable to discuss the importance of using the full tangent stiffness matrix  

(true Hessian) to calculate the image influence.  It is common in many FE methods to 
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use an approximated, or incomplete version of the tangent stiffness matrix during the 

nonlinear solution process.  Often a modified Newton, or quasi-Newton  (i.e., DFP, 

BFGS), solution strategy will be used [27].  These solution strategies use approximate 

versions of the tangent stiffness matrix or the inverse tangent stiffness matrix.  For 

example, many of the examples in the present work were solved using a BFGS 

solution strategy.  BFGS updates have a much lower computational cost than full 

Newton stiffness reformations, and demonstrate a super-linear convergence rate.  The 

approximate stiffness matrix does not, however, contain the same information about 

the relationship between the residual forces and the incremental nodal displacements.  

Prior to computation of the image influence field, it was necessary to reconstruct the 

true tangent stiffness matrix, with and without the image stiffness terms.  

The previous paradigm in evaluating image registration algorithms has been 

focused upon determining if a method is able to achieve acceptable registration results.  

The growth in the maturity of image registration methods indicates that the time has 

come to change the paradigm.  Most modern registration methods can achieve 

registration of most image problems.  The paradigm shift is to understand which 

registration method is most appropriate for dealing with inadequacies in image data 

for particular registration problems.  Understanding the nature of the transformations 

that are common to a particular class of registration problems, can naturally lead to an 

appropriate choice of method.   
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CHAPTER 7 

 
DISCUSSION 

 
The research described in this dissertation has investigated deformable 

template based image registration methods in general, and Warping in specific.  A 

series of regularization tools were developed which have application to practical 

image registration problems.  These tools were incorporated into the continuum 

mechanics based deformable template registration method known as Warping.  

Warping was then used to solve a variety of typical registration problems, utilizing 

regularization tools when needed.   

Two novel techniques were developed for examining and evaluating 

registration results.  The singular value decomposition (SVD) was used to quantify the 

success of image registration through hierarchical evaluation of the topological 

correlation between the target and registered template images.  The second technique 

used the Hessian of the registration potential energy to evaluate the relative influence 

of the image data versus registration constraints on deformable template based image 

registration solutions. 

The purpose of this chapter is to briefly discuss the application, limitations, 

and future directions of the work described in this dissertation.  The chapter is 
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organized to address these items with respect to each topic of research, followed by a 

few concluding remarks. 

 
Regularization of Image Registration Problems 

In contrast to simple registration methods such as landmark and principal axis, 

solution of image registration problems using deformable template methods is largely 

the purview of the specialist.  These methods have enormous potential, and can 

achieve accurate registration results for a wide variety of difficult problems.  

Unfortunately, they are also susceptible to local minima, and registration must be 

monitored and evaluated by an expert in order to achieve complete registration.   

The regularization tools presented in Chapter 3 of the present work provide a 

step towards the automation of deformable template methods.  Different classes of 

registration problems present different types of difficulties during registration.  For 

example, many of the strain tracking registration results presented in this work were 

obtained using a similar pattern of regularization: 1) match image histograms, 2) apply 

dynamic spatial filtering through the solution process, 3) evaluate solution results 

using Mapper3D and repeat, while adjusting the degree of spatial filtering and the 

value of the penalty parameter.  Intersubject registration problems often required an 

additional rezoning step in the problem iteration process.  As the difficulties associated 

with each class of registration problem become more thoroughly characterized, it will 

be possible to anticipate the types of regularization (and the appropriate parameters), 

needed in order to solve the problems automatically. 

   Automatic identification and solution of regularization difficulties is critical 

to the future of deformable template based image registration.  The problem is largely 



 126

ignored in the literature, but is a matter of great practical concern.  For example, it is 

not atypical for a registration problem to require ten or more iterations to achieve an 

acceptable registration solution.  For small, 2D problems, this iteration process can be 

an annoyance.  For large, 3D problems, this can mean days or weeks of solution time.  

Solution times reported in the literature are often deceptive, in that only the time 

required for the final iteration of the problem is reported, after the registration 

parameters have been optimized and any needed regularization tools have been 

applied.  There is a need for future work in characterization and optimization of 

registration and regularization parameters. 

 
Evaluation of Image Registration Results Using SVD 

Global measures of accuracy have become the de facto standard for evaluating 

image registration results.  They are easy to compute, and intuitive to understand.  

Although these measures are adept at showing differences in image data, they do little 

to help the researcher identify causes of misregistration, and ranking of solution results 

based on these measures can be inconsistent with expert evaluation.   

The SVD topology tracking technique presented in Chapter 5 presents an 

alternative means of evaluating the accuracy of image registration results.  The 

individual elements of the topology of the deformed template image are compared 

hierarchically with the corresponding elements of the target image topology.  This 

approach can allow the researcher to identify the relative spatial frequency of elements 

of the topology that are out of correspondence.  With this information, registration and 

regularization parameters can be adjusted to improve registration results. 
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The primary limitation of the technique is that it is difficult to establish that a 

particular registration solution is the best possible.  Because the technique uses the 

registered template image, the accuracy in correspondence between the inner products 

of the registered template with the target singular values is limited by the effectiveness 

of the software used to apply the computed template deformation field to the image 

data (e.g., Mapper3D).   

Current implementation of the technique is limited, in that it is used as a post-

processing evaluation tool.  It is anticipated that future work could incorporate the 

technique into the solution process, perhaps for use as a stopping criterion, or to allow 

automatic adjustment of regularization and registration parameters.   

 
Determining the Relative Influence of Image Registration Constraints 

There are a multitude of available image registration methods, each with 

different strengths and weaknesses.  Each of these methods affects the computed 

solutions in a different manner.  In Chapter 6, a novel technique for determining the 

relative contributions of image data and registration method to the registration solution 

was presented.  The technique utilizes the terms of the registration potential energy in 

order to evaluate the relative importance of the terms to the registration solution.  

Using this information, it is possible to identify regions of the template model that 

were heavily influenced by the image data, as well as regions where the registration 

constraints dominated the solution. 

Application of the technique may be limited by the particular registration 

method, because the Hessian is expensive computationally to calculate.  For FE based 

techniques, this is not a concern, since the terms of the Hessian are used in the tangent 
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stiffness matrix.  It is possible however, that other useful information in the stiffness 

matrix is being ignored by the technique, and that future modifications may utilize the 

individual terms of this matrix more completely. 

 Future extension of the technique may take advantage of the fact that the 

inverse of the Hessian is directly related to the covariance matrix.  The covariance 

matrix contains information about the response of the deformed configuration to 

variation in the image data.  This information could be used to estimate the mean error 

associated with the deformed template configuration.  

In the future, the technique may play a role in characterizing unknown material 

parameters.  The hypothesis would be that image data could be combined with known 

boundary conditions and an assumed material model to predict unknown material 

parameters.  The general procedure would involve:  1) approximation of the unknown 

material parameters, 2) solution of a Warping image registration problem, with the 

known boundary conditions applied, 3) an iterative optimization procedure that strives 

to minimize the scalar stiffness ratio by adjusting the material parameters, while 

simultaneously examining the Lagrangian multipliers λ, associated with the image 

potential.  

 
Concluding Remarks 

I suppose that it is common for most graduating PhDs to pause and reflect on 

the nature and size of the task that has been completed.  Reality harshly decrees that 

very few theses have ever made the best-seller lists, and most gather dust on forgotten 

shelves in university libraries.  Occasionally, however, an enterprising reader stumbles 

upon something that can enlighten or inspire.  At the end of this work, it is my 
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romantic notion that the work contained in this dissertation might be a stepping-stone 

for those who wish to utilize the tools and techniques that have proven valuable to me 

in deformable template based image analysis.  It is to you that I address my 

concluding remarks.  To paraphrase a statement that has become part of the vernacular 

(and was my credo during this journey known as graduate school): 

… to boldly Warp what no one has Warped before 
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