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ABSTRACT OF DISSERTATION

PERFORMANCE AND ACCURACY ENHANCEMENTS

OF RADIATIVE HEAT TRANSFER MODELING

VIA MONTE CARLO

Two ways to reduce the computational requirements of radiative heat transfer Monte

Carlo simulation are explored. First, an efficient algorithm for tracing particles in large,

arbitrarily complex, planar geometries containing nonparticipating media is presented.

For arbitrary triangles and/or convex planar quadrilaterals, an efficient intersection algo-

rithm is discussed in detail. After surveying several techniques used in ray tracing to limit

the number of surfaces tested, the method of Uniform Spatial Division (USD) is imple-

mented. The efficiency of the intersection algorithm and USD are demonstrated by timing

results.

Second, improving the accuracy of the Monte Carlo results by applying reciprocity and

closure is explored. Statistical theory is applied to the reciprocity estimation smoothing

(RES) technique which combines reciprocity enforcement through estimation and closure

enforcement through the technique of least-squares smoothing. By examining a large

number of runs of two large geometries, several RES methods are compared to find the

best method. The effects of the RES method on surfaces and individual results between

surfaces are also explored. Estimates of the improvements caused by the RES method that

can be calculated from the results of a single run are also derived.

Charles Nelson Zeeb
Mechanical Engineering Department
Colorado State University
Fort Collins, Colorado 80523
Fall 2002
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CHAPTER 1 INTRODUCTION

1.1 Background

The modeling of radiative heat transfer is a particularly challenging subject. Since radi-

ation involves “action at a distance,” every surface and volume of media in a geometry

can affect every other surface and volume. Geometries can be very complex. Further-

more, surface properties are often a function of angle, and media properties often are a

function of wavelength. Few methods are versatile enough to handle problems this com-

plex. One proven method is the Monte Carlo method [Howell, 1968; Haji-Sheikh, 1988;

Siegel and Howell, 1992; Modest, 1993; Howell, 1998; Burns and Pryor, 1999].

In radiative heat transfer Monte Carlo, results are obtained by tracing a statistically sig-

nificant number of “bundles” or “photons” of energy. Statistical relationships are used to

model the emission, absorption, reflection, transmission, and scattering of these bundles.

Although the method is very versatile, it can also be computationally very intensive,

since most simulations involve tracing millions or even billions of photons.

While Monte Carlo methods are becoming more feasible with today’s more powerful

computers, it is still very important that Monte Carlo programs be as efficient as possible.

While previous work on a parallel Monte Carlo code [Zeeb et al., 1999] shows that it is

easy to create a program with a very high level of parallel efficiency, implementing the

program in parallel only reduces the “wall clock” execution time, not the computational

resources required. Although computational power is readily available, the trade off in
1
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enhanced physical fidelity versus compositional resources should be evaluated when

considering implementation of the Monte Carlo method.

The purpose of this dissertation is to explore two ways to reduce the computational

requirements of radiative heat transfer Monte Carlo simulation. First, an efficient Monte

Carlo tracing algorithm for large, arbitrary, planar geometries in nonparticipating media

is presented. Second, while the convergence of Monte Carlo methods is slow, inversely

proportional to the square root of the number of emissions, there is redundant informa-

tion that can be used to improve accuracy. Therefore, the application of reciprocity esti-

mation and Larson and Howell’s [1986] method of least-squares smoothing to use

reciprocity and closure relations to improve the accuracy of Monte Carlo results is

explored.

1.2 The Radiative Heat Transfer Monte Carlo Solution Method

The results of a Monte Carlo simulation from programs such as LSMONTE [Zeeb and

Burns, 2000] and MONT3D [Zeeb et al., 1999] are used to determine the unknown tem-

peratures and energy emission rates for a geometry with nonparticipating media for

which the properties of each surface are known. To aid in understanding the issues

involved, the general solution method for determining the unknowns is presented.

The geometry is divided into Nsurf surfaces of uniform temperature and emissivity

which emit and absorb photons. The total rate of energy, Qem, emitted from a surface of

area, A, at temperature, T, is [Siegel and Howell, 1992; Modest, 1993]:

(1.1)

where ε is the total hemispherical emissivity for the surface, which is assumed to be inde-

pendent of temperature; σ is the Stephen-Boltzman constant; Ω is the area-emissivity

Qem n2εAσT4 n2ΩσT4
= =
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product for the surface; and n is the index of refraction of the medium into which the

radiation is emitted, which is one for nonparticipating media. For this reason, from this

point on, n is assumed to be unity and omitted.

The estimated amount of power emitted by surface k that is absorbed by surface l,

Qabs,kl, is:

(1.2)

Fkl is the Monte Carlo estimate of the exchange fraction from surface k to surface l:

(1.3)

where Ek is the total energy of “bundles” emitted by surface k, and Ekl is the total energy

of “bundles” emitted by surface k which are absorbed by surface l, no matter what the

path. Ekl results directly from the Monte Carlo “photon” (or “bundle”) tracing. It should

be noted that if all properties are independent of temperature, then all Fkl are also inde-

pendent of temperature. Enough “bundles” must be emitted in the Monte Carlo simula-

tion to reduce the statistical scatter in Fkl to an acceptable level. More on this will be

presented later.

The net outgoing radiative energy rate for surface k, Qk, is:

(1.4)

If heat transfer is only by radiation and the surface is at equilibrium, Qk is zero. If the sur-

face is not at equilibrium and/or there are other significant sources of heat such as con-

duction, convection, or chemical reaction, Qk is generally not zero. Particularly

Qabs kl, FklQem k,=

Fkl
Ekl
Ek
-------=

Qk Qem k, FlkQem l,
l 1=

Nsurf

∑– ΩkσTk
4 FlkΩ

l
σTl

4

l 1=

Nsurf

∑–= =
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noteworthy is that the summation in eqn. (1.4) includes the surface k itself. This is why

eqn. (1.4) does not explicitly include self-absorption, as it is accounted for in the Fkk term.

While ε is assumed to be independent of temperature, it not necessarily independent of

wavelength. Since the emissivity of surfaces is usually constant over large wavelength

bands, it is possible to perform separate Monte Carlo simulations for each wavelength

band. For wavelength band i, the total energy emission rate for the band, , is:

(1.5)

where the total hemispherical emissivities are now for the band and the F’s are the frac-

tion of blackbody energy for the given surface in the band. More detail about using wave-

length bands can be found in Maltby and Burns, 1991; Burns et al., 1992; and Burns and

Pryor, 1999. In the work in this dissertation, since only one wavelength band is used, the

F factor is always one and the i superscript is dropped henceforth.

If the proper boundary conditions are supplied, that is either the temperature or energy

rate for each surface, eqn. (1.4) (or eqn. (1.5) for each wavelength band) forms a system of

Nsurf equations and Nsurf unknowns. Solving for the unknowns is a two step process.

First, since eqn. (1.4) is linear in T4, the surfaces with unknown temperatures form a sys-

tem of linear equations that can be solved. Once all the temperatures are known, eqn.

(1.4) can be used to solve for the unknown Q’s.

1.3 Improving the Efficiency of the Monte Carlo Photon Tracing Algorithm

As stated above, one of the goals of this dissertation is the efficient modeling using the

Monte Carlo method of complex geometries with nonparticipating media. Since the first

work in radiative heat transfer Monte Carlo by Howell and Perlmutter [Howell and Per-

Qk
i

Qk
i εk

i AkF k
i σTk

4 Flk
i εl

i
AlF l

iσTl
4

l 1=

Nsurf

∑– Ωk
i
F k

i σTk
4 Flk

i Ωl
i
F l

iσTl
4

l 1=

Nsurf

∑–= =
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lmutter, 1964a; Howell and Perlmutter, 1964b; Perlmutter and Howell, 1964], there have

been many papers on the subject. Good reviews are given by Howell [1968; 1998], Haji-

Sheikh [1988] and Burns and Pryor [1999]. Unfortunately, most published radiative

Monte Carlo work is for simple geometries such as slabs and cubes; there are few pub-

lished routines to handle arbitrary, complex geometries. Corlett [1966] uses a geometry

composed of several types of objects and Modest [1978] creates geometries that include

curved surfaces, but neither explains their photon tracing algorithm in detail. Chin et al.

[1989; 1992] have covered several Monte Carlo issues, particularly applying Monte Carlo

to finite element meshes. Farmer [1995] has also discussed using Monte Carlo to simulate

arbitrary geometries constructed using finite element meshes. In addition, Henson et al.

[1996] discuss some techniques for improving the speed of Monte Carlo routines. Several

generalized radiative heat transfer Monte Carlo programs do exist, for example, TSS

[Panczak, 1989] and MATRAD [Koeck, 1988]. Still, except for the above references, noth-

ing else has been published in detail about these and other such codes’ photon tracing

algorithms.

One generalized photon tracing algorithm discussed in detail has been implemented in

the codes MONT3D [Maltby, 1987; Burns et al., 1990; Maltby and Burns, 1991; Burns and

Pryor, 1999; Zeeb et al., 1999] and LSMONTE [Zeeb and Burns, 2000], which simulate

radiative transfer in geometries with nonparticipating media. The codes have been used

extensively for more than a decade by Lawrence Livermore National Laboratory (LLNL)

and other sites. The output of the codes is a radiative exchange fraction matrix which is

used as input to thermal analysis codes, particularly TOPAZ3D [Shapiro, 1985]. Geome-

tries with more than 14,000 surfaces have been modeled. The codes have been indepen-

dently validated theoretically and verified experimentally.
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This dissertation presents improvements made in the photon tracing algorithm. The

present work differs from most previous works in that techniques from the computer

graphics field of ray tracing are incorporated. As pointed out by Rushmeier [1993], while

much of the early work in computer graphics simply borrowed from heat transfer, com-

puter graphics has matured sufficiently that some of the techniques can be used to

improve heat transfer calculations - especially true for ray tracing. While Henson et al.

[1996] and particularly Panczak [1989] have also addressed this topic, this dissertation

covers many aspects not touched in those papers. Since Monte Carlo calculations are

computationally intensive, the emphasis here is to present an algorithm that allows com-

plex geometries but is computationally efficient.

1.4 Collision Based Versus Pathlength Based Radiative Monte Carlo

One point that is often overlooked is that radiative Monte Carlo is, in the words of

Howell [1968], a “semimacroscopic” approach where small packets of the total energy

emitted by a surface are traced. While these energy packets are often referred to as pho-

tons, they are actually “bundles” of energy or photons. This is obvious when one thinks

about it because processes such as emission and reflection are modeled as macroscopic

processes instead of quantum processes. While these “bundles” may contain differing

amounts of energy [Haji-Sheikh, 1988], calculations are usually simplified by making all

“bundles” of equal energy.

Using the terminology of Farmer [1995], there are two ways to tally these “bundles” in

what he calls forward approaches to radiative heat transfer Monte Carlo. In collision

based radiative Monte Carlo, each “bundle” is absorbed or reflected probabilistically as a

whole. In pathlength based Monte Carlo, each “bundle,” while still reflected probabilisti-

cally, is partially absorbed deterministically by each surface it hits. In other words, the
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“bundle” becomes successively smaller (lower in energy) as it strikes each absorbing sur-

face, by virtue of a continuous amount of energy absorbed in proportion to the absorptiv-

ity of each surface. Tracing terminates when the “bundle” strikes a black surface or leaves

the geometry. Since neither condition is found in many enclosures, some sort of termina-

tion criteria, such as to stop tracing when a certain energy threshold is reached, or Rus-

sian roulette [Lewis and Miller, 1984; Lux and Koblinger, 1991] must be implemented.

As shown by Sobol’ [1974], the advantage of pathlength based Monte Carlo is that for

the same number of emissions, pathlength based Monte Carlo results have lower vari-

ances and uncertainties than collision based results. On the other hand, collision based

emissions take less calculation and CPU time than pathlength based emissions. Which

method produces the least uncertainty in the same amount of CPU time is unclear and

depends heavily on the material properties and the geometry of the problem.

The reciprocity estimation smoothing method described below which is used to

improve the accuracy of the Monte Carlo results depends heavily on the statistics

involved which in turn depend on the photon absorption method used. Past work with

MONT3D [Zeeb et al., 1999] and LSMONTE [Zeeb and Burns, 2000] has provided experi-

ence with collision based Monte Carlo. Furthermore, the statistics of collision based

Monte Carlo are much simpler than the statistics of pathlength based Monte Carlo. For

these reasons, collision based Monte Carlo is used in this work.

In this work, since results are temperature independent, all “bundles” emitted from a

given surface are of equal although unspecified size. Since these “bundles” are absorbed

probabilistically, it is common to refer to them as “photons” which is how they will be

referred to in the rest of this work. For the collision based radiative Monte Carlo method

used in this work, the exchange fraction calculation simplifies to:
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(1.6)

where Nk is the total number of photons emitted by surface k and Nkl is the total number

of photons emitted by surface k that are absorbed by surface l, no matter what the path.

The statistics of this collision based Monte Carlo method are the basic Bernoulli trial,

binomial, and multinomial distributions. Details on these distributions can be found in

most statistics books, including Martin [1971], Mood et al. [1974], Ross [1988], and Evans

et al. [2000].

1.5 Total Exchange Areas, Closure, and Reciprocity

A useful quantity in radiative heat transfer Monte Carlo is the total exchange area, ηkl,

which is defined in this dissertation as:

(1.7)

Using total exchange areas, the power transferred from surface k to surface l,  is:

(1.8)

Since all the exchange fractions for a surface sum to unity, the conservation of energy

(“photons” or “bundles”), the first law of thermodynamics, leads to the constraint of clo-

sure for η’s:

(1.9)

Fkl
Nkl
Nk
--------=

ηkl εkAkFkl ΩkFkl= =

Qkl

Qkl Qk l→ Ql k→– ηklσTk
4 ηlkσTl

4
–= =

ηkl
l 1=

Nsurf

∑ Ωk Fkl
l 1=

Nsurf

∑ Ωk 1( ) Ωk= = =
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Another constraint on the η’s is shown in eqn. (1.10) below. This constraint is some-

times called total exchange area reciprocity but will usually be referred to simply as reci-

procity from this point forward:

(1.10)

This property is directly related to the reciprocity of the spectral, bidirectional reflection

function (also known as the bidirectional spectral reflectivity) [Siegel and Howell, 1992;

Modest, 1993]:

(1.11)

where the spectral, bidirectional reflection function, , is a measure of the reflectivity of

a surface at a point, r, as a function of not only the wavelength, λ, but also the cone angles,

θ, and azimuthal angles, ψ, of both the incoming (subscript i) and reflected (subscript r)

radiation. While both Siegel and Howell [1992] and Modest [1993] state that the reciproc-

ity of  applies to all radiative materials, some argue that it does not apply in some

very special cases [Snyder et al., 1998]. Still it is found to apply to almost all if not all radi-

ative materials that have been tested experimentally. Eqn. (1.11) is essentially a statement

of the Helmholtz optical reciprocity theorem [Hottel and Sarofim, 1967; Snyder et al.,

1998] which states that for geometries for which eqn. (1.11) applies, the intensity regis-

tered by a detector from a source elsewhere in a geometry is the same as would be mea-

sured if the source and detector positions were switched.

Due to the complexity of eqn. (1.11), most total exchange area radiative work is based

on diffuse emission and two simple reflectivity models for which the reciprocity of

holds, diffuse reflection and specular reflection. Furthermore (total exchange area) reci-

procity has only been proven to apply in two cases: black surfaces and specularly reflect-

ηkl ηlk=

ρλ'' r λ θi ψi θr ψr, , , , ,( ) ρλ'' r λ θr ψr θi ψi, , , , ,( )=

ρλ''

ρλ''

ρλ''
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ing surfaces [Siegel and Howell, 1992; Modest, 1993]. These two proven cases of

reciprocity allow the solution of problems where the radiosity is constant across each sur-

face and the material properties are a mixture of diffuse and specular reflection which are

both not a function of angle. The versatility of the Monte Carlo method has allowed the

modeling of more complex cases in which both reciprocity and  reciprocity holds. In

particular, it can model systems where the radiosity varies across surfaces and the mate-

rial properties are a mixture of constant diffuse reflection and specular reflection that var-

ies as a function of angle [Zeeb et al., 1999; Branner, 2000].

It should be noted that, while Monte Carlo results automatically observe closure (if no

photons are “lost” during tracing; a condition that can be enforced algorithmically), due

to statistical scatter, reciprocity is observed only to within statistical convergence toler-

ance.

The term total exchange area is usually connected with the zone (also called zonal)

method [Hottel and Sarofim, 1967; Larson and Howell, 1986; Siegel and Howell, 1992;

Modest, 1993]. A different symbol, , is usually used to represent the total exchange

area between surfaces (usually in participating media). While the name and notation are

used in Hottel and Sarofim [1967] where the zone method is covered extensively, their

definition of total exchange areas in that book is somewhat broader. Although Hottel and

Sarofim do not cover the Monte Carlo method, their definition of the total exchange area

is very similar to eqn. (1.7). The term “total exchange area” is actually well suited to the

Monte Carlo method. In fact, Maltby [1994] uses Hottel and Sarofim’s definition and

symbols for total exchange area in his description of his zonal participating media Monte

Carlo code, TRIM3D.

While the total exchange area in the zone method is defined using an equation very

similar to eqn. (1.8), it is not exactly the same as the Monte Carlo definition. In particular,

ρλ''

SkSl
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while equations essentially the same as eqns. (1.8) to (1.10) apply to the zone method, and

both the current Monte Carlo method and the zone method require uniform temperature

and emissivity across a surface, the zone method also requires uniform radiosity across

surfaces. To stress that the concepts are similar but not the same, this dissertation uses the

same name as Hottel and Sarofim, the total exchange area, but a different symbol, η.

1.6 Improving Monte Carlo Results by Estimation

Due to the reciprocity relationship mentioned above, it is obvious that almost half the

information in the η matrix is redundant. While most methods for obtaining η use this

redundancy to decrease the number of η that are calculated, this is not possible with

Monte Carlo simulations. Since emissions from any surface automatically calculate all η

for that surface, the most work that can be avoided in a Monte Carlo simulation is photon

emissions for one surface.

What at first appears to make this generation of additional information even worse is

that, due to statistical scatter, the reciprocity relation does not actually apply to Monte

Carlo results except in the limit of an infinite number of emissions. This supposed deficit

may actually offer an advantage because the reciprocity relationship may still be applied

to Monte Carlo results by estimation. From statistics, it is known that proper application

of estimation decreases the error for most of the η and the uncertainty for almost all if not

all of the η. Thus, one of the goals of this dissertation is to apply statistical theory to

obtain the best possible estimator for improving the accuracy of the reciprocity pairs.

1.7 Re-enforcing Closure on Estimated Results

Once Monte Carlo results have had reciprocity applied by estimation, the first law of

thermodynamics, closure, no longer applies. This is a common problem that often occurs

when other methods, such as view factor methods, are used to calculate η and the reci-
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procity relation is used to reduce the number of η to be calculated. Therefore, there have

been several schemes designed to rectify the results generated by Monte Carlo, zone, and

other such methods so that closure applies. Most of these schemes either lump the correc-

tions into Nsurf of the η, such as Sowell and O’Brien’s [1972] scheme and Taylor and

Luck‘s [1995] naive rectification scheme, or spread the correction over all the η’s by some

simple formula which avoids generating negative η’s, such as Van Leersum, 1989 and

Tsuyuki, 1992. While rectifying the η's, these schemes may produce large errors for some

of the η’s. However, Larson and Howell’s [1986] least-squares smoothing (LSS) method,

used in this work, is different in that it uses Lagrange multipliers to minimize the

changes in the η's caused by re-enforcing closure on the η’s. It should be noted that a sim-

ilar method has been proposed by Vercammen and Froment [1980], but their method is

less versatile in that it requires that zero and repeating η’s be identified beforehand. Tay-

lor and Luck [1995] actually extend the LSS technique by using nonlinear programming

to ensure that all η's are non-negative. While it is possible to apply nonlinear program-

ming to the solution method devised in this dissertation, it has not been done in this

work for several reasons. First, for properly defined geometries, there do not seem to be

many, if any, negative η’s for most smoothing techniques. Second, for the large geome-

tries for which Monte Carlo is particularly well suited as a method, nonlinear program-

ming is almost certainly impractical. Third, Taylor and Luck found that there was little or

no difference between using nonlinear programming and recalculating the problem after

setting all η that became negative to zero.

The combination of reciprocity estimation with the LSS method is referred to as reci-

procity estimation smoothing (RES) in this work. The present work extends that imple-

mented in SMOOTH, a program to apply RES to the results of MONT3D [Burns et al.,

1992; Dolaghan et al., 1992; Loehrke et al., 1995]. The RES technique has also been used by
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Chen et al. [2000] to improve the view factors used to simulate direct-injection diesel

engines and by Liu et al. [2001] to improve η’s used to simulate oil-fired furnaces.

The purpose of the RES work in this dissertation is to apply detailed statistical theory

to improve the accuracy of the estimation and LSS and also to determine metrics that

quantify the decrease in the uncertainty of the RES results. This work is the first study to

apply RES to large Monte Carlo geometries. Geometries with 144 and 1,182 emitting sur-

faces are used. In addition, results from many numerical experiments (“runs”) are

obtained to provide an in-depth view of the distribution of the effects of RES.

1.8 The Importance of Enforcing Closure and Reciprocity

A review of the literature suggests that there appear to be several potential benefits to

applying reciprocity and closure. First, the acts of enforcing reciprocity and closure them-

selves appear to increase the accuracy of the final Q’s and T’s. This is not well studied,

but Taylor and his coworkers [1993; 1995] have found a simple heat transfer problem

where the results are very sensitive to small errors in the view-factor matrix. This sensi-

tivity is greatly reduced by enforcing reciprocity and closure in the problem. Clarksean

and Solbrig [1994] have also found that satisfying closure and particularly satisfying reci-

procity is more important to the accuracy of the final results than the accuracy of the view

factors themselves. Murty and Murty [1991], on the other hand, have found that enforc-

ing closure by Larson and Howell’s least-squares smoothing method has little effect on

their zone-radiation calculations. This work will attempt to explain why these seemingly

disparate conclusions exist.

Enforcement may be required for stable calculations. As pointed out by Brewster

[1992], if reciprocity and closure are not enforced, it is possible to obtain a singular or

poorly conditioned η matrix that makes the solution of the linear equations eqn. (1.4) for
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the unknown T4’s, impossible. One example of when this can occur is that one η of a reci-

procity pair may be zero while the other is not.

Furthermore, it should be realized that thermal balance codes that use the results of the

Monte Carlo simulation are formulated based on the principle of energy conservation.

Some such codes can exhibit convergence difficulties if both reciprocity and closure are

not obeyed to within stringent tolerances. In addition, post-processing often involves

examining energy flows and energy balances, and the analyst could be led to misinter-

pret the accuracy and reliability of the thermal balance code unless both conditions are

observed to within very small tolerances for all modes of energy transport. Furthermore,

if closure is observed and reciprocity is not, then although the energies will balance, the

distribution of energy will be in error. Also, thermal analysis codes such as TOPAZ3D

[Shapiro, 1985] may expect reciprocity to apply and, for example, arbitrarily use only the

upper triangle or lower triangle of the η matrix.

1.9 Overview of Dissertation

In chapter two, an efficient Monte Carlo particle tracing algorithm for large, arbitrary,

planar geometries is developed. The third chapter discusses increasing the accuracy of

Monte Carlo results using the RES method. The final chapter gives conclusions and rec-

ommendations for the work done in the previous two chapters. This work also includes

appendices describing the CCS (Center for Computing Science) addition lagged-

Fibonacci pseudo-random number generator and a random emission routine used in this

dissertation. Furthermore, there is an appendix presenting the results of some tests for

normality on total exchange areas before and after the RES method has been applied.



CHAPTER 2 DETERMINING AN EFFICIENT MONTE CARLO

PARTICLE TRACING ALGORITHM

Drawing on techniques used in the computer graphics field of ray tracing, an efficient

algorithm for tracing particles (photons) in large, arbitrarily complex, planar geometries

containing nonparticipating media is presented. An efficient intersection algorithm for

arbitrary triangles and/or convex planar quadrilaterals is discussed in detail. Several

techniques used in ray tracing to limit the number of surfaces tested are discussed and

the method of Uniform Spatial Division (USD) is implemented. The “mailbox” technique,

saving some calculated results for possible use in the future, is also discussed. To deter-

mine the efficiency of the intersection algorithm and the effectiveness of USD, timing

results are presented for a number of different spatial divisions for four geometries.

2.1 Surface Geometries

For the algorithms described below, it is assumed the geometry is defined in a global

Cartesian coordinate system from node points, N, that are input by the user or generated

using a grid generation program such as TrueGrid [XYZ, 1997]. Surfaces are defined by

specifying four node points and an unique surface number. The types of surfaces mod-

eled are either triangles or convex quadrilaterals as shown in Fig. 2.1. Surfaces must be

planar. If the four nodes of a quadrilateral are not coplanar to within a small tolerance,

the quadrilateral is divided into two planar triangles. The orientation of the surfaces fol-

lows the right-hand rule, so the surface normal, which determines the direction of emis-
15
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sion, always points outward as the surface is traversed in the direction of increasing node

number. Surfaces are one-sided; the “back” side, which is opposite the surface normal,

does not emit or interact with photons.

2.2 Calculating the Intersection Distance to a Plane

In most ray tracing simulations, most of the work is spent determining which surface a

photon hits. This calculation is the starting point of our discussion due to its importance

and also because it is the basis for all intersection routines. For this algorithm, there are

two parts to the calculation: 1) finding the distance to the plane that contains the polygon,

and 2) determining if the intersection point with the plane is inside the polygon. The first

part is covered in this section; the second part is covered in the next section. The previous

version of the tracing algorithm [Maltby, 1987; Burns et al., 1990; Maltby and Burns, 1991;

Burns and Pryor, 1999] used an intersection routine with many similarities to this one.

The major difference is that while the current algorithm focuses on calculating the dis-

tance to intersection, ti, the previous algorithm focuses on the point of intersection,

Ri,which requires more calculation.

Figure 2.1 Radiating Surface Geometries
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Intersections with planar surfaces are common in ray tracing, so the formula for the

intersection with a plane is covered in many ray tracing tutorials. A particularly good

discussion is given by Haines [1989]. Defining the origin of the photon as R0 = (X0, Y0, Z0)

and its unit direction vector as E = {EX, EY, EZ}, the equation for the position of the pho-

ton, R, is given by:

(2.1)

where t is the distance the photon has travelled. The equation for the plane which con-

tains the polygon is given by:

(2.2)

The unit surface normal for the plane (and the polygon in the plane), Np, is equal to

{A,B,C} and D is the distance from the origin of the system, (0,0,0), to the plane. Inserting

eqn. (2.1) into eqn. (2.2) an equation for ti, the distance to the intersection with the plane,

is obtained.

(2.3)

Np and D are stored for each surface during preprocessing, and R0 and E are calculated

every time a photon is emitted or reflected.

As Fig. 2.2 (a) shows, two conditions must be met for a valid intersection. First, νE must

be less than zero, which means the plane’s surface normal is pointing toward the direc-

tion vector. Second, ν0 must be less than zero, which means R0 is in “front” of the plane,

i.e. on the same side of the plane as the surface normal [Jeger and Eckmann, 1967].

The calculation above can be done most efficiently in steps.

R R0 Et+=

AX BY CZ D–+ + 0= where A2 B2 C2
+ + 1=
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1. Calculate νE.

2. If νE is greater than or equal to zero, then the cases in either Fig. 2.2 (b) or Fig. 2.2

(d) apply, the intersection point is rejected and no further calculation for this sur-

face is needed.

3. Calculate ν0.

Figure 2.2 Intersection Types
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4. If ν0 is greater than or equal to zero, the case in Fig. 2.2 (c) applies. Therefore, the

intersection is rejected and no further calculation for this surface is needed.

5. Calculate ti using eqn. (2.3).

Step 2 is referred to as “backface culling.” As mentioned in Section 2.1 and shown in

Fig. 2.2, only the “front” of a surface emits or intersects photons. In a properly defined

geometry, no photons intersect the back side, so all interactions with that side are

ignored. Steps 1 and 2 only require three multiplies, two additions, and one compare,

and, on average, cause about half the surfaces tested to be rejected.

While it is true that steps 3 and 4 should also reject about half the surfaces in the geom-

etry, there are two reasons to do backface culling first. First, backface culling is slightly

more efficient. Second, when the USD algorithm described later is used, very few sur-

faces, particularly after the first voxel is traversed, are “behind” the plane.

2.3 Point-in-Polygon Test

Once a valid distance, ti, is found from step 5, a check must be made to ensure that the

point is within the polygon. A rather complete study of point-in-polygon strategies has

been done by Haines [1994]. Since the polygons described in Section 2.1 are convex and

have only three or four sides, the exterior-edges algorithm has been chosen for the point-

in-polygon test. Within the uncertainty in Haines’ test results, this test is as fast as any

other, and was chosen over the others he discussed because it requires less storage and is

easier to implement.

In the exterior-edges test, the half-plane test is performed on all edges of the polygon.

The half-plane test requires a “bounding” plane for each edge that is perpendicular to the

polygon’s surface and includes that edge. From eqn. (2.2), the “bounding” plane is
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defined by the normal Np,H = {AH, BH, CH} which points into the surface, and the dis-

tance, DH. For the intersection point, Ri, if [Jeger and Eckmann, 1967]:

(2.4)

then the point is outside that edge of the polygon and is rejected. The test is performed

for each edge of the polygon. As soon as the point fails any test, it is rejected. The con-

stants AH, BH, CH, and DH are calculated for each surface in the preprocessing (input)

stage.

Haines [1989, 1994] suggests projecting the polygon and the test point into two dimen-

sions. This saves a floating point add and multiply for each half-plane test. The simplest

way to project the problem into two dimensions is to discard one of the X, Y, or Z coordi-

nates. The area of the polygon is not preserved, but the topology is. The best coordinate

to throw away is the one whose magnitude in the polygon’s surface normal, Np, is the

greatest. Np,H and DH must be calculated in this two-dimensional plane using the new

two-dimensional coordinates. While the current version of the intersection algorithm

implements this two-dimensional test, the previous version uses the three-dimensional

form.

2.4 Limiting the Search

Every time a photon is emitted or reflected, the next surface it strikes must be found.

Since the time to trace each photon increases linearly with the number of surfaces

searched for intersections, it is obvious that great improvements in efficiency can be

gained by reducing the number of surfaces that need to be tested. Reducing the number

of surface interaction calculations has been a topic of extensive study in the field of ray

tracing. Good overviews of the general techniques applied to this problem are given by

AHXi BHYi CHZi+ + DH>
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Arvo and Kirk [1989] and Watt and Watt [1992]. Of all the techniques reviewed, two gen-

eral techniques are the most promising: bounding volumes and spatial subdivision. A

discussion with a different perspective on applying ray tracing techniques to radiative

Monte Carlo can be found in Panczak [1989].

The bounding volume technique reduces the number of intersection calculations by

surrounding all the objects (surfaces) in the scene (geometry) with bounding volumes.

The bounding volumes are chosen to be simple objects such as spheres and cubes so that

intersection calculations with them are swift. The object or objects inside the bounding

volume need only be checked if the bounding volume is intersected. According to Arvo

and Kirk [1989], when a hierarchy of bounding volumes is used, the complexity of the

intersection calculation is proportional to the logarithm of the number of objects. If the

bounding volumes are not used in a hierarchy, the time for the intersection calculations is

reduced but is still linear with the number of objects. Since the polygon intersection cal-

culations described above are so simple, bounding volumes should contain collections of

polygons. Devising a good way to define bounding volumes for groups of arbitrary sur-

faces would be difficult and probably not add much to the efficiency of the program.

The other promising technique is three-dimensional spatial subdivision, depicted in

two dimensions in Fig. 2.3. For this technique, instead of placing bounding volumes

around objects, the volume bounding the geometry is partitioned. Space is usually

divided into axis-aligned rectangular prisms which are referred to as voxels (a three-

dimensional version of a pixel). By aligning the voxel planes with the axes, computations

are simplified. The photon is then traced from voxel to voxel. A check is made only inside

each voxel to determine if any of the surfaces inside it are intersected. The search stops

once the closest intersection within the current voxel is found. This reduces the number

of intersection calculations in two ways. First, only surfaces in voxels along the photon
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path are checked. Second, since voxels are traversed in order, surfaces in voxels further

from the origin of the photon are checked only if an intersection is not found in an earlier

voxel. For large geometries, the reduction in search time can be very significant.

It should be noted that if an intersection is found outside the current voxel, it must be

rejected, as it is possible that the photon might strike another surface which, while not in

the current voxel, contains an intersection point between the current voxel and the

rejected intersection point. For example, in Fig. 2.3, the photon is traced from its point of

emission in voxel VA through voxel VB to its intersection point in voxel VC. In voxel VB,

the potential intersection point on surface S2 is found, and must be rejected because the

intersection point is outside the voxel. The true intersection point on surface S1 is found

only after the photon enters voxel VC.

Arvo and Kirk [1989] classify spatial subdivision into two general categories: non-uni-

form and uniform. In non-uniform subdivision, space is discretized into regions of vari-

ous sizes to allow the voxel density to be greater where the surface density is greater. Two

Figure 2.3 Example of a Non-uniform Grid
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of the most popular examples of this technique are the octree [Glassner, 1984] and the

binary space partition (BSP) tree [Kaplan, 1987; Sung and Shirley, 1992]. Octrees are cre-

ated by recursively dividing a rectangular volume around the geometry into eight subor-

dinate octants until the resulting “leaf” voxels meet some criterion for stopping, such as a

certain maximum number of surfaces per voxel. A BSP tree, on the other hand, is formed

by partitioning space at each level of the tree into two pieces using a separating plane.

While the planes are often aligned with the coordinate axes, they do not have to be [Chin,

1995].

While both the octree and the BSP tree store the geometry information efficiently, mov-

ing from voxel to voxel within a tree requires some calculation. Uniform spatial division

(USD) [Fujimoto et al., 1986; Amanatides and Woo, 1987; Cleary and Wyvill, 1988] consti-

tutes another approach. In USD, a regular three-dimensional grid of voxels of uniform

size is placed over the geometry. While not dividing the geometry as efficiently as the

above two methods, the “next” voxel can be found by fast incremental calculation. More

voxels are usually traversed in USD but the cost of traversing the voxels is less.

Other methods do exist, for example, see Samet [1989] and Sung [1991]. These methods

and most others are just combinations and variations of the octree, BSP tree, and USD

methods mentioned above.

Using too many voxels can create inefficiencies. To search the surfaces inside each

voxel quickly, a list must be made for each voxel of surfaces completely or partially inside

it. As the number of voxels increases, the memory required for these lists and the time

required to generate these lists increases. Also, it must be remembered that surface inter-

sections outside the voxel must be rejected. If voxels are too small, surfaces will span sev-

eral voxels and several intersection calculations for a surface will have to be rejected until

the voxel with the intersection is entered. One way to avoid these repetitive calculations
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is to keep track of past intersection calculations. This is termed the “mailbox” technique

and will be discussed below. It should also be noted that if the grid is too fine, time spent

traversing the voxels will be significant. This can be a particular problem when using

USD because the number of empty voxels generally increases with the number of voxels.

Although some comparisons of the three spatial division methods mentioned have

been done, it is not clear which of the methods is the most efficient; different geometries

have been used for each test. Since geometries can vary widely, each method does better

on some geometries than others. Sung and Shirley [1992] have found that axis-aligned

octrees and BSP trees give similar performance. Fujimoto et al. [1986] have found that, for

the sample problems they did, USD is an order of magnitude faster than octrees. Both the

octree [Panczak, 1989; Chin et al., 1992] and USD [Koeck, 1988] methods have been

implemented in radiative heat transfer Monte Carlo codes, but no comparison of the ben-

efits of the two methods has been made.

The general consensus about USD is that it works well but requires a lot of memory. In

fact, this is one of the major complaints against the method [Sung and Shirley, 1992; Watt

and Watt, 1992]. Sung [1991] has compared USD to various octree methods. In the one

case where there was enough memory for the number of voxels USD required, it outper-

formed all other methods.

In this work, USD is chosen for two reasons. First, a version of the USD called the Mar-

golies algorithm [Maltby, 1987; Burns et al., 1990; Maltby and Burns, 1991] has already

been implemented in MONT3D. This algorithm has been used for years, has worked

well, and has proven very robust. Still, there is room for improvement. As pointed out

above, photons under USD usually traverse more voxels than in the octree and BSP meth-

ods. Therefore, for the USD method to be more efficient than the octree and BSP tree

method, the algorithm that determines the next voxel to enter must be very efficient. The
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next section describes an improved algorithm that is quite different from the one used

earlier. Again, the major difference is that the previous algorithm stressed calculating the

intersection point with the voxel boundaries, while the new algorithm only calculates the

intersection distance to the voxel boundaries.

Secondly, as long as enough voxels are used to keep the average and maximum num-

ber of surfaces per voxel low, USD appears to be the best algorithm. As shown in the

results below, with more memory capacity available today, USD is definitely feasible.

The Margolies algorithm is actually a variant of USD because it does not require uni-

form voxels; it also allows the use of a non-uniform grid in which the grid is still divided

into rows and columns, but the spacing between X, Y, and Z divisions is variable. An

example is shown in Fig. 2.3. More about the advantages and disadvantages of non-uni-

form grids will be discussed below.

2.5 The Voxel Tracing Algorithm

This section outlines the algorithm for tracing using uniform or non-uniform grids. A

less detailed description of the use of USD in radiative Monte Carlo is given by Koeck

[1988]. As shown in Fig. 2.3, whether the grid is uniform or non-uniform, the grid has

NV,k voxels along each axis and NV,k + 1 grid planes along each axis, where k equals {1, 2,

3} for the {X, Y, Z} axes, respectively.

The key to the speed of the algorithm is that since the voxel boundaries are aligned

with the axes, it is very easy to determine the next voxel to be entered. Although there are

six sides to a voxel, only three sides, indicated by photon direction, have to be checked.

Also, since all the voxel sides intersect, the side the shortest distance from the photon’s

origin is guaranteed to be the side that is intersected. Furthermore, due to the fact that the

voxel sides are aligned with the axes, tV,k, the distance to intersect a voxel side along each
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axis can be derived from the “distance to a plane” equation in Section 2.2, and has the fol-

lowing form:

(2.5)

where l is the index of the next voxel plane the photon will cross along the kth axis, and P

is the coordinate along the kth axis for that plane. If the grid is uniform, then tVB,k, the dis-

tance between voxel boundaries along an axis, is constant. Therefore, for uniform grids,

while the first value of tV,k must be calculated using eqn. (2.5), for subsequent voxels tV,i

can be updated by using the equation (tVB,k may be negative):

(2.6)

The basic algorithm is simple.

1. Determine the emitting voxel cell and first Pk,l values. For non-uniform grid divi-

sions, these are found by bisection and for uniform grid divisions by direct inter-

polation.

2. Calculate tV,k for each axis at the photon emission point.

3. Determine the minimum tV value.

4. Search for the shortest distance to intersection within the voxel. All surfaces even

partially inside the voxel must be checked. To increase the efficiency of this

search, the search is done over a precomputed list which specifies the surfaces in

each voxel.

5. If no intersection is found, determine the next voxel to enter by the minimum tV

value and the direction of E, update the value of tV,k along the axis traversed, and

go back to step 3.

tV k, Pk l, R0 k,–( ) Ek⁄=

tV k, tV k, tVB k,+=
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When testing for intersection points inside a voxel, once a valid intersection point is

found, any intersection points further from the emission point than the current one are

automatically rejected. If ti,s, the current shortest distance to intersection, is stored, the

point-in-polygon test may be skipped by any surface with a ti value greater than ti,s.

When entering a voxel, ti,s should be initialized to the minimum value of tV required to

exit the voxel (at step 3 above). This will automatically reject any intersection points out-

side the voxel.

Since there are often many empty voxels, it is important that both the intersection cal-

culations and the voxel traversal algorithm be coded as efficiently as possible. Several

authors suggest coding the grid traversal so that it only uses integer arithmetic [Fujimoto

et al., 1986; Amanatides and Woo, 1987; Cleary and Wyvill, 1988; Cohen, 1994]. However,

not only will this give a minimal speed improvement, if any, it also increases the possibil-

ity of precision errors. It should be noted that even for moderately sized geometries, pho-

ton tracing must be coded in double precision or round-off errors become significant.

As noted above, the use of non-uniform spaced voxels makes the calculation of tV,k less

efficient. This may make one wonder why non-uniformly spaced grids are desirable. The

reason is that if enough is known about the geometry, voxels can be enlarged where there

are few surfaces and shrunk where there are many, improving the efficiency of the algo-

rithm. However, the usefulness of this type of grid resizing is limited. Enlarging or

shrinking one voxel will affect all voxels along one or more coordinate directions. Fur-

thermore, there is no easy way to choose a non-uniform grid a priori. In general, one

would probably get more benefit from an optimized uniform grid code than one that

allows non-uniform divisions.
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2.6 Mailboxes

One of the problems with spatial subdivision is that no record is kept of past calcula-

tions. If a surface exists in several voxels, the same intersection is calculated repeatedly.

To prevent this, “mailboxes” [Amanatides and Woo, 1987; Arnaldi et al., 1987; Cleary and

Wyvill, 1988; Arvo and Kirk, 1989; Sung, 1991; Sung and Shirley, 1992] are used to store

past calculations. Each surface has a “mailbox” that holds the results of the calculations

and a photon counter value that indicates the last time those calculations were done. The

photon counter is incremented by one each time a photon is emitted or reflected. When

the intersection calculation is performed for a surface, the first step is to compare the

value of the counter in the mailbox to the current counter. If the two are equal, then the

intersection in the mailbox is used, instead of being recalculated.

It should be noted that Sung [1991] has found several cases in which mailboxes

increase execution time. He notes that mailboxes are efficient only if most objects span

more than one voxel. In particular, he suggests that, for the mailbox algorithm to be effi-

cient, the objects in the scene must be larger than the voxels.

The mailbox algorithm is implemented here using two one-dimensional arrays of

length number of surfaces, one for the distance to the intersection and the other for the

last value of the photon counter. To implement the mailbox algorithm, only minor

changes are required in the loop over surfaces in a voxel. The first change is that, for each

surface, the first step is to compare the value of the photon counter stored for the surface

to the current value. If the counter values do not match, then the algorithm is the same as

before, except that the two one-dimensional arrays are updated for each intersection cal-

culation. If the values do match, then the distance to surface has already been calculated.

In this case, the distance is compared to ti,s. If it is less than ti,s, the point-in-polygon test is

performed. Otherwise, the surface is rejected. It should be noted that if a surface fails any



29
of the tests except the comparison to ti,s, then the distance to intersection is set to a very

large number, insuring that it fails the comparison to ti,s the next time it is encountered.

The mailbox algorithm has been tested on a number of large geometries (1,000 to 5,000

surfaces) and grid resolutions. In all cases, the mailbox technique is found to increase the

run time. The reason the run times increase is believed to be that the extra arrays used by

the mailbox technique overload or further overload the memory cache on the CPU. For

the types of simplified surfaces and complex geometries usually modeled by this algo-

rithm, the mailbox technique is not effective.

2.7 Grid Tracing Results

To assess the improvements mentioned above, four geometries of varying complexity

are tested. Several different discretizations are tested, in hopes of determining some

guidelines in selecting the optimal grid for a geometry. Besides showing the overall effi-

ciency of the current algorithm compared to the previous one, these large geometries

demonstrate the power of USD. Earlier tests of USD with small geometries (143 surfaces

or less) found that USD yields reductions in run time by 50% to 80% [Burns et al., 1990;

Maltby and Burns, 1991]. As will be shown below, the reductions in run time are much

more significant for larger geometries.

2.7.1 Geometries

Four geometries are used: Cham, AmpA, AmpB, and Gun. They are described below.

Cham is a model of the National Ignition Facility (NIF) target chamber containing 1,382

surfaces. It is a medium-sized geometry, shown in Fig. 2.4. The front section of the sphere

is removed to show the inner detail. NIF <http://lasers.llnl.gov/lasers/nif.html> is cur-

rently under construction and will contain 192 extremely powerful lasers allowing
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Figure 2.4  Cut-Away View of the Chamber Geometry

Figure 2.5  View of the Amplifier Geometry
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research in inertial confinement fusion and other related topics. A discussion of the mod-

eling of this chamber by TOPAZ3D is given by Raboin [1998].

AmpA and AmpB are geometries representing the NIF laser amplifier assembly as

shown in Fig. 2.5. The front wall and symmetry plane across the top of the geometry have

been removed to show the inner detail of assembly. AmpB, with 4,581 surfaces, is a more

detailed representation than AmpA, with 3,381 surfaces. More details about the modeling

of this geometry are given by Sutton et al. [1998].

Gun, shown in Fig. 2.6, models the radiation coupling between the outer parts of an

electron gun. The gun is enclosed to capture escaping photons. The gun is axially sym-

metric and is modeled as a wedge from 0˚ to 60˚. The edges of the wedge are modeled as

specular symmetry planes. This geometry has 4, 580 surfaces; one less than AmpA.

Figure 2.6  View of the Gun Geometry
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2.7.2 Test Description

In all tests below, surfaces are black, as using reflecting surfaces would just obscure

observations about the photon intersection algorithm. Unless otherwise specified, all

times given are solution times.

There are, of course, an infinite number of ways these geometries could have been

“gridded.” For testing, the geometries are gridded using approximately cubical voxels.

Table 2.1 gives the X, Y, Z extents of each geometry and the formula used to specify the

grid divisions.m can take on any integer value. It should be noted that to better populate

the graphs below, the Gun geometry uses two different grid formulas.

A different number of photons are emitted for each geometry, depending on the num-

ber of original surfaces and the number of photons per original surface as shown in Table

2.2. The Cham and Gun geometries have non-planar surfaces that are split into two trian-

Table 2.1: Grid Information

Geometry Geometry Dimensions {X, Y, Z} Grid Divisions

Cham {9.91, 10, 10} m{1,1,1}

AmpA {774, 665.6, 480} m{3,3,2}

AmpB {774, 665.6, 480} m{3,3,2}

Gun {15.24, 13.20, 25.91} m{8,7,14};
m{8,7,14} + {4,4,7}

Table 2.2: Photon Statistics

Geometry
Number of

Original
Surfaces

Number of
Split

Surfaces

Total
Number

of Surfaces

Photons Emitted
per Original

Surface

Total Number
of Photons

Emitted
(Millions)

Cham 1,182 144 1,326 20,000 23.64

AmpA 3,381 0 3,381 10,000 33.81

AmpB 4,581 0 4,581 10,000 45.81

Gun 4,297 283 4,580 10,000 42.95
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gles as described in Section 2.1. Each triangle is treated as a separate surface by the inter-

section routine, so the efficiency of the intersection routine depends on the total number

of surfaces.

All tests are performed on a 233 MHz 604e PowerPC chip running Macintosh OS 8.0.

The Absoft f77 compiler is used. Timings among repeated runs differ by 5% at most, and

typically by less than 1%. To obtain accurate timing for the photon tracing only, a modi-

fied version of the code, which does not write the large output files, is used for all results.

2.7.3 Determining the Optimal Grid

While USD has been used in the past, there has been no in-depth study of its applica-

tion to large-scale geometries. The purpose of this section is determine the efficiency of

USD for large geometries and determine guidelines in selecting grids.

Execution times versus numbers of voxels for the current algorithm for the four geom-

etries are given in Figs. 2.7 and 2.8. The curves marked “solution” are the solution times

for the algorithm and those marked “input” are the input times for the algorithm. The

curves are very flat around the optimal grid. In fact, it is hard to specify one grid as “opti-

mal.” As stated above, the uncertainty in the results is about 5%. For each geometry, there

are several points that are within 5% of the minimum value, yielding a range. Several sta-

tistics for the optimal grid range are given in Table 2.3. The results “min” and “max” are

for the minimum and maximum size grid in the optimal range. The optimal grid range is

quite large; the maximum grid size is around three to four times the minimum grid size.

While the optimal grid varies with geometry, these results suggest that for geometries of

1,000 to 5,000 surfaces, a good first estimate of the optimal grid is 15,000 voxels.

Since determining the next voxel to enter requires less calculation than the surface

intersection calculations, the optimal grid favors fewer surfaces per voxel over fewer
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Figure 2.7 Results for the AmpA and Cham Geometries

Figure 2.8 Results for the AmpB and Gun Geometries
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empty voxels. For the geometries tested, 37% to 60% of the voxels are empty when execu-

tion time is within 5% of the optimal time.

The input times for the code are shown in Figs. 2.7 and 2.8. The input time grows

quickly as the number of voxels becomes large. For the geometries tested this does not

present a problem, as in the optimal grid range, the input time is insignificant relative to

the solution time. Furthermore, production runs are much longer than the ones for these

tests. Usually, more photons are emitted per surface, particularly as the number of sur-

faces increases. Also, tracing times are longer since reflection exists. At even larger scales,

this may become a problem, but only future testing can determine this.

As noted in Table 2.2, each geometry emits a different number of photons, so compar-

ing the results can be difficult. For this reason, Table 2.4 provides results in time per pho-

ton. The “optimal grid” solution time is the shortest execution time for that geometry.

The “no grid” solution time is the solution time when no grid is used. The “no grid” case

is the same as specifying only one grid cell or voxel, and includes the insignificant over-

head of initializing the voxel tracing routine once per photon. The other columns in the

table are described below.

Table 2.3: Grid Statistics

Geometry Number of Voxels Surfaces per
Voxel

Number of
Empty Voxels

Surfaces per
Non-empty Voxel

Cham min 4,096 2.40 1,521 3.82

Cham max 15,625 1.52 7,192 2.82

AmpA min 9,216 2.44 3,942 4.26

AmpA max 39,546 1.10 23,578 2.73

AmpB min 9,216 2.66 4,114 4.80

AmpB max 23,958 1.53 13,476 3.50

Gun min 15,360 1.52 5,880 2.46

Gun max 65,910 0.887 30,084 1.63
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The “time not tracing” is the time spent by the solution phase in activities other than

tracing, including specifying the photon emission point and direction, determining if the

photon is absorbed or reflected, and the overhead of the algorithm. If the surfaces are not

all black, this would also include determining the photon’s new direction after being

reflected.

The “time not tracing” was obtained by running the codes with the intersection rou-

tines commented out. While it is difficult to assess how accurately this measures the time

not tracing, similar estimates were obtained by profiling the code on an RS/6000 work-

station.

The speedup ratios listed in the table are the solution or time spent tracing for the “no

grid” case divided by the same result for the optimal grid case. Comparing the “time not

tracing” to the optimal solution time, it can be seen that only 63% to 82% of the optimal

solution time is spent in photon tracing. This represents quite an improvement over the

“no grid” solution where 99% or more of the time is spent in photon tracing. The “time

not tracing” appears to be a weak function of the number of surfaces.

Table 2.4 indicates that the speedup can exceed a factor of 80 for the entire solution

phase and over a factor of 120 for the intersection calculations. However, it would be

Table 2.4: Current Algorithm Statistics

Geometry

CPU Time Per Photon (µs) Speedup Ratios
(No Grid/Optimal)

αo“Optimal Grid”
Solution

Time

“No Grid”
Solution

Time

Time
Not

Tracing

Solution
Time

Tracing
Time

Cham 30.6 541 5.51 17.7 21.4 0.574

AmpA 15.4 1,020 5.68 66.1 104 0.429

AmpB 16.7 1,360 5.72 81.4 123 0.429

Gun 18.6 1,370 5.72 73.3 106 0.447
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helpful to quantify the speedup as a function of the number of surfaces. Cleary and

Wyvill [1988] have done an in-depth theoretical analysis of a USD algorithm using a

mailbox scheme. They have found that the run time is a complex function that depends

on the number of surfaces, the average times for four different parts of the algorithm, the

mean area of the objects, and the mean circumference of the objects.

A simplified model that is often used in these cases is the time per photon, tp, given by:

(2.7)

where Nsurf is the number of surfaces. For the “no grid” case, α is one since all Nsurf sur-

faces have to be checked. If it is assumed that a is constant for a geometry and that b is

equivalent to the “time not tracing” per photon, then αo, the value of α for the optimal

grid can be determined. As the table shows, αo lies between 0.43 and 0.57. This is consis-

tent with estimates of the dependence of optimal grid tracing time on Nsurf derived from

an analytical perspective [Burns and Pryor, 1999].

2.7.4 Memory Requirements

Although photon tracing is often performed on large geometries with thousands of

surfaces, its memory requirements are usually not prohibitive. Ignoring the memory

required for the Margolies grid algorithm which will be discussed below, the storage

required is on the order of the number of surfaces. While it is true that the final output,

the exchange number matrix, is number of surfaces squared in size, only a small block of

rows of that matrix are stored in memory at any one time. For the geometries used in this

study of 14,080 nodes, 4,581 surfaces and six surface materials types, excluding the stor-

age for the exchange matrix and the uniform grid, only 1.7 megabytes of storage are

required for the entire Monte Carlo code. Storing 200 rows of the exchange matrix in

tp aNsurf
α b+=



38
memory at a time requires about another 3.5 megabytes. If the block size is decreased, the

code must write its results to disk more frequently, thereby increasing I/O time. For the

Margolies grid algorithm, the extra storage required is around 0.1 megabytes for 10,000

voxels and around 0.7 megabytes for 100,000 voxels, an insignificant increase.

2.7.5 Previous Algorithm Results

To gauge the effectiveness of the algorithm discussed in this chapter, comparisons are

made to the previous version of the algorithm [Maltby, 1987; Burns et al., 1990; Maltby

and Burns, 1991; Burns and Pryor, 1999] which is publicly available [Maltby et al., 1994;

<http://www.colostate.edu/~pburns/monte/documents.html>]. Several runs are per-

formed and some of the results for the older version of the algorithm are given in Table

2.5. The speedup ratios listed in Table 2.5 are the solution time or time spent tracing for

the old algorithm optimal grid case divided by that for the new algorithm optimal grid

case. Gathering data from all the runs, the new algorithm is 33% to 45% faster than the

old algorithm. Interestingly, the time not tracing is slightly better for the old algorithm, as

new features added to the code slow it down slightly. The improvements to the voxel

tracing algorithm seem to be just as important as the improvements to intersection calcu-

Table 2.5: Previous Algorithm Statistics

Geometry

CPU Time Per Photon (µs) Optimal Algorithm Ratios
(Old/New Algorithm)

“Optimal Grid”
Solution Time Time Not Tracing Solution Time Tracing Time

Cham 53.0 5.31 1.73 1.90

AmpA 22.9 5.38 1.48 1.79

AmpB 25.7 5.43 1.54 1.84

Gun 29.5 5.43 1.59 1.87
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lations. The timing curves for the old algorithm show similar tends compared to the

curves for the new algorithm results and exhibit very similar optimal grid ranges. As

mentioned in Section 2.2, the main difference between the algorithms is that for both sur-

faces and voxels the current algorithm focuses calculating the distance to intersection, ti,

instead of the point of intersection, Ri.

2.8 Conclusions

An in-depth study has been completed of a Monte Carlo particle (photon) tracing algo-

rithm for large geometries with arbitrary planar surfaces in nonparticipating media.

Methods from the computer graphics field of ray tracing have been reviewed and imple-

mented. An efficient algorithm for determining intersections has been presented. Fur-

thermore, an assessment of ways to further increase the efficiency of the algorithm has

been conducted. Uniform spatial division (USD) is chosen as the most promising tech-

nique, based upon its simplicity and effectiveness. The mailbox technique is found in all

cases to increase execution times, and is therefore not recommended. Four geometries

containing between 1,000 and 5,000 surfaces each were chosen for testing. For these

geometries, USD yields speedups in run time of factors as great as 81. While the optimal

subdivision varies with geometry, execution time varies slowly with number of voxels

(grid cells). Good results are obtained with 15,000 voxels. The memory requirements for

USD are found to be slight; less than a megabyte of memory is required to store the grid

variables for the optimal grids for all geometries tested. The memory requirements for

the rest of the Monte Carlo code itself are also found to be slight, between 1.7 and 5.2

megabytes of additional memory are required for the largest geometry tested. The cur-

rent photon tracing algorithm discussed in this chapter is found to be 33% to 45% faster

than the previous algorithm.



CHAPTER 3 IMPROVING MONTE CARLO RESULTS

BY APPLYING RECIPROCITY AND CLOSURE

In this chapter, the improvement of Monte Carlo results by enforcing reciprocity and

closure is investigated. Several different statistical estimation techniques, particularly

those based on the reciprocity estimation smoothing (RES) method discussed in Chapter

1, are derived and tested to determine the best method. The effects of the best method on

individual surfaces and individual η are determined by examining a large number of test

runs of two large geometries. Furthermore, single run error metrics are derived so that

the general accuracy improvement can be assessed quantitatively.

3.1 Applying Reciprocity by Statistical Estimation

The first step in attempting to improve the accuracy of the Monte Carlo results in the

RES method is to use an estimator to enforce reciprocity using ηkl and ηlk. Such estimated

values are denoted with a  in this work. From statistics, proper estimators of this type

are expected to improve the accuracy and to decrease the uncertainty in the results. Later

in this work numerical experiments are performed to assess various estimators. Below, in

the first subsection, the concept of the confidence interval is introduced. In the next sec-

tion, some observations are made on reciprocity effects on the standard deviation. In the

last three subsections, four different estimation techniques are presented, each based on a

different statistical theory.

ˆ

40
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3.1.1 Confidence Intervals

One advantage of Monte Carlo methods is that the uncertainty in the results is gener-

ally known. The uncertainty is often measured by the P% confidence interval which

when centered around the observed result has the property that P% of such intervals

computed from different random data contain the true value of the parameter.

An example of a 95% confidence interval is shown in Fig. 3.1 which graphs the Monte

Carlo calculation of the exchange fraction, Fkl, that has a true value, , of 0.0998. The

“envelope” shown in the figure is the 95% confidence interval centered around the true

value.

The halfwidth of P% confidence interval for a normal distribution, hnor(p), is related to

the error function, erf:

Figure 3.1 Monte Carlo Results and Confidence Interval for  = 0.0998
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(3.1)

where p is the fractional probability of the interval, P/100;  is the inverse error func-

tion; and ω is the confidence interval constant. For 95% confidence, ω is 1.96. It should be

noted that the confidence interval itself, Cnor(p), is the range of ±hnor(p) centered around

either the true value of µ or its estimate.

(3.2)

For the binomial distribution that governs Fkl’s obtained using the collision based

Monte Carlo method of this work, Fkl is said to be well approximated by a normal distri-

bution when about nine [Martin, 1971], 11 [Ross, 1988], or more photons are absorbed by

a surface. The fact that the binomial distribution is usually well modeled by the normal

distribution is not surprising, since the normal distribution was first derived by the

French mathematician de Moivre in 1733 as an approximation of the binomial distribu-

tion when the number of trials is large and p (Fkl) is not close to zero or one [Evans et al.,

2000]. From the variance for a binomial distribution [Ross, 1988] and eqn. (3.1), the half-

width of the confidence interval for Fkl,  is:

(3.3)

where Nk is the number of photons emitted by surface k. Eqn. (3.3) is used to construct

Fig. 3.1. The confidence interval is calculated using , the known “true” value of Fkl

which is 0.0998. As the number of emissions increases, the standard deviation and the

uncertainty decrease. The 95% confidence interval marks where 95% of the area under

each normal distribution curve is found.

hnor p( ) 2erf 1–
p( )σ ω p( )σ= =

erf 1–

Cnor p( ) µ hnor p( )– µ hnor p( )+,[ ]=

hFkl
p( )

hFkl
p( ) ω p( )

Fkl 1 Fkl–( )
Nk

-----------------------------=

F̃kl
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While Fig. 3.1 shows that the Monte Carlo results are generally within a confidence

interval calculated around and using  (i.e. the mean of the distribution),  is not

usually known. Fortunately, as long as Nk is large enough, then the calculated halfwidth

of the confidence interval is essentially the same as the true halfwidth. That being the

case, there is a P% chance that  is in a P% calculated confidence interval centered

around the calculated value of the mean (Fkl). More generally, calculated confidence

intervals are a good measurement of the range in which the correct answer is expected to

be found any time the standard deviation of the results can be calculated fairly accurately.

Early research on applying the confidence interval to Monte Carlo methods was done

by Maltby. He derived a quantity, δ, he termed a confidence interval or confidence level

by applying the Central Limit Theorem to Fkl derived from the Bernoulli trial distribution

[Maltby, 1990; Burns et al., 1990; Maltby and Burns, 1991; Burns et al., 1992; Dolaghan et

al., 1992; Loehrke et al., 1995; Burns and Pryor, 1999; Zeeb et al., 1999; Zeeb and Burns,

2000]. In this work, δ is called the halfwidth of the fractional confidence interval. It is

related to halfwidth of the confidence interval, , defined above as follows:

(3.4)

3.1.2 Some Reciprocity Effects on the Standard Deviation

Let it be assumed that the exact values of the exchange fractions,  and , are

known. Then, due to reciprocity, the exact total exchange areas are equal.

(3.5)

In general, the uncertainty (standard deviations) of the original Monte Carlo results, Fkl

and Flk, differ. Since the distribution is binomial [Ross, 1988]:

F̃kl F̃kl

F̃kl

hFkl
p( )

δ p Fkl,( )
hFkl

p( )

Fkl
-----------------=

F̃kl F̃lk

η̃kl ΩkF̃kl ΩlF̃lk η̃lk= = =
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(3.6)

where Nk is the number of photons emitted by surface k and ω(p) and δ are the confidence

interval constant and the halfwidth of the fractional confidence interval defined in Sec-

tion 3.1.1. Similarly,

(3.7)

Using eqn. (3.5) to define  as a function of , the ratio of the two σ’s is:

(3.8)

This is a monotonically increasing function of  with lower bound:

(3.9)

The ratio is roughly proportional to the square root of the ratio of the Ω’s and inversely

proportional to the square roots of the number of photons emitted by each surface. In

other words, lowest uncertainty (i. e. the smallest σ) in an ηkl pair is obtained from the

surface which has the smallest ratio of Ω/N, e.g. from surfaces with small Ω values from

which many photons are emitted. This makes sense intuitively.

ση̃kl bin,
Ωk

F̃kl 1 F̃kl–( )
Nk

----------------------------- η̃kl
1 F̃kl–( )

NkF̃kl
---------------------

η̃kl
ω p( )
------------δ p F̃kl,( )= = =

ση̃lk bin,
Ωl

F̃lk 1 F̃lk–( )
Nl

----------------------------- η̃kl
1 F̃lk–( )

NlF̃lk
---------------------

η̃kl
ω p( )
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F̃lk F̃kl
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---------------
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3.1.3 Fractional Confidence Interval and Fractional Variance Estimation

As stated previously, the program SMOOTH [Burns et al., 1992; Dolaghan et al., 1992]

was derived from the work of Maltby [1990]. The estimator used in that program is the

fractional confidence interval (FCI) estimator which is a weighted average calculated

using Maltby’s halfwidth of the fractional confidence interval, δ, as defined in eqn. (3.4):

(3.10)

where:

(3.11)

It should be noted that the ω(p) terms in eqn. (3.11) cancel out, which removes the depen-

dence of κFCI on p. From eqns. (3.6) and (3.7), it is possible to view κFCI as:

(3.12)

Therefore κFCI takes into account the differences in the Ω’s, F’s, and N’s.

For constant weighting factors, areas, and emissivities in eqn. (3.10), the variance of

 is:

(3.13)

Loehrke et al. [1995] uses a somewhat different estimator, termed the fractional vari-

ance (FV) estimator in this work. The FV estimator is similar to the FCI estimator except

that the weight, κFV, depends on the variance (the square of δ):

η̂kl FCI, κFCIηkl 1 κFCI–( )ηlk+=

κFCI
δ p Flk,( )

δ p Fkl,( ) δ p Flk,( )+
-------------------------------------------------=

κFCI

σηlk bin,

σηkl bin,
σηlk bin,

+
--------------------------------------=

η̂kl FCI,

ση̂kl FCI,
2 κFCI

2Ωk
2Fkl 1 Fkl–( )

Nk
----------------------------- 1 κFCI–( )2Ωl

2Flk 1 Flk–( )
Nl

-----------------------------+=
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(3.14)

The value and variance for FV estimation are calculated using equations identical to

eqns. (3.10) and (3.13) with κFCI replaced by κFV. As explained by Loehrke et al. [1995],

this estimator can be seen as a variant of the minimum variance estimator described in

the next section. The FV estimator is also used by Chen et al. [2000] and Liu et al. [2001],

who applied it to exchange factors.

As for the binomial confidence interval from which δ is derived, δ and eqns. (3.10) to

(3.14) are technically only valid when Nkl and Nlk are sufficiently large so that δ represents

a normally distributed variable. Still, it is standard practice to use eqns. (3.10) and (3.13)

and either eqn. (3.11) or (3.14) for all values of Nkl and Nlk. However, if Fkl is zero, then

δ(p, Fkl) is infinite, i.e., a singularity exists and requires accommodation. When one F is

zero, the value produced by either estimator is taken as the non-zero η. Alternatively, if

Nkl and Nlk are both large enough, then  by either method is normally distributed with

confidence interval defined by eqn. (3.2) using the proper value of either  or

.

3.1.4 Minimum Variance Estimation

As shown by the confidence interval for a normally distributed variable described in

Section 3.1.1, the uncertainty of a random variable is generally some function of its vari-

ance. Therefore, one type of estimation is to minimize the variance. Martin [1971] derives

a minimum variance estimator for n populations that have the same “true” mean, , but

differing “true” variances, . The n populations can even have differing distributions.

The minimum variance (MV) estimator and associated variance are given by:

κFV
δ2 p Flk,( )

δ2 p Fkl,( ) δ2 p Flk,( )+
-------------------------------------------------------=

η̂kl

ση̂kl FCI,

ση̂kl FV,

µ̃

σ̃i
2
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(3.15)

(3.16)

Both of the above equations rely on the assumption that the sample sizes of the n popula-

tions are large enough such that σi can be used in place of  with little loss of accuracy.

 is calculated as follows. First, it should be noted that due to the reciprocity con-

dition, eqn. (1.7), the means,  and , are equal. Furthermore, if the variables are con-

sidered binomially distributed, then [Ross, 1988]:

(3.17)

Inserting ηkl, ηlk, , and  into eqns. (3.15) and (3.16) and simplifying:

(3.18)

(3.19)

This estimator becomes ill-defined when either F is equal to zero or one. If one (or both)

of the F’s is (are) zero,  and  are both equal to zero. If both F’s equal one,

then  = Ωk = Ωl and  equals zero. If one of the F’s is equal to one, then

 is equal to the Ω of the emitting side for that F and  equals zero. As with

the FCI and FV estimators above, if the original F’s are normally distributed then
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should be normally distributed with confidence interval defined by eqn. (3.2) using

. One advantage of this particular estimator is that as long as both distributions

have the same mean, , the statistics are valid no matter what the distributions are. A

disadvantage of this estimator is that if one of either of the η’s is zero, then  is also

zero which is obviously incorrect.

3.1.5 Binomial Maximum Likelihood Estimation

A common method of estimation is maximum likelihood estimation where the proba-

bility for a series of independent variables or observations are used to determine an

unknown estimator, θ, common to the probability functions of the variables. The proba-

bility of all independent observations occurring together is given by the likelihood func-

tion, L(θ), which is the product of the probability functions for each variable [Martin,

1971]:

(3.20)

By choosing θ to maximize L, the most probable value of θ can be determined. To under-

stand the reasoning behind this, recall that in statistical thermodynamics values are

determined by finding the state with the highest probability.

The θ that maximizes L fulfills the following conditions:

(3.21)

Since L is greater than zero, the first part of eqn. (3.21) is equivalent to:

ση̂kl MV,

µ̃

η̂kl MV,

L θ( ) p xi θ;( )
i 1=

n

∏=

θ∂
∂ L θ( ) 0=

θ2∂

∂ 2
L θ( ) 0<
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(3.22)

One unique feature of the radiative heat transfer collision based Monte Carlo method

used in this work is that the reciprocity relation, eqn. (1.10), can be used to obtain a spe-

cial binomial maximum likelihood estimation. The reciprocity condition allows the fol-

lowing definitions to be used:

(3.23)

where  is some potential estimation of ηkl. From the probability mass function of a

binomial variable [Ross, 1988], L is:

(3.24)

To determine the binomial maximum likelihood (BML) estimator, , the deriva-

tive of the natural log of eqn. (3.24) with respect to  is calculated and set to zero.

(3.25)

or

(3.26)

This is a quadratic equation with solution:

1
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(3.27)

While not able to be proven analytically from the equation itself, tests of this formula sug-

gest that the roots are always real. Furthermore, testing shows that  always

appears to be invalid because it is too large (i.e. F > 1). The easiest way to discern why

this is so to realize that:

(3.28)

Therefore, b/2a is a simple average of two other averages weighted by the number of

photons emitted: one involving the ηkl’s and the other involving the Ω's. The effect of the

averaged Ω value is to make b/2a itself have a positive bias, usually very large, as an esti-

mate of ηkl suggesting that the proper root for the estimator is always , which

will be referred to simply as  from this point forward.

Calculating the variance for  is difficult. In general, the variance for a maxi-

mum likelihood estimate is [Martin, 1971]:

(3.29)

For the current case, this equation is too difficult to solve analytically or numerically. A

simpler formula that applies when the maximum likelihood variable is normally distrib-

uted, for example when the sample it is obtained from is large, is [Martin, 1971]:

η̂kl BML ±,
b b2 4ac–±

2a
---------------------------------= a Nk Nl+=

b Ωk Nkl Nl+( ) Ωl Nlk Nk+( )+= c ΩkΩl Nkl Nlk+( )=

η̂kl BML+,

b
2a
------

Ωk Nkl Nl+( ) Ωl Nlk Nk+( )+

2 Nk Nl+( )
--------------------------------------------------------------------------

1
2
---

Nkηkl Nlηlk+

Nk Nl+
------------------------------------

NkΩk NlΩl+

Nk Nl+
----------------------------------+

 
 
 

= =

η̂kl BML-,

η̂kl BML,

η̂kl BML,

σθ ML,
2 θ θML–( )

2
L θ( ) θd

∞–

∞

∫
 
 
 
 

L θ( ) θd

∞–

∞

∫
 
 
 
 

⁄=



51
(3.30)

Assuming eqn. (3.30) is valid for BML, then,

(3.31)

The validity of eqn. (3.31) will be assessed numerically later. It should be noted that when

Fkl = Flk = 1, then  = Ωk = Ωl and  = 0.

3.2 Method of Least-Squares Smoothing

3.2.1 Overview of the Method of Least-Squares Smoothing

While the estimators mentioned above enforce reciprocity, they also cause closure to be

obeyed no longer. Due to the importance of enforcing closure as discussed in Section 1.8,

the least-squares smoothing (LSS) method of Larson and Howell [1986] is used to re-

establish closure while attempting to minimizing the changes in .

In LSS, the changes to the  are represented by the objective function, H, which is

defined as:

(3.32)

where  are the smoothed values that obey closure (i.e. the “answers”) and wkl are

weights allowing different relative penalties to be assigned to the adjustment of each η. It

should be noted that after applying reciprocity estimation, the  values of η have
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been reduced to Nsurf(Nsurf + 1)/2 unique values of η, the Nsurf(Nsurf - 1)/2 estimated val-

ues of  and the Nsurf values of ηkk along the diagonal of the η matrix. To simplify the

notation below,  and ηkk are identical. Furthermore, it should be noted that due to the

symmetry of the  and the , the wkl must also be symmetric.

To apply the constraint of closure, the method of Lagrange multipliers is used with the

Lagrangian, L, defined as:

(3.33)

where λk are the Lagrange multipliers. The row-sum constraints and the column-sum

constraints, gk and , are defined as:

(3.34)

While the Lagrangian has 2Nsurf constraints, due to symmetry, there are only Nsurf inde-

pendent constraints. Therefore, there are Nsurf Lagrange multipliers. The values of

which minimize the Lagrangian are found by differentiating L with respect to  and

equating the derivative to zero:

(3.35)

Solving for :

(3.36)
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If the  from eqn. (3.36) are substituted into the closure equation, eqn. (1.9), and a bit of

rearranging is done, then:

(3.37)

Eqn. (3.37) defines a system of Nsurf equations that may be represented as:

(3.38)

where:

(3.39)

(3.40)

(3.41)

After solving the system of equations, eqn. (3.38), for the Lagrange multipliers, , the

smoothed η that obey closure, , can be obtained using eqn. (3.36).

The Nsurf system of linear equations used in smoothing, eqn. (3.38), is solved iteratively

due to the potentially large number of equations. The method used in this work is the

Successive Over-Relaxation (SOR) method [Burden and Faires, 1993]. Successive itera-

tions are repeated until a convergence criterion is met, in this case when the maximum

change between iterations in λ over all values drops below a certain threshold. Past expe-

rience with SMOOTH [Dolaghan et al., 1992], indicates that an appropriate value for this
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threshold is 1x10-5. The only calculable measure of smoothing convergence appears to be

g, the row-sum constraint, or g*, the column-sum constraint. For a convergence criterion

of 1x10-5, the g for each row divided by the Ω for that row (surface) is always less than

3x10-8 for the geometries tested, suggesting that 1x10-5 is adequate convergence criterion.

Indeed, changing the threshold yields no significant effect on the smoothed results.

3.2.2 Choice of Smoothing Weights

In this section, choices for the smoothing weights, wkl, are discussed. Due to the qua-

dratic form of H, wkl is usually a squared quantity. Two values for the weights,  and

, are investigated in this work.

An ad hoc assumption used previously [Larson and Howell, 1986; Burns et al., 1992;

Dolaghan et al., 1992; Loehrke et al., 1995; Chen et al., 2000; Liu et al., 2001] is that the

error in each η is proportional to size of the η itself. Due to the form of the objective func-

tion, H, in eqn. (3.32), this assumption suggests that the weight, wkl, should be propor-

tional to the square of the estimated η, , leading to what is termed “η2 smoothing” in

this work.

A potentially better approach is to use statistical theory to formulate the weights.

Indeed, an advantage of using statistics is that a general formula is known for the uncer-

tainty that can be used to formulate the weights. As discussed in Section 3.1.1, a common

measure of the uncertainty of a result in statistics is the confidence interval which is a

function of the standard deviation, σ. This suggests a better value for ωkl may be the vari-

ance of the result, , which is termed “σ2 smoothing” in this work. Taylor and Luck

[1995] point out that σ2 is a good weight for Monte Carlo results and use only that weight

in their work on LSS and its extensions. Vercammen and Froment [1980] use the binomial

variance as the weight in their method equivalent to LSS, although their F’s are obtained

by Monte Carlo integration for which the use of that variance is questionable.

η̂kl
2

ση̂kl

2

η̂kl
2

ση̂kl

2
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3.3 Total Exchange Area Matrix Maximum Likelihood Estimation

A statistical method that employs all of the constraints at once may result in better

results than the RES method. One idea is to obtain a maximum likelihood estimate of the

η matrix, , while incorporating all the constraints which is called total exchange area

matrix maximum likelihood estimation in this work. To illustrate the concept of this esti-

mation technique, an example is given below. Although it is impossible for a three-

dimensional geometry to have less than four planar surfaces, a three-surface geometry is

used in the example to illustrate the method. Applying all constraints, the  matrix is:

(3.42)

From the probability mass function of a multinomial variable [Martin, 1971; Mood et al.,

1974; Ross, 1988],the probability of an  matrix obtained from a specific Monte Carlo run,

pηM, is:

(3.43)

or:
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(3.44)

where the N’s are the photon counts obtained from the Monte Carlo run and Ψ, the

matrix probability constant, is:

(3.45)

Note that although ηkk is not part of eqn. (3.44), Nkk is.

Now as eqn. (3.42) shows, there are only three independent full matrix maximum like-

lihood estimates: , , and . As discussed in Section 3.1.5, the maximum likeli-

hood estimate for pηM is determined by finding the values of  that maximize pηM. The

maximum value of pηM can be found by minimizing ln(pηM).

Several methods were attempted to solve for the maximum likelihood values, particu-

larly using methods of maximizing functions. It is found that the maximum likelihood

values do not differ appreciably from results of the best RES method. While the LSS

method used in RES requires finding Nsurf unknowns, the η matrix maximum likelihood

estimation requires finding Nsurf(Nsurf - 1)/2 unknowns or O( ) unknowns. There-

fore, the computing time and memory required for the maximum likelihood results is

much greater than that for the RES method. In fact, the memory requirements are often

too large to be feasible. For these reasons, the maximum likelihood η matrix estimate was

found not to be practical and the RES method is the best practical rectification scheme.
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3.4 Numerical Approach

This work is the first in-depth study of RES methods on large, “real-world” geometries.

Increases in computational power allow enough runs to be done on these geometries to

show a number of statistical effects of RES for the first time. In this section, the numerical

procedures used to explore RES are described. Exposition begins with a description of the

two geometries used. Next, efforts to ensure the accuracy of the Monte Carlo results are

discussed. This is followed by an enumeration of the ensembles of runs done for these

two geometries.The final two sections describe the error measurements used in this work

including error metrics.

3.4.1 Test Geometries

The majority of runs done in this work are for the 145 surface geometry representing

the Electron Test Facility (ETF) from the LLNL Laser Isotope Separation Project which is

shown in side elevation view in Fig. 3.2. This geometry, having only a modest number of

surfaces, allows many runs to be accomplished in a reasonable time within the limits of

available computer resources. The ETF geometry is symmetric about the Y-axis. A plane

of symmetry, modeled by a perfectly reflecting specular surface, is used to reduce in half

the amount of Monte Carlo photon tracing required. The rectangular symmetry plane is

shown at the back of Fig. 3.2. For the tests done, all surfaces except the symmetry plane

are modeled as a mixture of 25% diffusely reflecting and 25% specularly reflecting. The

symmetry plane is modeled as a non-emitting, perfectly reflecting, specular surface

which reduces the number of emitting surfaces in the geometry to 144.

As stated previously, the uncertainty in the exchange fraction depends, in part, upon

the area-emissivity product, Ω, which is a surface property. For the ETF geometry, the 144

emitting surfaces have a large range of area values which, since all surfaces have the
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same emissivity, is equivalent to a wide range of Ω as shown in Fig. 3.3. The abscissa in

Fig. 3.3 measures the surfaces in Ω*, the dimensionless area-emissivity product, defined

as the Ω for the surface divided by the minimum Ω for the geometry. While the minimum

value of Ω* is always one, its maximum is determined by how the geometry is dis-

cretized, here,  = 466 for the ETF geometry.

The second geometry used in this work is the 1,182 surface Cham geometry that is dis-

cussed in Section 2.7.1. The properties used in this chapter are the same as those used

originally to model the chamber, some surfaces are 25% diffusely reflecting while others

are 95% diffusely reflecting. In addition to this geometry being much more sophisticated

than the ETF geometry, its surfaces also exhibit a greater range in Ω* as shown in Fig. 3.4.

The maximum value of Ω* for the Cham geometry is 81,200. Large values such as this

Figure 3.2 View of the ETF Geometry

X

Z

Ωmax
*
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Figure 3.3 Distribution of Ω* for the ETF Geometry

Figure 3.4 Distribution of Ω* for the Cham Geometry
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appear to be common; for the geometries in Chapter 2, the maximum Ω* values are

330,000 for the Gun geometry and 27,900 for the Amp geometries.

3.4.2 Ensuring the Accuracy of the Monte Carlo Simulation

Several measures are taken to ensure that the numerics do not affect the Monte Carlo

simulation results. Double precision is used for all calculations and a particularly robust

random number generator, the CCS addition lagged-Fibonacci pseudo-random number

generator, described in Appendix B, is used. Each run uses a different random number

seed derived from the time. Also, all quadrilateral surfaces are split into two triangles

because non-planar surfaces can lead to small errors in the intersection calculations. Ran-

dom surface emission is used in all Monte Carlo runs because, as discussed in Appendix

A, unlike the fixed point emission routine used in MONT3D [Maltby, 1987; Zeeb et al.,

1999], random emission causes no bias in reciprocity. Furthermore, since material proper-

ties are constant as a function of angle, the angular distributions for emission and diffuse

reflection (re-emission) are calculated directly using the relationship:

(3.46)

where R is a uniformly distributed random number between zero and one. MONT3D

[Maltby, 1987; Zeeb et al., 1999] and LSMONTE [Zeeb and Burns, 2000] obtain θ values by

tabular interpolation which has exhibited small reciprocity errors in off-line simulations

for simple geometries.

3.4.3 Ensembles of Runs

It is only from the distribution of results obtained from performing a sufficient number

of runs to “fill out” the distribution, that definitive conclusions can be made. Therefore,

three ensembles of runs, described in Table 3.1, are done in this work to obtain these dis-

θ sin 1–
R( )=
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tributions. The ensembles are done varying the number of photon emissions, and for

both geometries, ETF and Cham, to elucidate both convergence due to increasing photon

emissions and geometrical effects.

Two ensembles of runs, A and B, are done for the ETF geometry with 10,000 and

100,000 photons emitted per surface. As shown in Table 3.1, for ensemble A at 10,000

photon emissions per surface, 10,000 runs are done, and for ensemble B at 100,000 photon

emissions per surface, 1,000 runs are done. Experience has shown for the ETF geometry,

that runs with 10,000 photons per surface yield reasonably converged results, and runs

with 100,000 photons per surface are “converged” to engineering precision. Comparing

results from the two ensembles of runs allows the nature of convergence to be observed.

For the Cham geometry, resource limitations prevented the same degree of scrutiny.

Indeed, ensemble C of only 100 runs with 100,000 photons per surface is done for the

Cham geometry. Still, the ensemble is invaluable for allowing the geometrical effects of a

large range in Ω* to be assessed.

3.4.4 “Ground Truth” Results and Individual Error Measurement

In this work, “ground truth” results are required for the calculation of “errors.”

“Ground truth” results are obtained by emitting, for a single run, so many photons that,

compared to the other runs in this work, the variance in the answers (exchange fractions)

is so small that the results are considered “exact.” For the ETF geometry, 300 million pho-

tons per surface are emitted for the “ground truth” results. Due to limited computational

Table 3.1: Ensembles of Runs

Ensemble Geometry Number of Photons Emitted Number of Runs

A ETF 10,000 10,000

B ETF 100,000 1,000

C Cham 100,000 100
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resources, for the Cham geometry, only 15 million photons per surface are emitted for the

“ground truth” results. The uncertainty of the “ground truth” results for the Cham geom-

etry is less than 10% of that of the 100,000 photon per surface results. It should be noted

that the “ground truth” results for the Cham geometry include 10 million photons per

surface obtained by coalescing the runs from ensemble C.

In this work, three types of error are defined. The two most basic are Eη, the total

exchange area error, and EF, the exchange fraction error:

(3.47)

(3.48)

The quantities above denoted by the  superscript are the “ground truth” results.

Another way to express EF is:

(3.49)

where Fkl is current estimate of the result and  is the mean value of that current esti-

mate. In the equation above, the first term measures the deviation of the estimate about

its mean (in aggregate, over many runs, this yields the uncertainty) and the second term

is a measure of the bias of the estimate, i.e. how far the mean value of the estimate is from

the “ground truth” value. A desirable trait for an estimator is for it to be unbiased. To

measure bias, this work defines the individual bias error, EB, by calculating the mean

value over Nrun runs:

E ηkl
ηkl ηkl

∞
–=

E Fkl
Fkl Fkl
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(3.50)

Using a value of 100 for Nruns has been observed empirically to yield acceptable fidelity

for both the bias error and the uncertainty or variance.

3.4.5 Measuring Multidimensional Error, the l2-Norm

While this work explores quantifying the error and uncertainty in the individual η's,

global measurements of error are also useful. One quantity that can be used for measur-

ing the error for the matrix as a whole or for an individual surface is the l2-norm also

known as the Euclidean norm or Euclidean length [Anton, 1987; Kreyszig, 1993]. In gen-

eral, M different quantities can be plotted in M-dimensional space, RM, as a vector, s. The

l2-norm of s, , is defined as:

(3.51)

Two different error l2-norms, normalized by the number of elements in each, are used

in the work. The first, the normalized matrix error, ∆, is defined as:

(3.52)

This “matrix error” is a global measure of error over all elements and will be used in a rel-

ative evaluation of the RES methods.

It is also helpful to consider error metrics of finer granularity. Therefore, the normal-

ized surface error,  is also defined:
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(3.53)

 will be used subsequently to demonstrate several effects of the recommended RES

method.

3.5 Results and Discussion

In this section, all three granularities of error are used. In the first subsection, the RES

methods are assessed relative to one another by examining the matrix errors. In the next

subsection, the surface errors are presented. The third subsection presents an analysis at

the local level of the distribution of individual RES smoothed answers. The fourth sub-

section discusses the CPU and memory requirements of the RES method.The final sub-

section discusses concepts useful for the implementation of a Monte Carlo convergence

criterion that takes into account the effects of the RES method.

3.5.1 Determining the Best RES Method

3.5.1.1 The Total Exchange Area Error Matrix

Since the purpose of the RES method is to improve the estimates of η, an obvious first

choice to measure the effectiveness of the method is the Eη matrix error (i.e. the global

uncertainty.) The mean values of ∆η, averaged over all runs in an ensemble, are presented

in Tables 3.2 to 3.4. The tables include: 1) the original Monte Carlo results, 2) the results

after reciprocity estimation but before smoothing (labelled “no smoothing”), and 3) the

results after smoothing using both η2 and σ2 weighting. The most striking observation

from the tables below is that, for a given ensemble, there is little difference between the

∆η’s for different RES methods, including the results that are not smoothed! While the

BML/σ2 method yields slightly better results than all the other methods, no results differ

∆k 1
Nsurf
-------------- E kl

2

l 1=

Nsurf

∑=

∆k
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from the BML/σ2 results by more than 3.4% except for the MV/η2 method for the ETF

geometry with 10,000 photons per surface which differs only by 6%. Clearly if there are

significant differences among the RES methods, it is not apparent in ∆η. It should be

noted that ∆η emphasizes the largest errors for the surfaces with the largest Ωk values.

Relative to their original Monte Carlo results, the improvement in ∆η for the three

ensembles ranges from 28% to 34%. This, on average, is a little better than the 29%

Table 3.2: Mean ∆η’s for Ensemble A

ETF Geometry; 10,000 Photons per Surface

Estimate FCI FV MV BML

Sm
oothing

None 2.11x10-2 2.09x10-2 2.10x10-2 2.08x10-2

η2 2.13x10-2 2.13x10-2 2.18x10-2 2.09x10-2

σ2 2.08x10-2 2.06x10-2 2.08x10-2 2.06x10-2

Original Monte Carlo Results 3.12x10-2

Table 3.3: Mean ∆η’s for Ensemble B

ETF Geometry; 100,000 Photons per Surface

Estimate FCI FV MV BML

Sm
oothing

None 6.67x10-3 6.58x10-3 6.58x10-3 6.58x10-3

η2 6.71x10-3 6.62x10-3 6.63x10-3 6.61x10-3

σ2 6.59x10-3 6.51x10-3 6.51x10-3 6.51x10-3

Original Monte Carlo Results 9.88x10-3

Table 3.4: Mean ∆η’s for Ensemble C

Cham Geometry; 100,000 Photons per Surface

Estimate FCI FV MV BML

Sm
oothing

None 3.75x10-5 3.75x10-5 3.76x10-5 3.74x10-5

η2 3.74x10-5 3.73x10-5 3.84x10-5 3.73x10-5

σ2 3.73x10-5 3.73x10-5 3.76x10-5 3.73x10-5

Original Monte Carlo Results 5.32x10-5
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improvement that would occur from doubling the emissions for the original Monte Carlo

results. Thus, the RES method appears, in general, to be effective in using the “redun-

dant” information in the Eη matrix.

3.5.1.2 The Exchange Fraction Error Matrix

As discussed in Section 1.2, the radiative heat transfer rate depends not only on the val-

ues of η but also on T4. Thus, terms with small values of η can be more important in

determining the radiative transport than terms with large values of η. In fact, experience

indicates that smaller surfaces are often used to capture greater spatial variation where

higher temperatures exist, so this is often the case. Therefore, another measure of error

that may be pertinent is ∆F. Indeed, ∆F is a most stringent measure of error because it

emphasizes the largest F deviations in the matrix no matter which surface they represent.

Tables 3.5 to 3.7 present ∆F results corresponding to the ∆η results in Tables 3.2 to 3.4.

The ∆F values exhibit greater differentiation among the different RES methods than do

the ∆η values. Comparing the various RES methods, those utilizing MV estimation are

the worst. In the best case, for ensemble B, the ∆F’s for MV estimation are less (albeit

slightly) than that for the original Monte Carlo results. However, the opposite is true for

the other two ensembles.The MV ∆F’s are particularly bad for the Cham ensemble, which

includes a ∆F over 90 times worse than that for the original Monte Carlo results. The rea-

son for this is a peculiarity of the MV estimation technique that was noted before. If one

of the η’s in a reciprocity pair is zero, then the MV estimate for the pair is also zero. From

the reciprocity relation, it is easy to see how this might lead to large errors in a geometry

such as Cham where there is a large Ω range in the geometry and not enough photons

have been emitted, causing several of the η’s for the surfaces with large Ω values to be

zero.
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The RES methods that utilize FCI estimation, while better than those utilizing MV esti-

mation, are also clearly not good. In the best cases, for the ETF ensembles, the ∆F’s for FCI

estimation are smaller than those for the original Monte Carlo results. However, for the

Cham geometry, the ∆F’s for FCI estimation are all more than 50% greater than for the

original Monte Carlo results. The results for FV estimation are, in all cases, better than

Table 3.5: Mean ∆F’s for Ensemble A

ETF Geometry; 10,000 Photons per Surface

Estimate FCI FV MV BML

Sm
oothing

None 6.93x10-4 6.53x10-4 9.76x10-4 6.45x10-4

η2 8.03x10-4 7.06x10-4 22.2x10-4 6.51x10-4

σ2 6.72x10-4 6.46x10-4 14.5x10-4 6.42x10-4

Original Monte Carlo Results 8.24x10-4

Table 3.6: Mean ∆F’s for Ensemble B

ETF Geometry; 100,000 Photons per Surface

Estimate FCI FV MV BML

Sm
oothing

None 2.15x10-4 2.04x10-4 2.22x10-4 2.04x10-4

η2 2.23x10-4 2.08x10-4 2.34x10-4 2.06x10-4

σ2 2.13x10-4 2.03x10-4 2.22x10-4 2.03x10-4

Original Monte Carlo Results 2.61x10-4

Table 3.7: Mean ∆F’s for Ensemble C

Cham Geometry; 100,000 Photons per Surface

Estimate FCI FV MV BML

Sm
oothing

None 30.4x10-5 9.41x10-5 165x10-5 8.76x10-5

η2 28.4x10-5 10.1x10-5 851x10-5 8.76x10-5

σ2 14.0x10-5 9.04x10-5 655x10-5 8.76x10-5

Original Monte Carlo Results 9.05x10-5
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those for FCI estimation, indicating that the variance is a much better weight for estima-

tion than the standard deviation.

The BML/σ2 RES method produces ∆F values that are lower than or equal to those for

all other methods. Still, the differences compared to the ∆F’s for BML/η2 RES and FV/σ2

RES are slight. While it is fairly conclusive that BML/σ2 RES is the best method, further

analysis is presented in the next section that verifies this conclusion.

The effects of LSS are observed to depend heavily on the reciprocity estimation method

used. Still, the results indicate that σ2 smoothing is superior to η2 smoothing for all reci-

procity estimation methods used. In addition, η2 smoothing always increases ∆F values

compared to the unsmoothed results, often by significant amounts. On the other hand, σ2

smoothing decreases ∆F compared to the unsmoothed results in all cases except those

involving MV estimation, a method not recommended herein. It should be noted that the

decrease in the ∆F caused by σ2 smoothing is usually slight.

These results offer a possible explanation why Murty and Murty [1991] found that η2

smoothing had little effect on their zone radiation calculations. Any benefits obtained

from the enforcement of closure were probably offset by the increased error caused by η2

smoothing.

In summary, the ∆F is a very stringent measurement emphasizing the largest EF values

in the matrix. Not unexpectedly, the relative improvement in the ∆F compared to the ∆F of

the original Monte Carlo results is less then the relative improvement found from ∆η. The

decrease in the ∆F from that of the original Monte Carlo results is only about 22% at best

for the ETF geometries and around 3% for the Cham geometry.

3.5.1.3 The Bias Error Matrix for the ETF Geometry

While an estimator with a small bias and small variance may be preferred to an unbi-

ased estimator with a large variance, all else being equal, an unbiased estimator is pre-
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ferred. Furthermore, a large bias invalidates any benefits of a small variance estimator.

For these reasons, the normalized matrix bias error, ∆B, is examined.

Bias error results in this work are calculated only for ensemble A, the ETF geometry

with 10,000 photons emitted per surface. The reason for this is as follows. To fill out the

bias error distribution, each point in the distribution is derived from the mean over 100

runs, i.e. a subset of the ensemble A runs. For the other two ensembles, averaging over

100 runs yields bias error results that are statistically almost indistinguishable from the

“ground truth” results.

The 10,000 runs in ensemble A yield a distribution of 100 ∆B’s. The mean values of ∆B

for these 100 subsets is presented in Table 3.8. The table clearly shows that all methods

except those using the BML method increase the bias error, i.e. have ∆B values greater

than the ∆Β for the original Monte Carlo results. Indeed, for all methods except those

based on BML estimation, the biases are large enough to negate any benefit of reduced

variance relative to the original Monte Carlo results. In addition, the values in the table

enforce the previous conclusion that the BML/σ2 method is superior to the FV/σ2

method.

It is noteworthy to consider the sources of the biases for the MV, FCI, and FV estima-

tors. For the MV estimator, as discussed previously, when one of the η’s used to calculate

the estimate is zero, then the estimate is zero. This leads to frequent underestimation (i.e.

Table 3.8: Mean ∆B’s for the ETF Geometry

100 Values Derived from Ensemble A

Estimate FCI FV MV BML

Sm
oothing

None 10.5x10-5 8.58x10-5 51.5x10-5 6.47x10-5

η2 41.0x10-5 28.5x10-5 184x10-5 6.53x10-5

σ2 10.8x10-5 9.62x10-5 85.4x10-5 6.44x10-5

Original Monte Carlo Results 8.26x10-5
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a negative bias) when there is significant probability for a nonzero η being estimated as

zero (i.e. too few photons have been emitted per surface).

To understand the source of the biases for the FCI and FV estimators, further analysis is

required. For this purpose, the percent closure error for a surface k, γk, is defined as:

(3.54)

It should be noted that γ only pertains to reciprocity estimated results. For the original

Monte Carlo results, γ’s are zero to machine precision. For smoothed results, γ’s are zero

to the level of convergence of the results. Figs. 3.5 and 3.6 show the γ’s for FCI and FV

estimation for twenty runs of the Cham geometry with 100,000 photons emitted per sur-

face. For every surface, the range of γ’s, from minimum to maximum, is shown as a verti-

cal line. It should be noted that, frequently, more than one surface exists at the same value

of Ω*.

From these graphs and other results, three observations about the biases of the FCI and

FV estimators are evident. From the graphs, it is obvious that the bias for both estimators

is positive. From the graphs and Table 3.8, it can be determined that FCI estimation exhib-

its much greater bias than FV estimation. Furthermore, reviewing the data from the indi-

vidual runs shows that FV estimation results in more surfaces exhibiting positive γ’s per

run than for FCI estimation.

The reason for these positive biases is that both estimators are based on δ, a monotoni-

cally decreasing function of F. Thus, the larger the F value of the original Monte Carlo

results, the smaller the influence of the other Monte Carlo F on the final estimated value.

Therefore, the more F is overestimated, the greater effect F has on the final estimated

value. The graphs clearly show that the largest positive biases occur for the surfaces with
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Figure 3.5 Percent Closure Errors for 20 Runs of the Cham Geometry, FCI Estimation

Figure 3.6 Percent Closure Errors for 20 Runs of the Cham Geometry, FV Estimation
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the smallest Ω* values. Therefore, it is the overestimation of the smaller F’s in the reci-

procity pair that cause the positive bias. FV estimation, which squares the δ’s, reduces the

effect of the smaller F in a reciprocity pair relative to the larger F compared to FCI estima-

tion which leads to smaller biases overall.

Table 3.8 above shows that the effect on bias of smoothing varies significantly depend-

ing on the reciprocity estimator used. Still, one trend is clear. For all estimators except

BML, smoothing increases bias. Later, it will be shown that all the results with BML esti-

mation are unbiased to statistical accuracy. Therefore, it is concluded that if the reciproc-

ity estimator is biased, then smoothing increases that bias, at least slightly. Furthermore,

it can also be concluded that η2 smoothing significantly increases the bias for a biased

estimator.

While the ∆B results clearly exhibit bias, or at least increased error in general for MV,

FCI, and FV estimation, it is unclear from the results whether the BML estimator results

and the original Monte Carlo results are biased. To assess this, Fig. 3.7 plots the mean ∆F

values and mean ∆B values for the ETF geometry ensembles for the original Monte Carlo

and BML/σ2 RES results. Since EB contains a mean value from 100 runs, ∆B is plotted as

emitting one million photons per surface. The bars on the results show the range of the ∆F

and ∆B values over all runs.

The plot emphasizes two aspects of the convergence of ∆F and ∆B. First, while it is well

known that the errors in the individual original Monte Carlo results decrease as the

square root of the number of emissions, the graph shows that this is also true for ∆F’s and

∆B’s of the original Monte Carlo and the BML/σ2 RES results. A second aspect is that the

bias in the BML/σ2 RES and original Monte Carlo results, if it exists, is negligible. This

conclusion results from the fact that ∆B lies, to within statistical error, on the same line as

do the results for ensembles A and B (the results differ by only 0.3%.) Similar results are
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found for ∆F and ∆B values for the unsmoothed BML and the BML/η2 RES results. From

this, it can be concluded that all the differences in error for all the BML methods is caused

by differences in the variances of the methods, not bias.

3.5.1.4 Summary of Results and Recommended RES Method

To determine the best RES method, ∆ values for Eη, EF, and EB were calculated. ∆F is

found to be a much better indicator of difference between the RES methods than ∆η. The

EF matrix shows that MV and FCI estimation often lead to larger errors than the other

methods. In addition, all methods except those based on BML estimation exhibit signifi-

cant bias error. While BML/η2 is found to be almost as good as BML/σ2, BML/σ2 is

found to give the best results in all cases and is the method of choice.

Figure 3.7 Mean ∆ Values for the ETF Geometry
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3.5.2 Surface Errors

As shown in Section 3.5.1.2, the improvement of the ∆F values by BML/σ2 smoothing

over the original Monte Carlo results was rather slight for the Cham geometry. To under-

stand why this is so, this section presents error at the next level of granularity, that of sur-

faces. The thrust of this section is the improvement in EF for each surface caused by

BML/σ2 smoothing relative to the original Monte Carlo results. Therefore, the quantity

studied in this section is the  ratio for a single run which is the ratio of  after BML/

σ2 smoothing divided by  for the original Monte Carlo results. Thus, values < 1 repre-

sent an improvement, while values > 1 indicate that error increases. The median and

absolute ranges of  ratios for the ETF geometry and Cham geometry, for 100,000 pho-

tons per surface are shown in Figs. 3.8 and 3.9. The results shown are only for 100 runs of

each case. This illustrates the variance of the  ratios without overemphasizing outlier

values.

The most striking feature of Figs. 3.8 and 3.9 is that the improvement caused by BML/

σ2 RES is clearly an increasing function of Ω*. The improvement ranges from negligible

for the surfaces with the lowest Ω* values to, at the highest values, 47% for the ETF geom-

etry and 31% for the Cham geometry. This is to be expected as, from Section 3.1.2, the

ratio of the variances of η’s in a reciprocity pair is proportional to the ratios of their Ω*’s,

and greater weight is given to the reciprocity surface with the lower variance. Ergo, the

larger surface is “corrected” the most, and exhibits the most error reduction. This

explains why the improvement in ∆F by BML/σ2 smoothing for the Cham geometry is so

slight. As shown by Fig. 3.4, most surfaces in the Cham geometry have small Ω* values

which are in the range where Fig. 3.9 shows minimal improvement.

Also apparent from the figures is that while error decreases for the majority of surfaces

(i.e. a ratio < 1), error increases for some surfaces for some runs. Figs. 3.10 to 3.13 depict
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Figure 3.8  Ratios for 100 Runs of the ETF Geometry

Figure 3.9  Ratios for 100 Runs of the Cham Geometry
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Figure 3.10 Decreases in  for the ETF Geometry with BML/σ2 Smoothing

Figure 3.11 Increases in  for the ETF Geometry with BML/σ2 Smoothing
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Figure 3.12 Decreases in  for the Cham Geometry with BML/σ2 Smoothing

Figure 3.13 Increases in  for the Cham Geometry with BML/σ2 Smoothing
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the percent of surfaces that have their errors reduced or increased, with percent change as

the parameter. For the ETF geometry, it is shown that few surfaces (always fewer than

7%) experience increases in error. While increases in error of over 20% are possible, the

odds of this occurring are so small that it is hard to read it from the graph. Furthermore,

around 80% of the surfaces have their results improved by 10% or more, over 50% have

their results improved by 20% or more, and there are a significant number of surfaces

with a 30% or greater improvement. The Cham geometry, on the other hand, while hav-

ing up to 25% of its surfaces showing some degradation at times, usually has fewer then

5% degrade more than 1% and almost never has a surface degrade more than 5%. While

fewer than 35% of the surfaces in the Cham geometry show even a 1% improvement,

almost 10% of the surfaces have a 20% or greater improvement and around 5% show

improvement of 30% or more.

Although the results above show that improvement of Monte Carlo results by BML/σ2

smoothing is very geometry dependent and is probably less effective for geometries with

large ranges in Ω*, the other benefits of the method should not be overlooked. As men-

tioned in Section 1.8, there may be serious repercussions when reciprocity is not obeyed,

particularly if the thermal balance code expects it to be. While surfaces with small values

of Ω* may not exhibit much improvement from BML/σ2 smoothing, extremely large reci-

procity errors between these surfaces and other surfaces with much larger Ω* are

avoided. Since the largest interactions for the surfaces with the smallest Ω* values usually

occur with the surfaces with the largest Ω* values, the effect of this improvement can be

very important.

3.5.3 Confidence Intervals for the Individual η

Due to the usefulness of confidence intervals as a measure of the error in individual η's,

this section addresses deriving them for individual BML/σ2 smoothed results from a sin-
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gle run. As discussed in Section 3.1.1, the uncertainty of the individual η can be

expressed as confidence intervals if the η can be considered normally distributed. While

the normality of the original Monte Carlo results is well known, the normality of the esti-

mated and estimated/smoothed η is unproven. Therefore, the first subsection presents

an analysis of the normality of the BML/σ2 smoothed results. Even if the η are normally

distributed, their standard deviation must be known to calculate the confidence interval.

For this reason, the second subsection examines whether the formula given for

in eqn. (3.31) is a suitable estimate of the BML/σ2 smoothed σ.

3.5.3.1 Tests of Normality

Since the BML/σ2 smoothed η give the best results, that case along with the original

Monte Carlo results and the unsmoothed BML estimated η are tested. The results are

summarized in this section, but more details, including many results, are provided in

Appendix C.

When considering the original Monte Carlo results and other estimates based on them,

there are two obvious deviations from the normal distribution to consider. First, while the

normal distribution is continuous, the original Monte Carlo results and the reciprocity

estimated results are discrete. While this discreteness is often overlooked, it can have an

effect. In fact, it is found in this work that many times the same value is simulated for an

unsmoothed result five times in a row. This can even happen when over 100 photons are

absorbed by a surface. Still, it should be mentioned that the combination of results in rec-

iprocity estimation and the changes caused by smoothing tend to moderate the effects of

this discreteness.

Another difference is that while any estimate for an exchange fraction is bound by the

values zero and one, the normal distribution ranges over all real values. While this means

that no estimate of an exchange factor can be technically normal, in most cases the nor-

σηkl BML,
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mal probability of an exchange fraction outside the range of zero to one is so small that

the distribution is essentially normal.

The degree to which a distribution can be considered normal is arbitrary. Normality

tests function by sampling a number of points in the distribution. The more points that

are sampled, the greater chance that the behavior in the tails of the distribution or the

effects of discrete values will be noticed and the distribution declared non-normal. For

example, in this work, normality tests are done sampling 10 and 100 values. For the tests

using 10 values, the original Monte Carlo results are found to be normal when some-

where around 20 to 100 photons are absorbed by a surface, while the BML/σ2 smoothed

results appear normal when 10 or more photons are absorbed per surface. On the other

hand, the tests using 100 values to sample the distribution suggest 200 or more absorbed

photons are required for the normality of the original Monte Carlo results while 50 or

more absorbed photons are required for the normality of the BML/σ2 smoothed results.

These tests indicate that if enough photons are absorbed then BML/σ2 smoothed

results can be considered normally distributed and that the number of photons required

for normality of the BML/σ2 smoothed results is less than the number required for the

original Monte Carlo results. Furthermore, the numbers of photons that must be

absorbed to achieve normality that are listed above are so low that it can be assumed that

in most cases the results can be considered normally distributed.

3.5.3.2 Calculation of the Standard Deviation

In order to apply confidence intervals to the individual η, not only must the results be

normally distributed but a reasonably accurate estimate of the standard deviation is

required. The variance of an η estimate is easily calculated from multiple runs:
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(3.55)

where  is the mean value of ηkl over the Nruns. Still, Monte Carlo work typically

involves the results from only a single simulation, so a single run estimate of σ is desired.

For the BML/σ2 smoothed η, an obvious choice for the estimate of σ is the single run for-

mula for σ of the unsmoothed BML estimated η, , defined in eqn. (3.31).

Yet the validity of eqn. (3.31) for even unsmoothed BML estimated η has not been

proven. While eqn. (3.31) assumes a normal distribution, it relies on only two samples.

Still, it is found to be very accurate for the unsmoothed BML estimated η. For the 10,000

runs of the ETF geometry with 10,000 photons emitted per surface, i.e. ensemble A, the

mean values of  for all the individual η are found to differ from the σ's calcu-

lated from the 10,000 unsmoothed BML estimated runs using eqn. (3.55) by 3% at most

which is roughly the uncertainty in the σ’s calculated from the 10,000 runs. Furthermore,

for 100 or more photons absorbed per surface, most  values usually differ from

their mean value by 5% or less.

The next question is how good an estimate is the  for the BML/σ2 smoothed

results; the answer is surprisingly good. For BML/σ2 smoothing, the ratio of the mean

value of  to σ for the smoothed results calculated over all runs ranges from 0.97

to 1.09. Very few of the mean ’s differ very much from the σ’s calculated from

the 10,000 runs for the smoothed results. Out of the 7,990 reciprocity pairs of η with both

surfaces absorbing 10 or more photons, only 430 of the mean ’s are not within

1% of the σ’s calculated for the BML/σ2 smoothed results. Furthermore, only seven of the

mean ‘s differ by more than 5% from the σ’s for the smoothed results. All seven

cases involve reciprocity pairs where one or both surfaces absorb 1,000 or more photons.
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Therefore, the BML σ formula, eqn. (3.31), is valid for the BML/σ2 smoothed η. It occa-

sionally slightly overestimates σ, particularly when a large number of photons are

absorbed by at least one of the two surfaces.

3.5.4 CPU and Memory Requirements

CPU requirements of the smoothing code are insignificant. Smoothing of the Cham

geometries requires about 12 seconds per run on one processor of a 296 MHz

ultraSPARC system. This includes a significant amount of overhead calculating many of

the statistics used in this work. One MONT3D run for the Cham geometry with one mil-

lion photons per surface takes over 14 hours on the same system.

The memory requirements of smoothing, on the order of , can be large. On the

other hand, any thermal analysis code using the smoothed results will almost certainly

require at least the same amount of memory. Furthermore, the memory requirements

might be reduced by dividing the results of large geometries into non-interacting subsets.

If this can not be done, the η matrix may be “blocked,” and successively accessed from

the disk. This of course results in a significant penalty in disk usage and CPU time.

3.5.5 Convergence Criteria for Monte Carlo Simulations

From the  ratio results in Section 3.5.2, it is clear that the total emissions required for

a Monte Carlo simulation can be reduced significantly if the effects of BML/σ2 smooth-

ing are taken into account. While deriving a method for determining the number of pho-

tons to be emitted by surface in the Monte Carlo simulation is beyond the scope of this

work, it is possible to make several observations that could assist in the creation of such a

method.

It is of course possible to apply a convergence criterion to the smoothed results to

determine how many photons emissions should be added to the current total when

Nsurf
2

∆F
k
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restarting the Monte Carlo simulation. In fact, if the material properties are independent

of temperature, the criterion could be applied after the thermal balance code has been run

and the calculated temperatures could be used as weights in the criterion. Still, there are

advantages to having the convergence criterion self-contained in the Monte Carlo code

itself. In particular, it removes the complication of having several codes communicate

with each other and the need to create scripts to keep running all the codes in sequence

until convergence.

As noted before, the computational requirements of BML/σ2 smoothing are insignifi-

cant but the memory requirements for the actual smoothing are large. Since Monte Carlo

simulations are often done in parallel with limited memory resources, this suggests that

convergence criteria used during the Monte Carlo simulation could benefit from BML

estimation calculations but should probably not use the LSS technique. Considering that

the ∆ results and the derivation of the BML/σ2 smoothed confidence intervals above

indicate that σ2 smoothing usually changes the BML estimated results only slightly, this

constraint should not be too limiting on a convergence technique. The fact that smooth-

ing changes the BML estimated results little is not surprising since the purpose of the LSS

method is to enforce closure while minimizing the changes in the estimated η.

The problem with creating a convergence criterion for reciprocity estimated results,

even when unsmoothed, is that almost every result depends on the emissions from two

surfaces. Determining the minimum number of emissions for the surfaces as a whole is

probably impossible. Still, the  ratio defined above has great potential in cases such as

these to be a “potentiometer” in determining how many photons to emit from a surface.

When a surface has a low  ratio, the number of photons it needs to emit to obtain a

given level of accuracy is diminished. While the  ratio is usually not known, it is easily

estimated as described below.
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k
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The first step in the estimation is to assume the results are normally distributed, which

means the EF themselves are normally distributed with the same standard deviations as

the F’s, σF, and an average value of zero. Then the expected value for , , is:

(3.56)

where the quantity in brackets in the integral is the probability distribution function for

the normally distributed errors. Therefore, if the EF’s are normally distributed, then the

expected value of the  is the normalized surface σF l2-norm, , which is defined:

(3.57)

 is easily calculated for the original Monte Carlo results using eqn. (3.17) and for the

BML estimated results using eqn. (3.31), but it is not easily calculated for the BML/σ2

smoothed results which are not assumed to be known during the Monte Carlo simulation

anyway.

Since the effects of smoothing are found to be small, an estimate for the  ratio, the

 ratio, is defined as  for the unsmoothed BML estimated results divided by

for the original Monte Carlo results. As a measure of expected error instead of actual

error, the  ratio is found to be surprisingly constant. The most an individual  ratio

value differs from its mean value is 1.5% for the ETF geometry with 10,000 photons emit-

ted per surface and by 0.4% for the other two ensembles. The  ratio is also found to be

a good estimate of the  ratio, differing by 2.3% at most from the mean of the  ratio.
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The  ratio is more likely to be an overestimate of the mean  ratio then an underes-

timate.

The best way to apply this potentiometer, the  ratio, is not clear. One use is as a part

of a function used to reduce an estimate of the number of photons required obtained

from another source such as the maximum confidence interval for a given surface. Realiz-

ing that the smaller Ω value for a surface or the closer  ratio is to one the less benefit it

gets from other surfaces, the  ratio can be used to determine the order in which the

surfaces are handled in the search for convergence. Surfaces with smaller Ω values and

higher  ratios should have their emissions increased first. It can only decrease the

number of emissions required for later surfaces.

3.6 Conclusions

An in-depth study has been completed of the effects of applying the reciprocity and

closure constraints on Monte Carlo radiative transport simulation results using the meth-

ods of reciprocity estimation and least-squares smoothing (LSS). Of the reciprocity esti-

mation smoothing (RES) techniques investigated, binomial maximum likelihood (BML)

estimation with σ2 weighted LSS is found to be an unbiased estimator that gives the

greatest improvements in accuracy (lowest error) compared to the original Monte Carlo

results. For least-squares smoothing, σ2 weighting is preferred over η2 weighting because

it produces smaller errors in every case. The uncertainties (errors) of the matrix as a

whole for the BML/σ2 RES method and the original Monte Carlo results are found to

decrease as the square root of the number of emissions. For the BML/σ2 RES method, the

improvement in error by surface compared to the original Monte Carlo results is found to

increase as the area-emissivity product, Ω, for the surface increases. While detailed analy-

sis indicates that a small number of surfaces for a single Monte Carlo run have their
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errors increased by BML/σ2 smoothing, the size of these increases is small. Over several

runs, all surfaces experience a mean decrease in error; quite a number of the mean

decreases are significant. Furthermore, the BML/σ2 smoothed results for the individual η

are found to be normally distributed when even relatively few photons are absorbed by

the surfaces. A good estimate of the confidence interval for these BML/σ2 smoothed

results can be obtained using the BML σ formula, eqn. (3.31). The  ratio, an estimate

of the effects of BML/σ2 smoothing on surface from the results of a single run is shown to

be accurate and potentially useful as a potentiometer in Monte Carlo convergence criteria

calculations. The BML/σ2 RES method is found to take insignificant calculation time. Its

memory requirements, while large, should be no larger than the thermal analysis code

that uses its results.
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CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS

4.1 Summary of Work

In this work, two ways to reduce the computational requirements of radiative heat

transfer Monte Carlo simulation are explored. Drawing on techniques used in the com-

puter graphics field of ray tracing, an efficient algorithm for tracing particles in large,

arbitrary, planar geometries containing nonparticipating media is presented. An efficient

intersection algorithm for arbitrary triangles and/or convex planar quadrilaterals is

derived in detail by drawing on techniques used in the computer graphics field of ray

tracing. To determine the efficiency of the intersection algorithm, timing results are pre-

sented for a number of different spatial divisions for four geometries.

Second, the reciprocity estimation smoothing (RES) method which takes advantage of

the redundant information in the Monte Carlo total exchange area matrix by the applica-

tion of reciprocity and closure to potentially improve the accuracy of the total exchange

area estimates is investigated. Statistical theory is applied to obtain the best RES method.

An in-depth view of the distribution of the effects of RES is obtained by performing many

numerical experiments (“runs”) on two large geometries.

4.2 Conclusions

A summary of the major conclusions of this work follows.

• By applying methods from the computer graphics field of ray tracing, an efficient

Monte Carlo particle (photon) tracing algorithm for large geometries with arbitrary,
87
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planar surfaces in nonparticipating media is presented. It is found to be 35% to 45%

faster than the previous MONT3D photon tracing algorithm [Maltby, 1987; Burns et

al., 1990; Maltby and Burns, 1991; Burns and Pryor, 1999; Maltby et al., 1994].

• The uniform spacial division (USD) method used in the tracing algorithm yields

speedups in run time as great as 81. Execution time is found to vary slowly with the

number of voxels (grid cells). For geometries with 1,000 to 5,000 surfaces, good

speedups are found when around 15,000 voxels are used.

• The mailbox ray tracing technique is found to increase execution times in all cases

and is not recommended for radiative heat transfer Monte Carlo.

• The memory requirements of the Monte Carlo photon tracing algorithm are found to

be slight. For geometries tested, the USD method requires less than one megabyte of

memory and the rest of the Monte Carlo code as a whole requires between 1.7 and 5.2

megabytes of additional memory.

• An in-depth study of the reciprocity estimation smoothing (RES) method for collision

based radiative heat transfer Monte Carlo demonstrates that binomial maximum

likelihood (BML) estimation combined with σ2 weighted least-squares smoothing

(LSS) gives the best results (lowest error). Furthermore, BML/σ2 smoothing is found

to be an unbiased estimator.

• For least-squares smoothing, σ2 weighting is found in all cases to give better overall

results than η2 weighting. For the matrix as a whole, σ2 weighting usually reduces

the error slightly while η2 weighting increases the error in every case.

• The uncertainties (errors) of the matrix as a whole for the BML/σ2 smoothing and the

original Monte Carlo results are found to decrease as the square root of the number

of emissions.
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• Over several runs, BML/σ2 smoothing causes all surfaces to experience a mean

decrease in error compared to the original Monte Carlo results. While the mean

decrease in error is small for the surfaces with the smallest values of Ω, the area-emis-

sivity product, the mean decrease in error increases with increasing Ω values and is

often quite significant

• While a small number of surfaces for a single Monte Carlo run have their errors

increased by BML/σ2 smoothing, the size of those increases is small.

• Even when relatively few photons are absorbed by surfaces, BML/σ2 smoothed

results for the individual η are found to be normally distributed. A good estimate of

the confidence interval for these BML/σ2 smoothed results can be obtained using the

BML σ formula, eqn. (3.31).

• BML/σ2 smoothing is shown to take insignificant calculation time and is expected to

require at least no more memory then the thermal analysis code that uses its results.

• The  ratio is found to be an accurate measure of the improvement in results by

BML/σ2 smoothing over the original Monte Carlo results for a surface that can be

calculated from the results of a single run.

4.3 Recommendations

Recommendations for future work follows.

• Work should be done on deriving an efficient Monte Carlo particle tracing algorithm

for participating media.

• Monte Carlo simulation convergence criteria that take into account the effects of

BML/σ2 results should be investigated. The  ratio derived in this work would be

a good starting point for that investigation.
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• Studies should be done to determine the effect of the reciprocity improvements from

RES on the accuracy of the final thermal analysis results as suggested by the work of

Taylor et al. [1993; 1995] and Clarksean and Solbrig [1994].

• RES should be extended to pathlength based radiative heat transfer Monte Carlo. The

minimum variance estimation discussed in this work should be well suited to path-

length based Monte Carlo RES. In pathlength based Monte Carlo, zero η values are

almost always truly zero, so the problems minimum variance estimation exhibits

with collision based Monte Carlo should not occur.

• Work should also be done on obtaining an RES technique for the zone method. The

results of this dissertation suggest that the LSS methods used on the zone method

may cause significant errors.

• More complex radiative material models that obey reciprocity should be determined.

The only radiative heat transfer material models that are currently known to obey

reciprocity are combinations of diffuse reflection as a constant function of angle and

specular reflection as a varying function of angle [Zeeb et al., 1999; Branner, 2000].
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APPENDIX A RANDOM EMISSION

This work and LSMONTE [Zeeb and Burns, 2000] implement random emission from

each surface. Since temperature is constant for each surface, the emission routine is

derived from the routine by Turk, 1990 for uniformly distributed random points in a tri-

angle. It depends on two uniformly distributed random numbers between zero and one,

R1 and R2, and the three node points of the triangle, N1, N2, and N3. Two different formu-

las are used to calculate the origin of the photon, R0, depending on the sum of  and

.

(A.1)

(A.2)

Figure A.1 Examples of the Random Emission Algorithm
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As shown in Fig. A.1, eqn. (A.1) defines a random point in the parallelogram with ver-

tices, N1, N2, N3, and (N2 + N3) - N1. A point that lands in the triangle N2, N1, (N2 + N3) -

N1 is moved into the triangle N1, N2, N3 by reflecting it about the center of the parallelo-

gram using eqn. (A.2). While it is possible to generalize the above equations to any con-

vex polygon [Turk, 1990], the code reduces the overhead of calculation by dividing each

quadrilateral into two triangles and emitting from each separately.

MONT3D [Zeeb et al., 1999; Maltby, 1987] uses a fixed point emission routine which

divides each surface into equally spaced regions and emits from the centroid of each of

the subsurfaces. The reason this method was chosen is that all previously known random

emission routines rely on an accept-reject method that can be very inefficient for surfaces

where most of the generated points are rejected. To handle surfaces that are not well

approximated by squares, the fixed point emission routine requires many subsurfaces

and many photons emitted per subsurface, which in turn requires a large number of pho-

tons to be emitted per surface. Since the number of photons emitted per surface is often

limited, this can lead to small reciprocity errors in the results. This random emission rou-

tine does not suffer from that problem.



APPENDIX B THE CENTER FOR COMPUTING SCIENCE

PSEUDO-RANDOM NUMBER GENERATOR

The random number generator used in this work, the latest version of MONT3D [Zeeb

et al., 1999], and MONT3D’s public domain counterpart, LSMONTE, [Zeeb and Burns,

2000] is the 127-seed Center for Computing Science addition lagged-Fibonacci pseudo-

random number generator also known as simply the CCS RNG. This generator has been

discussed by Burns and Pryor [1999] and further studied and actually named by Zeeb

and Burns [1997]. An implementation is available at <http://www.colostate.edu/

~pburns/monte/code.html>. This generator is chosen because it is found to be computa-

tionally efficient, and to have good statistical properties and a long period.

An addition lagged-Fibonacci generator with u integer seeds has the form [Anderson,

1990]:

(B.1)

where the X’s are integer values, mod is the integer remainder function, and u and v are

the lags, which are limited to certain values. The modulus, m, is usually a power of two.

For portability to almost any computer architecture, m is 231 for the CCS generator. Uni-

form random numbers, , are generated from the above integers as follows:

(B.2)

Xi Xi u– Xi v–+( )modm= u v 0> >

R i
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While addition lagged-Fibonacci generators were originally avoided due to their lack

of firm theoretical basis, this is unjustified today due to the large volume of work and the-

ory published about them [Marsaglia and Tsay, 1985; Brent, 1992, 1994; Pryor et al., 1994;

Mascagni et al., 1995a, 1995b]. The 127-seed generator is chosen because, when properly

seeded, it is the is Fibonacci generator with the smallest value of u for the CCS generator

that passes all of Marsaglia’s [1985] stringent DIEHARD random number generator tests

including the birthday spacings test [Brent, 1992].

This generator is called CCS because it implements a seeding scheme developed there

[Pryor et al., 1994; Mascagni et al., 1995a, 1995b] to produce one of the 2u - 2m (m is a

power of two) independent random sequences of maximum length. The maximum

length of a cycle is (2u - 1 - 1)m although no more than 2u - 1 of the numbers should be

used in a series because of bit correlations [Brent, 1992]. Therefore, for 127 seeds, the

period is at least 1.7X1038. The independence of each sequence of random numbers

makes the CCS generator ideal for parallel programming. One potential problem with

the CCS seeding algorithm is that the last bit of each random integer is not random [Zeeb

and Burns, 1997; Burns and Pryor, 1999]. Since the last bit is not significant for the ran-

dom numbers generated from the random integers, this is usually not a problem.

What differentiates the CCS generator from other generators based on the work of

Mascagni and his coworker is that the CCS generator creates its initial set of seeds from a

single 32-bit seed using a binary shift register [Zeeb and Burns, 1997; Burns and Pryor,

1999]. While limiting the possible number of random sequences to 231 - 1, extensive test-

ing has shown this method gives excellent randomness properties across parallel

sequences, even when the initial seeds for each sequence are very similar [Zeeb et al.,

1999]. In particular, this initialization scheme avoids sequences with bad bitwise behavior

[Altman, 1988].



APPENDIX C TESTS OF NORMALITY

The purpose of this appendix is to present the results of the normality tests described in

the first section of this appendix for BML/σ2 smoothed results. The results of the tests are

summarized in Section 3.5.3.1.

C.1 Tests for Normality

While the normal distribution is known to be applicable in many circumstances [Evens

et al., 2000], its applicability to RES results is not known. Fortunately, there is a large body

of literature of tests to determine the normality of a given distribution [D’Agostino and

Stephens, 1986; Shapiro, 1986]. To test for normality in this work, four tests of normality

are chosen: three empirical distribution function (EDF) tests; A2, U2, and W2; and the Sha-

piro-Wilk statistic, W. All are described below.

The empirical distribution function (EDF), Fn(x) is created from a series of n ordered

random samples from a distribution, and is defined as [Stephens, 1986]:

(C.1)

An example of Fn(η) for 100 samples of a specific η with value 2.87 is shown in Fig. C.1.

As the figure shows, Fn(x) is a step function that smooths out as the number of samples

increases. Statistics based on Fn(x) are often called EDF or distance statistics.

Fn x( ) number of observations x≤
n

------------------------------------------------------------------------=
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The three EDF tests used in this work are part of the quadratic or Cramér-von Mises

family of statistics [Stephens, 1986] which determine the agreement of Fn(x) with a given

cumulative distribution function (CDF), F(x), by integrated the weighted square of the

difference of the two. The three statistics are: W2, the Cramér-von Mises statistic:

(C.2)

U2, the Watson statistic:

(C.3)

and A2, the Anderson-Darling statistic:

Figure C.1 Sample Fn(η) Function
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(C.4)

Since F(x) is the normal CDF and Fn(x) is a step function, the calculation of these integrals

is rather straight forward. Larger values of the statistics are indicative of sample distribu-

tions that are not normal because these are the situations where the difference between

F(x) and Fn(x) is the greatest. A2 is known to be the strongest statistic of the three in deter-

mining non-normality.

W, the Shapiro-Wilk statistic, is defined as [Royston, 1993]:

(C.5)

which is essentially the ratio of the square of the BLUE (best linear unbiased estimate) of

the standard deviation of xi assuming normality, σBLUE, nor:

(C.6)

where ai are the weights, and the variance of the sample, σ2:

(C.7)

The W-statistic ranges from zero to one and small values of W indicate non-normality

[Shapiro and Wilk, 1965]. It is known as a powerful test of normality.

Due to the large number of η to be tested in this work, these tests of normality were

chosen for two reasons. First, codes to calculate the A2, U2, W2, and W statistics with

A2 n
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mean and variance unknown are available at <http://www.statlib.org> [Davis and

Stephens, 1989; Royston, 1995]. Second, all four tests give a cumulative probability, p, that

a normal distribution would generate such a statistic. Small values of p indicate non-nor-

mal behavior. This is equivalent to small values of the W statistic and large values of the

A2, U2, and W2 statistics. This simplifies comparisons of normality.

C.2 Description of How the Normality Tests Were Used

The first problem with analysis is the wealth of results to test. For the ETF geometry

used in these tests which has 144 surfaces, there are 20,736 single η and 10,440 η that are

either a reciprocity pair (RP) or a diagonal value. It was decided that the best use of this

large amount of information is to determine rough general rules about how many pho-

tons must be emitted for the original Monte Carlo results and BML/σ2 smoothed results

to be normally distributed.

Due to the variance of the results between runs, the results are divided into different

categories depending on the “ground truth” results. The “ground truth” results are used

to determine which original Monte Carlo result or smoothed diagonal is expected to have

an average number of photons absorbed equal to or greater than a given N and which

smoothed reciprocity pair is expected to have both of its original Monte Carlo values

equal to or above a certain N. For ETF geometry with 10,000 photons emitted per surface,

the number of single values and pairs fitting into various categories is shown in Table

C.1. The full number of individual values, RP’s, and diagonal values are given as results

for N equal to zero. The columns marked ∆N have the difference between that row and

the row below it for the previous column. Since the results for each N are a subset of all

lower value N’s, ∆N is a measure of how many single values or pairs are within the cur-

rent N range but below the next N range.
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For these tests, only the runs for the ETF geometry with 10,000 photons per surface are

used. For the ETF geometry, the main reason for this is that the results from runs with

10,000 photons per surface are mainly in the N equal 50 or less range, while most of the

results from runs with 100,000 photons per surface are in the N equal 200 and above

range. The crossover point for normal behavior for smoothed results is found at the lower

N’s represented by the results from runs with 10,000 photons per surface. The Cham

geometry is found to have too few runs to give meaningful results for these tests.

If only a few variables are being tested, then what is usually done is to repeat the test

until it is clear whether or not the variable is normally distributed. For this work, to

achieve this effect, the 10,000 runs with 10,000 photons per surface are divided into three

different ensemble groupings described in Table C.2 so that normality can be tested at

several granularities. With around 10,000 to 20,000 different η to analyze for normality,

some way of easily checking each η has to be determined. This is done by realizing that

the test results for each η are uniformly distributed between zero and one. Therefore, a

rough measure of normality is how close the means of the values for a test are to 0.5.

More on this will be presented below.

Table C.1: Numbers of Each Type of Single η and η Reciprocity Pair

N Original
Single:

Value ≥ N

∆N Smoothed
Pair:

Both ≥ N

∆N Smoothed
Diagonal:
Value ≥ N

∆N

0 20,736 2,706 10,296 2,440 144 4

10 18,030 1,933 7,850 1,380 140 7

20 16,097 6,133 6,470 3,590 133 17

50 9,964 5,633 2,880 2,023 116 46

100 4,331 3,456 857 714 70 58

200 875 749 143 114 12 10

500 126 84 29 24 2 2

1,000 42 - 5 - 0 -
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C.3 Test Results

Of the three test ensembles, ensemble γ with only five values per test is found to be too

course a granularity for accurate testing. Many times all five values used for the normal-

ity tests are the exact same value, invalidating the test. While this problem mainly occurs

for the original Monte Carlo results, it has also occurred for some of the reciprocity esti-

mated results. The problem arises for a wide range of number of absorbed photons, N.

For the original Monte Carlo results, this is a problem even for N ≥ 100. Clearly, the fact

that the original Monte Carlo results and reciprocity estimated results are discrete instead

of continuous has quite an effect on the normality of the results.

The two remaining ensembles using 10 or 100 values for their tests do not suffer from

the repeating value problem. The minimum mean values for all the tests for both of these

ensembles are given in Tables C.3 to C.8. The tables divide the results into three catego-

ries: 1) the original individual results, 2) the unsmoothed and smoothed reciprocity esti-

mated results for the reciprocity pairs, and 3) the original and smoothed results for the

diagonals which are unaffected by reciprocity estimation. The reason the tables list the

minimum mean values is that non-normal behavior is found to lead to mean values less

than 0.5. As mentioned above, small values of p for any of the normality tests is indicative

of non-normal behavior so this is to be expected.

Of course, due to statistical scatter, some means below 0.5 are expected of even nor-

mally distributed results. In fact, applying the Central Limit Theorem [Ross, 1988] to a

uniform distribution between zero and one suggests that the lower bound of the 99%

Table C.2: Normality Test Ensembles

Ensemble Number of Values per Test Number of Test Values

α 100 100

β 10 1,000

γ 5 2,000
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ion
confidence interval for the mean of the 100 test values from ensemble α is 0.40 while the

lower bound for the mean of the 1,000 test values from ensemble β is 0.47. Due to the

uncertainty of the normality tests and the variable number of results at each N level, this

work arbitrarily defines as normal any N level that is within 0.03 of the 99% confidence

interval values calculated above.   Where the various types of estimates meet this criter

is given in Table C.9.

The tables clearly demonstrate several trends. The first trend is that the more values a

normality test uses, the more sensitive it is to deviations from the normal. Therefore,

more results from ensemble β are considered normal than from ensemble α. Still, consid-

Table C.3: Minimum Mean Values for Ensemble α for the Monte Carlo Results

Normality Test
(100 Values per Test)

N W A2 U2 W2

10 0.08 0.04 0.03 0.03

20 0.18 0.13 0.11 0.11

50 0.30 0.27 0.26 0.26

100 0.35 0.32 0.31 0.32

200 0.40 0.38 0.38 0.38

500 0.41 0.41 0.41 0.42

Table C.4: Minimum Mean Values for Ensemble β for the Monte Carlo Results

Normality Test
(10 Values per Test)

N W A2 U2 W2

10 0.41 0.37 0.36 0.38

20 0.44 0.41 0.41 0.42

50 0.45 0.43 0.43 0.44

100 0.46 0.44 0.44 0.45

200 0.47 0.44 0.44 0.45

500 0.47 0.45 0.45 0.46
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ering the problems that occur with ensemble γ, there is definitely a lower bound on the

number of values that can be used in the normality tests. This suggests that the versions

that use ten values are the least stringent forms of the normality tests used in this work.

Looking at the tests themselves, W clearly defines more of the distributions in this work

as normal then any of the EDF tests. Of the EDF tests, W2 defines the most distributions

as normal while U2 defines the least.

Part of the deviation of the original Monte Carlo results from the normal distribution is

their discreteness. As shown by the tables, the combination of the two results in reciproc-

Table C.5: Minimum Mean Values for Ensemble α for Both of a Pair ≥ N

N (100 Values for Each Normality Test)

BML Estimation Only BML/σ2 Smoothing

W A2 U2 W2 W A2 U2 W2

10 0.24 0.16 0.14 015 0.30 0.25 0.24 0.25

20 0.29 0.26 0.24 0.25 0.36 0.36 0.36 0.36

50 0.36 0.34 0.33 0.34 0.38 0.38 0.38 0.38

100 0.40 0.38 0.38 0.39 0.41 0.40 0.40 0.40

200 0.44 0.41 0.39 0.40 0.43 0.43 0.42 0.43

500 0.47 0.45 0.44 0.44 0.45 0.45 0.43 0.44

Table C.6: Minimum Mean Values for Ensemble β for Both of a Pair ≥ N

N (10 Values for Each Normality Test)

BML Estimation Only BML/σ2 Smoothing

W A2 U2 W2 W A2 U2 W2

10 0.45 0.43 0.42 0.44 0.46 0.44 0.44 0.45

20 0.46 0.44 0.44 0.45 0.46 0.44 0.44 0.45

50 0.47 0.44 0.44 0.45 0.46 0.44 0.44 0.45

100 0.47 0.45 0.45 0.46 0.47 0.45 0.45 0.46

200 0.47 0.46 0.45 0.46 0.48 0.46 0.46 0.47

500 0.47 0.46 0.46 0.47 0.48 0.46 0.46 0.47



110
ity estimation, tends to “fill in” the distribution of a result causing the distribution to

appear closer to normal. The changes in η caused by smoothing have the same effect on

the reciprocity estimated results.

Table C.7: Minimum Mean Values for Ensemble α for Diagonal ≥ N

N (100 Values for Each Normality Test)

Original Monte Carlo BML/σ2 Smoothing

W A2 U2 W2 W A2 U2 W2

10 0.12 0.06 0.05 0.06 0.25 0.21 0.20 0.21

20 0.28 0.21 0.20 0.21 0.39 0.41 0.42 0.42

50 0.37 0.31 0.29 0.29 0.42 0.42 0.42 0.43

100 0.40 0.36 0.33 0.34 0.42 0.42 0.42 0.43

200 0.42 0.39 0.39 0.40 0.44 0.44 0.46 0.45

500 0.52 0.51 0.51 0.51 0.52 0.51 0.51 0.51

Table C.8: Minimum Mean Values for Ensemble β for Diagonal ≥ N

N (100 Values for Each Normality Test)

Original Monte Carlo BML/σ2 Smoothing

W A2 U2 W2 W A2 U2 W2

10 0.43 0.41 0.40 0.41 0.46 0.44 0.43 0.44

20 0.46 0.44 0.43 0.44 0.48 0.46 0.45 0.46

50 0.47 0.44 0.44 0.45 0.48 0.46 0.45 0.46

100 0.47 0.45 0.44 0.46 0.48 0.46 0.45 0.46

200 0.48 0.46 0.46 0.47 0.50 0.47 0.47 0.48

500 0.50 0.47 0.47 0.48 0.51 0.49 0.48 0.49

Table C.9: Estimated N Values Required for Normality

Number of Values Used
in Normality Tests

10 100

Original Monte Carlo 20 to 100 200

BML Estimation 10 to 20 100

BML/σ2 Smoothed 10 50
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