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Abstract

GILA is a finite element code that has been developed specifically to attack
the class of transient, incompressible, viscous, fluid dynamics problems that
are predominant in the world that surrounds us. The purpose for this doc-
ument is to provide sufficient information for an experienced analyst to use
GILA in an effective way. The GILA User’s Manual presents a technical
outline of the governing equations for time-dependent incompressible flow,
and the explicit and semi-implicit projection methods used in GILA to solve
the equations. This manual also presents a brief overview of some of GILA’s
capabilities along with the keyword input syntax and sample problems.

1Version 1.1 - NS-SS
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Preface

The goal for GILA has been to achieve a high level of computational perfor-
mance across a spectrum of supercomputer architectures without sacrificing
any of the aspects of the finite element method that make it flexible and
capable for a broad class of fluid dynamics problems. GILA is based, in
part, on the research code, HYDRA,12 developed by the author at Lawrence
Livermore National Laboratory (LLNL). GILA has been designed to take
advantage of advanced solution algorithms for distributed-memory, parallel
supercomputer architectures.
The development of GILA has drawn, in part, upon over ten years of

research in computational fluid dynamics as well as from the research efforts
of Phil Gresho, Stevens Chan and their colleagues at LLNL. Like HYDRA,
GILA has also drawn upon the many years of finite element expertise em-
bodied in DYNA3D66 and NIKE3D.50 Certain key architectural ideas from
both DYNA3D and NIKE3D have been adopted and further refined to fit
the advanced dynamic memory management and cache-based data structures
implemented in GILA.
GILA, in its implementation, reflects, my training and experience with a

broad array of supercomputers ranging from vector machines to massively-
parallel distributed-memory machines such as the ASCI TFLOPs machine
at Sandia National Laboratories. My philosophy for GILA has been to al-
ways focus on the most advanced solution algorithms for time-dependent
incompressible flow and the concomitant mapping to parallel supercomputer
architectures for the sole purpose of solving large scale problems – a philos-
ophy I learned from Pat Burns and Dan Pryor while a graduate student at
Colorado State University.

14



Chapter 1

Introduction

The simulation of time-dependent flow about vehicles and in turbomachin-
ery remains a computational grand challenge despite the rapid increases in
computing power observed over the past decade. An example of this class
of computational fluid dynamics problem is the transient simulation of flow
around a submarine or an automobile. In order to compute the flow around
such a vehicle, O(106) elements are required just to capture the geometry
and the largest flow features in regions of separated flow. In addition to the
high degree of spatial discretization, the temporal resolution for this class
of problem is also demanding, ultimately requiring the effective mapping of
flow-solution algorithms to current supercomputer architectures.

GILA is a finite element code that solves the transient, incompressible,
viscous, Navier-Stokes equations, and is based, in part upon the work of
Gresho, et al.24,25,28,29 GILA makes use of multiple advanced solution al-
gorithms for both semi-implicit and explicit time integration. The explicit
solution algorithm28,29 sacrifices some phase accuracy, but decouples the mo-
mentum equations and minimizes the memory requirements. While both
the diffusive and Courant-Freidrichs-Levy (CFL) stability limits must be re-
spected in the explicit algorithm, balancing tensor diffusivity ameliorates the
restrictive diffusive stability limit and raises the order of accuracy of the time
integration scheme. The explicit algorithm, in combination with single point
integration and hourglass stabilization, has proven to be both simple and
efficient in a computational sense. Because of this, the explicit algorithm
was the focus of early parallelization efforts in GILA.

In the second-order projection algorithm,24,25 a consistent-mass predictor
in conjunction with a lumped mass corrector legitimately decouples the ve-
locity and pressure fields thereby reducing both memory and CPU require-
ments relative to more traditional fully-coupled solution strategies for the
Navier-Stokes equations. The consistent mass predictor retains phase speed
accuracy, while the lumped mass corrector (a projection to a divergence-free
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subspace) maintains a div-free velocity field. Both the predictor and the cor-
rector steps are amenable to solution via direct or preconditioned iterative
techniques making it possible to tune the algorithm to the computing plat-
form, i.e., parallel, vector or shared-memory. The second-order projection
algorithm can accurately track shed vortices, and is amenable to the incor-
poration of either simple or complex (multi-equation) turbulence sub-models
appropriate for a broad spectrum of applications.

1.1 Guide to the GILA User’s Manual

The purpose for this document is to provide sufficient information for an
experienced analyst to use GILA in an effective way. The assumption is
that the user is somewhat familiar with modern supercomputers, large scale
computing, common CFD practices, and to a certain degree, the current
CFD literature. This manual provides sufficient references to the literature
to permit the interested reader to pursue the technical details of GILA.
In this document, an attempt is made to adhere to the convention that all

keywords and defaults for input data appear in a boldface type, and sample
computer input/output appears in a typewriter font. All other keywords,
parameters and variables are defined in the context they are used.
In Chapter 2, an overview of the theoretical background for GILA is

presented. Chapters 3 and 4 present information on how to execute GILA in
a UNIX environment and the necessary input data for GILA. Several sample
calculations are presented in Chapter 5 which can be used as benchmark
problems for the first time GILA user.

1.2 History of GILA Development

The original idea behind GILA was to develop a next-generation CFD code
using the most current algorithmic ideas for incompressible flow coupled with
a single-program multiple-data (SPMD) programming model and aggressive
on-processor performance programming strategies. GILA has drawn on my
experiences participating in the early ParaDyn team’s efforts to parallelize
DYNA3D16,43 as well as the research efforts with HYDRA.12 GILA code
development efforts started essentially from scratch to avoid problems with
inherited sequential code and with antiquated memory management schemes,
although the requisite linear algebra has come from the ITLIB package orig-
inally developed by the author at Colorado State University.
GILA was developed using standard tools for source configuration, and

control. Research efforts with HYDRA at LLNL on the Thinking Machines
CM-200 and CM-5 were only partially successful due to the very “long-
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vector” characteristics of these architectures. This experience has pushed
GILA development away from a data-parallel implementation and towards
a more portable and scalable domain-decomposition message-passing model.
The most recent algorithm mapping efforts with GILA have been directed
towards the ASCI TFLOPs because of its superior network bandwidth, fast
scalar speed, and large number of processors. However, the use of the domain-
decomposition message-passing paradigm permits scalability from PC’s to
networks of workstations and ultimately machines like the ASCI TFLOPs
platform.

Over the past several years, GILA has been under spare-time develop-
ment, and has acted as a test bed not only for investigating the issues involved
in mapping incompressible flow solution algorithms to parallel architectures,
but also for the study of optimal solution methods for the pressure Poisson
equation, and for the study of advanced Navier-Stokes solution algorithms.
Presently, an experimental model for Large Eddy Simulation is available in
GILA, and more traditional turbulence models are under development.

1.3 GILA Capabilities

GILA provides multiple analysis options for both 2-D and 3-D transient,
viscous, incompressible flow problems. Of course, the analysis of problems
with thermal convection is a subset of the 2-D and 3-D analysis options.
In addition to the implicit and explicit algorithms for solving the transient
Navier-Stokes equations, GILA also provides both implicit and explicit algo-
rithms for solving the time-dependent scalar advection-diffusion equation.

1.3.1 Fluid Models

Fluid constitutive models in GILA may be broadly classified into two groups
generally referred to as material models. The first category consists of the
definition of constant properties, i.e., fluid density, kinematic viscosity, ther-
mal diffusivity, etc. For flow problems that require only one material defi-
nition, GILA provides a simplified input format for specification of the fluid
properties.

The second category of material model involves the definition of a rela-
tion between fluid properties and dependent variables such as velocity and
temperature. The internal architecture of GILA permits the use of this class
of material models but, at this time user access to this type of material model
in GILA is restricted. In the future, user access for alternative constitutive
models will be provided.
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1.3.2 Turbulence Models

GILA has provided a test-bed for a variety of time-dependent Reynolds-
averaged Navier Stokes (RANS) models. Currently, an experimental Smagorin-
sky subgrid-scale model is available for performing Large Eddy Simulations
(LES). At this time, all of the turbulence models are considered experimental.

1.3.3 Pre-Processor Interfaces

At this time, mesh generation support for GILA is provided in several forms.
First, meshes generated in the EXODUS II format59 may be translated to a
GILA compatible format using the EX2MSH utility. The EX2MSH utility
relies on the EXODUS II I/O library. Therefore, EX2MSH is currently only
available at Sandia National Laboratories. Second, the TRUEGRID mesh
generator67 produces “native” GILA mesh files. Because GILA can make
use of a simplified ASCII mesh file format, it is very easy to adapt existing
neutral files from other commercial mesh generators. Appendix A provides
a brief description of GILA’s ASCII file format.

1.3.4 Post-Processor Interfaces

GILA can output several forms of graphics files. The default file format uses
the binary, familied graphics data format for the plot and time history files
that are compatible with GRIZ18 and THUG61 respectively. GRIZ is used
for visualizing snapshots of the entire flow-field (state data) or generating
animations of the time varying flow-field data, while THUG61 is used for
interrogating time history data at a moderate number of mesh points.

GRIZ and THUG are general purpose scientific visualization tools for
finite element codes, and they support analysis codes for both computational
fluid dynamics and computational mechanics. Because of this, there is a
translation from the primitive variables that GILA writes to the graphics
datafiles to variables which can be displayed in GRIZ and THUG. The details
on how GILA variables map to GRIZ and THUG variables may be found in
Appendix B.

GILA also provides the ability to output state graphics using the EXO-
DUS59 and PXI parallel I/O libraries. The PXI library has been designed for
large scale parallel simulations to avoid I/O bottlenecks and is based on the
PDS/PIO62 libraries which provide lightweight collective parallel I/O facili-
ties. The PXI state graphics files are compatible with Sandia’s MUSTAFA
visualizer. The EXODUS state graphics files are compatible with any vi-
sualizers that read the EXODUS file format, e.g., BLOT, MUSTAFA, or
SPYVIEW.
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For time-history data, an optional output interface is provided for the
HISPLT64 time-history software for use internally at Sandia.
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Chapter 2

Governing Equations

This chapter presents the basic forms of the partial differential equations
that GILA solves, and Chapters 3 – 4 provide a general description of the
methodologies employed in their solution. The interested reader may pursue
the references included in these chapters for details on the incompressible
flow solution algorithms used in GILA and their implementation.

In the ensuing discussion, the invariant bold-face vector notation of Gibbs
is used with boldface symbols representing vector/tensor quantities. The
reader may refer to Gresho and Sani32 pp. 357-359 for an outline of notation
for the Navier-Stokes equations.

2.1 Momentum Conservation

To begin, the conservation of linear momentum is

ρ

{

∂u

∂t
+ u · ∇u

}

= ∇ · σ + ρf , (2.1)

where u = (u, v, w) is the velocity, σ is the stress tensor, ρ is the mass density,
and f is the body force. The body force contribution ρf typically accounts
for buoyancy forces with f representing the acceleration due to gravity.

The stress may be written in terms of the fluid pressure and the deviatoric
stress tensor as

σ = −pI+ τ , (2.2)

where p is the pressure, I is the identity tensor , and τ is the deviatoric stress
tensor.

A constitutive equation relates the deviatoric stress and the strain rate,
e.g.,

τ = 2µS. (2.3)
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Here, the dynamic viscosity, µ, is a second-rank tensor. Frequently, the
fluid viscosity is only available as an isotropic viscosity, in which case, the
constitutive relation becomes

τ = 2µS. (2.4)

The strain-rate tensor is written in terms of the velocity gradients as

S =
1

2

{

∇u+ (∇u)T
}

. (2.5)

Remark. In GILA, the viscosity, thermal conductivity, and mass
diffusivities are treated as second-rank tensors even though these
properties may only be available as scalar quantities for some
fluids. In the limiting case of a scalar material property such
as viscosity, the internal code-representation assumes that the
viscosity is µij = δijµ̂ where µ̂ is the user-input scalar viscosity.

2.2 Mass Conservation

The mass conservation principle in divergence form is

∂ρ

∂t
+∇ · (ρ∇u) = 0. (2.6)

In the incompressible limit, the velocity field is solenoidal,

∇ · u = 0, (2.7)

which implies a mass density transport equation,

∂ρ

∂t
+ u · ∇ρ = 0. (2.8)

For constant density, Eq. (2.8) is neglected with Eq. (2.7) remaining as a
constraint on the velocity field.
GILA provides the capability to transport up to 10 species represented by

the mass concentration Z1, Z2, ..., Z10. In order to simplify the presentation,
a single mass fraction is presented representing a binary mixture. In order
to account for the change in mass concentration, mass conservation applied
to the individual species yields for Z1

ρ
∂Z1
∂t
+ ρu · ∇Z1 = −∇J1 + ṁ1, (2.9)

where J1 is the diffusional mass flux rate, and ṁ1 is a volumetric mass source.
The mass source may include the injection of mass concentration from a
boundary or the source/sink terms from chemical reactions.
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The diffusional mass flux rate is based on Fick’s law of diffusion,

J1 = −ρD1∇Z1, (2.10)

where D is a tensorial mass diffusivity. Typically mass diffusivities are only
available as scalars so that

J1 = −ρD1∇Z1. (2.11)

In the most general form, the species concentration transport equations
are

ρ
∂ZI

∂t
+ ρu · ∇ZI = −∇ · JI + ṁI , (2.12)

where I indicates the species mass concentration, i.e., I = 1, 2, ..., 10.

2.3 Energy Conservation

The conservation of energy is expressed in terms of temperature, T, as

ρCp

{

∂T

∂t
+ u∇T

}

= −∇ · q+Q (2.13)

where Cp is the specific heat at constant pressure, q is the diffusional heat
flux rate, and Q represents volumetric heat sources and sinks, e.g., due to
exothermic/endothermic chemical reactions
Fourier’s law relates the heat flux rate to the temperature gradient and

thermal conductivity,
q = −k∇T, (2.14)

where k is the thermal conductivity tensor. In many cases, the fluid prop-
erties are only available as scalar quantities, i.e., the thermal conductivity is
considered to be isotropic.

2.4 Boundary and Initial Conditions

The prescription of boundary conditions is based on a flow domain with
boundaries that are either physical or implied for the purposes of performing a
simulation. A simple flow domain is shown in Figure 2.1 where the boundary
of the domain is Γ = Γ1 ∪ Γ2.
The momentum equations, Eq. (2.1), are subject to boundary conditions

that consist of specified velocity on Γ1 as in Eq. (2.15), or traction boundary
conditions on Γ2 as in Eq. (2.17).

u(x, t) = û(x, t) on Γ1 (2.15)
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Γ1

Γ
1

Γ1

Γ2
Outflow
Boundary

Figure 2.1: Flow domain for conservation equations.

In the case of a no-slip and no-penetration boundary, u = 0 is the prescribed
velocity boundary condition.
The prescribed traction boundary conditions are

σ · n = f̂(x, t) on Γ2, (2.16)

where n is the outward normal for the domain boundary, and f̂ are the
components of the prescribed traction. In terms of the pressure and strain-
rate, the traction boundary conditions are

{−pI+ 2µS} · n = f̂(x, t) on Γ2. (2.17)

The traction and velocity boundary conditions can be mixed. In a two-
dimensional sense, mixed boundary conditions can consist of a prescribed
normal traction and a tangential velocity. For example, at the outflow bound-
ary in Figure 2.1, a homogeneous normal traction and vertical velocity on Γ2
constitutes a valid set of mixed boundary conditions. A detailed discussion
of boundary conditions for the incompressible Navier-Stokes equations may
be found in Gresho and Sani.32

Turning attention to the species transport equations, boundary conditions
for Eq. (2.9) may consist of either a prescribed concentration or a mass flux
rate. In the binary mixture example, the prescribed concentration is

Z1(x, t) = Ẑ1(x, t), (2.18)

where Ẑ1 is the known value of concentration for species 1. The prescribed
mass flux rate is

−ρD1∇Z1 · n = Ĵ1(x, t), (2.19)

where Ĵ1(xi, t) is the known mass flux rate through the boundary with normal
n. The prescribed flux rate may also be specified in terms of a mass transfer
coefficient as

−ρD1∇Z1 · n = hD∞
(Z1 − Z1∞), (2.20)
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where hD∞
is the mass transfer coefficient and Z1∞ is a reference species

concentration.
The boundary conditions for the energy equation, Eq. (2.13), consist of

a prescribed temperature or heat flux rate. The prescribed temperature is

T (x, t) = T̂ (x, t), (2.21)

and the prescribed heat flux rate is

−k∇T · n = q̂(x, t), (2.22)

where q̂ is the known flux rate through the boundary with normal n. The
heat flux rate may also be prescribed in terms of a heat transfer coefficient,

−k∇T · n = h(T − T∞), (2.23)

where h is the heat transfer coefficient, and T∞ is a reference temperature.
Initial conditions take on the form of prescribed velocity, species and

temperature distributions at t = 0, i.e.,

u(x, 0) = u0(x),

ZI(x, 0) = Z0
I (x), (2.24)

T (x, 0) = T 0(x).

Remark. For a well-posed incompressible flow problem, the pre-
scribed initial velocity field in equation (2.25) must satisfy equa-
tions (2.25) and (2.26) (see Gresho and Sani31). If Γ2 = 0 (the
null set, i.e., enclosure flows with ~n ·u prescribed on all surfaces),
then global mass conservation enters as an additional solvability
constraint as shown in equation (2.27).

∇ · u0 = 0 (2.25)

n · u(x, 0) = n · uo(x) (2.26)

∫

Γ
n · uodΓ = 0 (2.27)
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Chapter 3

Explicit Time Integration

This chapter presents the spatial discretization and explicit time-integration
method for the incompressible Navier-Stokes equations. The spatial dis-
cretization is achieved using the Q1Q0 element with bilinear support for
velocity and piecewise constant support for the pressure in two dimensions.
In three dimensions, the velocity support is trilinear with piecewise constant
support for pressure. The methods for obtaining the weak-form of the con-
servation equations are well known and will not be repeated here (see for
example, Gresho, et al.,30 Hughes,44 and Zienkiewicz and Taylor68). The
spatially discrete form of Eq. (2.1) and (2.7) are

M u̇+ A(u)u+Ku+ Cp = F, (3.1)

and

CTu = 0. (3.2)

M is the mass matrix, A(u) and K are the the advection and the viscous
diffusion operators respectively, and F is the body force. C is the gradient
operator, and CT is the divergence operator. Here, u and p are understood
to be discrete approximations to the continuous velocity and pressure fields.
Equations (3.1) and (3.2) constitute a differential-algebraic system of equa-
tions that precludes the direct application of time-marching algorithms due
to the presence of the discrete incompressibility constraint.

Following Gresho, et al.,28 a consistent, discrete pressure Poisson equation
(PPE) is constructed using a row-sum lumped mass matrix, ML.

[CTM−1
L C]p = CTM−1

L [F−Ku− A(u)u] (3.3)

The PPE constitutes an algebraic system of equations that is solved for
the element-centered pressure during the time-marching procedure. Figure
3.1 shows the dual, staggered grid associated with the pressure variables.
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The PPE in Eq. (3.3) incorporates the effect of the essential velocity bound-
ary conditions from Eq. (2.15), and automatically builds in the boundary
conditions from Eq. (2.17) – see Gresho, et al.31

Equations (3.1) and (3.3) form the basis for a description of the explicit
time integration algorithm. It is assumed that the explicit algorithm begins
with a given divergence-free velocity field, u0, that satisfies the essential ve-
locity boundary conditions, and an initial pressure, p0. The explicit algorithm
proceeds as follows.

1. Calculate the partial acceleration, i.e., acceleration neglecting the pres-
sure gradient, at time level n.

ãn =M−1
L F̃n (3.4)

where
F̃n = Fn −Kun − A(u)un (3.5)

2. Solve the global PPE for the current pressure field.

[CTM−1
L C]pn = CT ãn (3.6)

3. Update the nodal velocities.

un+1 = un +∆t[ãn +M−1
L Cpn] (3.7)

4. Repeat steps 1-3 until a maximum simulation time limit or maximum
number of time steps is reached.

Pressure DOF Velocity DOF

Dual Grid

Primary Grid

Figure 3.1: Velocity mesh with two degrees-of-freedom (DOF) per node, and
the PPE dual grid with one DOF per element.
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Remark. In GILA, the prescribed initial conditions and bound-
ary conditions are tested and, if necessary, a projection to a
divergence-free subspace is performed on the initial velocity field,
u0. This guarantees that the flow problem is well-posed, even if
the user prescribed initial conditions violate the conditions of Eq.
(2.25) - (2.26) presented in Chapter 2.

In practice, the criterion for performing a projection onto a div-
free subspace is based upon the RMS divergence error

√

(CTu) · (CTu)

Nel
≤ ε, (3.8)

where Nel is the number of elements and ε is a user-specified
tolerance typically 10−10 to 10−6. If the RMS divergence error
is greater than the specified tolerance for the initial candidate
velocity field, û0, then the PPE problem in Eq. (3.9) is solved for
λ, and a mass-consistent projection performed using Eq. (3.10).

[CTM−1
L C]λ = CT û0 (3.9)

u0 = û0 −M−1
L Cλ (3.10)

The explicit time-integration algorithm must respect both diffusive and
convective stability limits. Although the analytical stability limits for the ex-
plicit time integration of the Navier-Stokes equations in multiple dimensions
remain intractable,28 approximate stability computations may be performed
using local grid metrics.
In an unstructured grid, with variable element size, the calculation of

the grid Re (Reynolds) and CFL (Courant-Freidrichs-Levy) numbers uses
the element-local coordinates and centroid velocities. Figure 3.2 shows the
canonical element-local node-numbering scheme, coordinate system and cen-
troid velocity for the 2-D and 3-D elements.
The grid Re and CFL numbers are defined as

Rei =
|u · hi|
2ν

(3.11)

CFLi =
|u · hi|∆t

‖hi‖2
(3.12)

where i = ξ, η, ζ are the element-local coordinates. The grid Re and CFL
numbers rely upon the projection of the centroid velocity onto the element-
local coordinate directions that are oriented according to the canonical local
node numbering scheme for each element type.11,14
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Figure 3.2: Grid parameters for: a) Two-dimensional element with cen-
troid velocity and characteristic element dimensions hξ and hη, b) Three-
dimensional element with centroid velocity and characteristic dimensions hξ,
hη, and hζ .

In order to use Eq. (3.12) to estimate a stable time step, a unit vector
for each element-local coordinate direction is defined as

êi =
hi

‖hi‖
(3.13)

where êi denotes the unit vector for each of the (ξ, η, ζ) coordinate directions.
Using the grid Re and the element size, h, the advective-diffusive stability
limit becomes

∆ti ≤ ν‖hi‖2
{

1 +
√

1 + (Rei)
2
}

−1

(3.14)

where a minimum over all elements and all element-local coordinate direc-
tions establishes a global minimum time-step.

The advective stability limit is established in a similar manner using

∆ti ≤
CFL‖hi‖
|u · hi|

. (3.15)

The stable time step is based upon the minimum time step derived from
either Eq. (3.14) or (3.15). However, for meshes graded to resolve boundary
layers, the advective-diffusive stability limit usually dictates the time step.
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3.1 Modified Finite Element Formulation

Several ad-hoc modifications are made to the standard Galerkin finite element
formulation for the explicit time integration algorithm. These modifications
include the use of a row-sum lumped mass matrix, single point Gaussian
quadrature, balancing tensor diffusivity (BTD), and hourglass stabilization
to damp the spurious zero-energy modes known as keystone or hourglass
modes. A detailed numerical analysis of these modifications is discussed in
Gresho, et al.28

Before discussing the reduced integration operators, a brief overview of
the element matrices associated with Eq. (3.2) and (3.1) is presented. The
element level gradient, mass, advection and diffusion operators are presented
in Eq. (3.16) – (3.19). Here, Na is the element shape function, the subscripts
a and b range from 1 to the number of nodes per element, Nnpe, and 1 ≤
i, j ≤ Ndim.

Ce
ia
= −

∫

Ωe

∂Na

∂xi

dV (3.16)

M e
ab =

∫

Ωe
NaNbdV (3.17)

Ae
ab(u) =

∫

Ωe
Na ui

∂Nb

∂xi

dV (3.18)

Ke
ab =

∫

Ωe

∂Na

∂xi

µij

∂Nb

∂xj

dV (3.19)

3.1.1 Reduced-Integration Operators

From an examination of the explicit algorithm, it is clear that the bulk of
the computational effort for a discrete time step consists of the formation
and assembly of the right-hand-side in Eq. (3.5), and the subsequent PPE
solution in Eq. (3.6). The right-hand-side vector is formed element-by-
element using a right-to-left matrix-vector multiply with reduced integration
operators for the diffusive and advective terms. In this context, reduced
integration is considered synonymous with single-point Gaussian quadrature.
Using single-point integration, the element area and gradient operators may
be written strictly in terms of element-local nodal coordinates.

Ae =
1

2
[x31y42 + x24y32] (3.20)

Ce
x =

1

2Ae
[y24, y31,−y24,−y31]
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Ce
y =

1

2Ae
[x42, x13,−x42,−x13] (3.21)

In Eq. (3.20) and (3.21), xab = xa − xb, where the subscripts a and b
identify the local node number and range from 1 to 4 for the two-dimensional
bilinear element. The fact that Cx3 = −Cx1, and Cx4 = −Cx2, permits the
storage of only the unique values in the gradient operator at the element level.
In two-dimensions, this requires only 4 floating point values per element for
Ce

x and Ce
y .

The computation of the element level gradient operators in three-dimensions
is somewhat more involved. To begin, the element-local nodal coordinates in
the referential domain are defined as follows:

ξT = [−1, 1,−1, 1, 1,−1, 1,−1]
ηT = [−1, 1, 1,−1,−1, 1, 1,−1] (3.22)

ζT = [−1,−1,−1,−1, 1, 1, 1, 1].

The Jacobian, evaluated at the element centroid, or central Gauss point,
is defined in terms of the element-local nodal coordinates (xe,ye, ze) and the
referential coordinates, (ξ, η, ζ) in Eq. (3.23).

J(0) =
1

8







ξTxe ξTye ξTze

ηTxe ηTye ηTze

ζTxe ζTye ζTze





 (3.23)

The element volume is simply the determinant of the Jacobian in Eq.
(3.24). Note that the element volume in three-dimensions may only be com-
puted exactly with single-point integration for elements that are bricks or
parallelepipeds.

V e = det(J(0)) (3.24)

The computation of the element level gradient operators proceeds by first
evaluating the co-factors of the Jacobian, the inverse Jacobian in Eq. (3.25),
and the gradient operators as shown in Eq. (3.26). Again, only the unique
gradient operators must be stored, i.e., 12 words of storage per element are
required for Ce

x, C
e
y , and Ce

z .
28

D = [Dij] = J(0)−1 (3.25)

Ce
x =

1

8
[D11ξ +D12η +D13ζ]
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Ce
y =

1

8
[D21ξ +D22η +D23ζ] (3.26)

Ce
z =

1

8
[D31ξ +D32η +D33ζ]

The computation of the element level mass matrix using one-point quadra-
ture and row-sum lumping yields the operator for 2-D in Eq. (3.27) and the
operator for 3-D in Eq. (3.28).

M e
ab = δab

Ae

4
(3.27)

M e
ab = δab

V e

8
(3.28)

The direct evaluation of the advection operator in Eq. (3.18) requires an
integral of triple products that is very computationally intensive. Therefore,
the advection operator is approximated using an ad-hoc modification known
as the centroid advection velocity. This modification assumes that u in Eq.
(3.18) may be approximated by

u =
Nnpe
∑

a=1

Na(0)ua (3.29)

where Na(0) indicates evaluation of the shape functions at the origin of the
referential coordinate system.
The application of single-point integration further simplifies the advection

operator. In two-dimensions, α1 and α2 in Eq. (3.30) are used to form the
advection operators in Eq. (3.31) where uab = ua − ub.

α1 = uCx1 + vCy1

α2 = uCx2 + vCy2 (3.30)

Ae(u)ue = [1, 1, 1, 1]T
Ae

4
[α1u13 + α2u24]

Ae(u)ve = [1, 1, 1, 1]T
Ae

4
[α1v13 + α2v24] (3.31)

For the evaluation of the three-dimensional advection operators, β1 – β4
are defined as

β1 = uCx1 + vCy1 + wCz1

β2 = uCx2 + vCy2 + wCz2

β3 = uCx3 + vCy3 + wCz3 (3.32)

β4 = uCx4 + vCy4 + wCz4,
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and used in the element-level advection operators.

Ae(u)ue = [1, 1, 1, 1, 1, 1, 1, 1]T
V e

8
[β1u17 + β2u28 + β3u35 + β4u46]

Ae(u)ve = [1, 1, 1, 1, 1, 1, 1, 1]T
V e

8
[β1v17 + β2v28 + β3v35 + β4v46](3.33)

Ae(u)we = [1, 1, 1, 1, 1, 1, 1, 1]T
V e

8
[β1w17 + β2w28 + β3w35 + β4w46]

The single-point diffusion operator may be stated simply as

Ke
ab = Cia µ̂ijCjb

V e (3.34)

where µ̂ij represents a tensorial viscosity. Here, i and j range from 1 to the
number of spatial dimensions while a, b range from 1 to the number of nodes
per element. Generation of the diffusion operator in Eq. (3.34) using single
point integration leads to rank deficiency of the element level operator. The
presence of an improper singular mode in the element level operator may
also lead to singularity in the assembled global operator. In two-dimensions,
there is only one improper singular mode, while in three-dimensions, there
are four singular modes. These modes are commonly referred to as hourglass
modes, and when excited in a numerical solution, they can remain undamped
and pollute the field solution.
A detailed discussion of the hourglass stabilization methods used in GILA

is beyond the scope of this chapter. However, for the sake of completeness,
a brief overview of the so-called h-stabilization is presented. The term, h-
stabilization, derives from the fact that the outer product of the element
hourglass vectors is used to form the stabilization operator.
In two-dimensions, the single hourglass mode is

ΓT = [1,−1, 1,−1]. (3.35)

This mode, when excited, may be detected visually as a w-mode in isomet-
ric plots of the field variable from a numerical solution. Following Goudreau
and Hallquist23 and Gresho, et al.,28 the element level stabilization operator
is formed using the outer-product of the hourglass vector.

He
ab = εhgµA

eΓT
aΓb (3.36)

εhg is a non-dimensional parameter that, in practice, is unity by default for
outer-product stabilization (see Gresho, et al.28).
In three-dimensions, the four hourglass vectors are

ΓT
1 = [1, 1,−1,−1,−1,−1, 1, 1]
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ΓT
2 = [1,−1,−1, 1,−1, 1, 1,−1]
ΓT
3 = [1,−1, 1,−1, 1,−1, 1,−1] (3.37)

ΓT
4 = [−1, 1,−1, 1, 1,−1, 1,−1].

The resulting 3-D hourglass stabilization operator is

He
ab = εehgµ[Γ1 Γ2 Γ3 Γ4]











C1
C2

C3
C4






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



















Γ1
Γ2
Γ3
Γ4



















(3.38)

where εehg = 1.0, C1 = C2 = C3 = C4 = h 3
√
V e, h = ( 3

√
Vmax − 3

√
Vmin)/2.

For the reduced integration element, γ-stabilization, see Belytschko, et
al,8,48,49 has also been investigated. γ-stabilization refers to the γ-vectors
constructed from the hourglass modes for stabilization. While γ-stabilization
is perhaps more robust than h-stabilization, this type of hourglass control also
requires more operations and storage. It is the author’s experience that it is
relatively more difficult to excite the hourglass modes in an Eulerian com-
putation than in a Lagrangian computation, e.g., a DYNA3D66 simulation.
However, γ-stabilization still requires fewer operations and less storage than
the fully integrated two-dimensional bilinear element.
In three-dimensions, this is not the case. Table 3.1 shows the memory

requirements and operations counts for a matrix-vector multiply (Ku) for a
variety of element formulations. In 2-D, γ-stabilization requires nearly the
same storage as the fully integrated element stored in either a compact, sym-
metric, element form, or in a global row-compressed form. However, this
element requires 9 more operations to achieve the matrix-vector multiply
when compared to the element-by-element matrix vector multiply with 2x2
quadrature. In 3-D, γ-stabilization is about 3 times more expensive to per-
form than the corresponding global row-compressed matrix-vector multiply.
There is one final modification to the finite element formulation that

derives from the explicit treatment of the advective terms. For advection
dominated flows, it is well known that the use of a backward-Euler treatment
of the advective terms introduces excessive diffusion. Similarly, Gresho, et
al.28 have shown that forward-Euler treatment of the advective terms results
in negative diffusivity, or an under-diffusive scheme. In order to remedy this
problem, balancing-tensor diffusivity (BTD), derived from a Taylor series
analysis to exactly balance the diffusivity deficit, is adopted. In the one-
point quadrature element, the BTD term is simply added to the kinematic
viscosity in Eq. (3.39) to form the tensorial diffusivity used in Eq. (3.34).

µ̂ij = µij + ρ
∆t

2
uiuj (3.39)
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Table 3.1: Memory requirements and operations counts for a matrix-vector
multiply for various element integration rules, stabilization operators, and
storage schemes. (Nel: number of elements, Nnp: number of nodes, EBE:
element-by-element)

Dimension Element Formulation Storage + ∗ Total Op.

2-D 1-pt., EBE 4Nel 12Nel 16Nel 28Nel
2-D 1-pt., h-stabilization, EBE 4Nel 22Nel 18Nel 40Nel
2-D 1-pt., γ-stabilization, EBE 9Nel 19Nel 25Nel 44Nel
2-D 2x2 Quadrature, EBE 10Nel 16Nel 16Nel 32Nel
2-D 2x2, ITPACKV46 9Nnp 8Nnp 9Nnp 17Nnp
3-D 1-pt., EBE 12Nel 29Nel 28Nel 57Nel
3-D 1-pt., h-stabilization, EBE 12Nel 69Nel 46Nel 115Nel
3-D 1-pt., γ-stabilization, EBE 45Nel 61Nel 100Nel 161Nel
3-D 2x2x2 Quadrature, EBE 36Nel 64Nel 64Nel 128Nel
3-D 2x2x2, ITPACKV46 27Nnp 26Nnp 27Nnp 53Nnp

In summary, the modifications made to the standard finite element for-
mulation include the use of single-point integration, a row-sum lumped mass
matrix, hourglass stabilization, and balancing tensor diffusivity. The benefits
promised by one-point integration are tremendous in computational fluid dy-
namics problems because of the requisite mesh sizes for interesting problems
and the concomitant memory requirements.

The reduction from 8 quadrature points to 1 in three dimensions reduces
the computational load by a factor of about 6 to 7 and reduces memory re-
quirements by over a factor of 2 for the basic gradient operators. Neglecting
the storage costs associated with the PPE, the total storage requirements
for the explicit algorithm is 60 words per 3-D element. Further, it has been
demonstrated that the convergence rate of the one-point elements is compa-
rable to the fully integrated elements at a fraction of the computational cost,
see Liu.49 With the element formulation defined, attention is now turned to
the parallel aspects of the explicit algorithm when a domain-decomposition
message-passing paradigm is used.

3.2 Domain-Decomposition/Message-Passing

This section describes the domain-decomposition message-passing (DDMP)
implementation of the explicit time integration algorithm for the the incom-
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pressible Navier-Stokes. A brief overview of domain-decomposition and the
associated sub-domain to processor mapping is discussed first. Next, the par-
allel right-hand-side assembly procedure is presented. The parallel assembly
procedure then sets the stage for a discussion of the parallel iterative solution
methods applied to the PPE.

3.2.1 Domain-Decomposition

Domain-decomposition is the process of sub-dividing the spatial domain into
sub-domains that can be assigned to individual processors for the subse-
quent solution process. There has been a great deal of work on the prob-
lem of spatial decomposition for unstructured grids over the last several
years.6,20,39–42,53,60 In general, the requirements for mesh decomposition is
that the sub-domains be generated in such a way that the computational
load is uniformly distributed across the available processors, and that the
inter-processor communication is minimized.

In GILA, the decomposition of the finite element mesh into sub-domains
is accomplished using the multilevel graph partitioning tools available in
CHACO.39–42 This type of spectral domain decomposition attempts to sub-
divide the computational domain in such a way that the computational load
is uniform across processors while attempting to minimize the inter-processor
communication. In part, CHACO was selected for this task because of its
implicit weighting on the number of wires in a hypercube when using the
spectral bisection and octasection methods.

In order to exploit the finite element assembly process44 for paralleliza-
tion, the dual graph of the finite element mesh, i.e., the connectivity of
the dual grid shown in Figure 3.1, is used to perform a non-overlapping
element-based domain decomposition. Note that the dual grid corresponds
to the grid associated with the element centered pressure variables in the
Q1Q0 element. Implicit in this choice of a domain decomposition strategy is
the idea that elements are uniquely assigned to processors while the nodes
at the sub-domain interfaces are stored redundantly in multiple processors.
Figure 3.3 illustrates a non-overlapping domain decomposition for a simple
two-dimensional vortex-shedding mesh partitioned for four processors. After
obtaining the domain decomposition, the assignment of nodes, boundary con-
ditions, and materials to individual processors is performed internally before
parallel execution begins.

3.2.2 Parallel Assembly via Message Passing

The finite element assembly procedure is an integral part of any finite element
code and consists of a global gather operation of nodal quantities, an add
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Figure 3.3: Four processor spatial domain decomposition for a two-
dimensional vortex-shedding mesh.

operation, and a subsequent scatter back to the global memory locations. A
complete description of the sequential assembly algorithm may be found in
Hughes.44 The assembly procedure is used to both form global coefficient
matrices, right-hand-side vectors, and matrix-vector products in an element-
by-element sense. In the case of the explicit time integration algorithm, the
emphasis is upon the assembly of the element level contributions to the global
right-hand-side vector

F̂ = ANel
e=1{fne −Keu

n
e − Ae(u)u

n
e} (3.40)

where A is the assembly operator. Here, the diffusive and advective contribu-
tions are computed at the element-level using un-rolled right-to-left matrix-
vector multiplies.
In order to exploit both register-to-register vector and cache-based pro-

cessors, data-independent groups of elements are identified. This not only
permits the vectorization of the assembly process, but also maximizes the
number of element level operations with respect to the number of load-store
operations. For cache based architectures, this permits all of the element data
in a data-independent group to be loaded into cache once for the element-
level operations, e.g., right-to-left matrix-vector multiplies. Thus, the assem-
bly process using the vector/cache blocks proceeds block-by-block with all
element level operations for a block being performed before completing the
“add-scatter” portion of the gather-add-scatter assembly procedure.
The parallel assembly procedure may be viewed as a generalized form

of the finite element assembly algorithm. However, inter-processor commu-
nication is an inherent part of the parallel assembly. As an example of a
two-processor assembly, consider the sequential mesh and the assignment of
the global nodes to two processors as shown in Figure 3.4. In Figure 3.4b, the
local node numbers are enclosed in brackets to the right of the global node
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Figure 3.4: Parallel assembly procedure: a) Sequential Mesh, b) 2-Processor
sub-domain mapping, c) Parallel assembly mapping.

number (global node 1 in sub-domain P0 is local node [1]). The sub-domain
assignment of the global nodes is the consequence of the unique assignment
of elements to processors, and reveals the existence of the nodes at the sub-
domain boundaries on multiple processors.

Figure 3.4b shows the global inter-processor assembly of the sub-domain
boundary nodes. Figure 3.4c illustrates the use of the local-to-global map-
ping required for the gather-add-scatter operation and the arrows between
global node numbers identify a send-receive pair. Thus, the parallel assembly
procedure induces communication in the form of a gather-send-receive-add-
scatter process. The parallel right-hand-side assembly for Eq. (3.5) may be
viewed as a generalized assembly with off-processor communication where
first the on-process vector/cache blocked assembly is performed according to
Eq. (3.41), and then the assembly at the sub-domain boundaries is performed
according to Eq. (3.42).
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F̂p = ANel
e=1{fne −Keu

n
e − Ae(u)u

n
e} (3.41)

F̂ = ANp−1
p=0 {F̂p} (3.42)

There are several things to note about the parallel assembly procedure.
First, the parallel assembly is simply a generalization of the sequential as-
sembly procedure that includes inter-processor communication. Second, the
algorithm only requires the communication of nodal data at the edges of
adjacent sub-domains. Therefore, as the problem size increases, the com-
munication overhead scales with number of surface nodes associated with
sub-domain boundaries. Finally, this algorithm permits the implementation
of vector-valued messages in order to avoid start-up issues associated with
short messages, i.e., for the assembly shown in Eq. (3.42), the message length
is proportional to the number of sub-domain boundary nodes, and the num-
ber of degrees-of-freedom per node. Finally, the use of non-overlapping grids
implies that nodes in the finite element mesh that lie on sub-domain bound-
aries are stored in multiple processors as shown in Figure 3.4b. In contrast,
over-lapping sub-domains would require the redundant storage of all the data
associated with elements at the sub-domain boundaries.

3.2.3 The Parallel Explicit Algorithm

In this section, the issue of solving the PPE in parallel will not be addressed
so that attention may be focused upon the solution process for the nodal
variables. The DDMP version of the explicit time integration algorithm
proceeds as follows.

1. Calculate the partial acceleration, i.e., acceleration neglecting the pres-
sure gradient, at time level n.

i. All processors calculate the processor-local right-hand-side terms ne-
glecting the pressure gradient according to Eq. (3.41).

ii. Perform the inter-processor finite element assembly according to Eq.
(3.42). In this step, processors that share a common sub-domain
boundary exchange messages containing partially assembled right-
hand side contributions, and accumulate the fully-summed terms
at the sub-domain boundaries.

iii. All processors compute the processor-local partial acceleration us-
ing a pre-calculated lumped mass matrix, i.e., the mass matrix has
been fully summed for the nodes at the sub-domain boundaries.

ãn =M−1
L F̂ (3.43)
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2. Solve the global PPE problem for the current pressure field.

[CTM−1
L C]P n = CT ãn (3.44)

3. Update the nodal velocities.

i. The computation of the pressure gradient term in Eq. (3.45) consists
of the parallel on-processor computation of the discrete pressure
gradient, followed by an inter-processor assembly.

un+1 = un +∆t[ãn +M−1
L {ANp−1

p=0 (CP n)}] (3.45)

4. Repeat steps 1-3 until a maximum simulation time limit or maximum
number of time steps is reached.

Remark. For the explicit solution algorithm, the global row-
sum lumped mass is accumulated at all nodes in the finite el-
ement mesh during the initialization phase. This requires the
nodal assembly of the partial nodal mass at nodes on sub-domain
boundaries as shown in Figure 3.4.

3.2.4 Communication Costs

This section outlines the communication costs associated with the explicit
time integration algorithm. The communication costs may be broken down
into the cost per time step for the momentum equations, and the cost per
time step for solving the PPE. To begin, NΓ is the number of nodes on the
boundary of a sub-domain. In two-dimensions, the average number of nodes
communicated to an adjacent processor is NΓ/4, and in three-dimensions the
average is NΓ/6. Assuming that there are 8 bytes per floating point word,
then the total number of bytes per processor to be communicated via a send
is

Nc = 8NΓNDOF , (3.46)

where NDOF is the number of degrees-of-freedom per node.
The communication cost for a send operation may be broken into three

parts: the time to initiate the message passing, tstartup, the cost per packet,
tpacket, and the transmission time, ttransmit. Thus, the time to send a message
is

tsend = tstartup +
Nc

Npacket

tpacket +Ncttransmit, (3.47)

where Npacket is the number of bytes per packet.

41



From Eq. (3.46) and (3.47), it is clear that the number of adjacent sub-
domains determines the total startup time for message passing. Next, the
communication cost per time step is estimated for the explicit algorithm. For
the momentum equations, there are two primary messaging steps. The first
occurs during the distributed assembly of the right-hand-side in Eq. (3.41).
The second occurs during the assembly of the pressure-gradient in Eq. (3.45).
Thus, there are 2 vector-valued messaging steps. For the solution of the PPE,
there is 1 vector-valued messaging step per iteration, where NIT iterations
are required in the conjugate gradient solution. From this, it is possible to
estimate the communication cost per time step for the explicit algorithm on
a per processor basis as

Cstep = 8(2 +NIT )NDOFNΓtsend. (3.48)
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Chapter 4

The Semi-Implicit Projection
Method

The solution of the time-dependent incompressible Navier-Stokes equations
poses several algorithmic issues due to the div-free constraint, and the con-
comitant spatial and temporal resolution required to perform time-accurate
solutions particularly where complex geometry is involved. Although fully-
coupled solution strategies are available, the cost of such methods is generally
considered prohibitive for time-dependent simulations where high-resolution
grids are required. The application of projection methods provides a compu-
tationally efficient alternative to fully-coupled solution methods.
A detailed review of projection methods is beyond the scope of this pa-

per, but a partial list of relevant work is provided. Projection methods,
also commonly referred to as fractional-step, pressure correction methods, or
Chorin’s method10 have grown in popularity over the past 10 years due to
the relative ease of implementation and computational performance. This
is reflected by the volume of work published on the development of second-
order accurate projection methods, see for example van Kan,45 Bell, et al.,7

Gresho, et al.,24–27 Almgren, et al.,1,2, 4 Rider,55–58 Minion,51 Guermond and
Quartapelle,35 Puckett, et al.,54 Sussman, et al.,63 and Knio, et al.47 The
numerical performance of projection methods has been considered by Brown
and Minion,9,52 Wetton,65 Guermond,33,34 Guermond and Quartapelle,36,37

and Almgren et al.3

As background, a brief review of Chorin’s original projection method is
presented before proceeding with the finite element form of the projection
algorithm. The vector form of the momentum equations may be written as

ρ
∂u

∂t
+∇p = F(u), (4.1)

where for a constant viscosity,

F(u) = f + µ∇2u− ρu · ∇u. (4.2)
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Now, F(u) may be decomposed into a div-free and curl-free part where
the div-free part is

∇ ·
{

∂u

∂t

}

= 0, (4.3)

and the curl-free part is
∇×∇p = 0. (4.4)

Discretizing in space and time, the decomposition, neglecting the contri-
bution of the pressure gradient, yields

ρ
(ũn+1 − un)

∆t
= Fh(u), (4.5)

where Fh(u) is the spatially discrete analogue of F in Eq. (4.2), and ũn+1 is
an approximate discrete velocity field at time n + 1. Note that the discrete
divergence of ũn+1 is generally not zero, i.e. GT ũn+1 6= 0 where GT is the
discrete divergence operator. The functional dependence of Fh upon the
discrete velocity, u, depends upon whether the algorithm is implicit, explicit,
or semi-implicit. However, the dependence on pressure, or rather pressure
gradient, is explicit so that

(ũn+1 − un)

∆t
=
(un+1 − un)

∆t
− 1

ρ
Gpn+1, (4.6)

where G is the discrete gradient operator, and GT is the discrete divergence
operator. Applying the discrete divergence operator to Eq. (4.6) yields a
Poisson equation for the pressure at time level n+ 1,

GT 1

ρ
Gpn+1 =

1

∆t
GT ũn+1. (4.7)

By eliminating the velocity at time level n, Eq. (4.6) yields a relationship
for the projected div-free velocity field.

un+1 = ũn+1 − 1
ρ
Gpn+1. (4.8)

4.1 Projection Properties

The philosophy behind projection algorithms is to provide a legitimate way
to decouple the pressure and velocity fields in the hope of providing an ef-
ficient computational method for transient, incompressible flow simulations.
In practice, the action of the projection, P , is to remove the part of the
approximate velocity field that is not div-free, i.e., u = P(ũ). In effect, the
projection is achieved by decomposing the velocity field into div-free and
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curl-free components using a Helmholtz decomposition. The decomposition
may be written as

ũ = u+∇λ, (4.9)

where ũ is a non-solenoidal velocity field, u is its div-free counterpart, and
∇λ is the curl-free component, i.e., ∇×∇λ = 0.
Thus, given an approximate, non-solenoidal velocity field, ũ, F(ũ) may

be projected onto a divergence-free subspace such that

ρ
∂u

∂t
= P(F(ũ)), (4.10)

and

∇p = Q(F(ũ)). (4.11)

Here, P and Q are the projection operators, and they have the following
properties. P projects a velocity vector onto a div-free subspace, and Q
projects a vector into a curl-free subspace. Both P and Q are idempotent,
i.e., P = P2 and Q = Q2. Therefore, repeated application of the projection
operators does not continue to modify the projected results. The projection
operators are orthogonal, and commute, i.e., PQ = QP = 0.
The explicit forms of the continuous projection operators are

P(·) =
{

I −∇(∇2)−1∇·
}

(·), (4.12)

and

Q(·) = I − P = ∇(∇2)−1∇ · (·). (4.13)

It should be noted that P , andQ have built-in all the appropriate physical
boundary conditions. Further, The eigenvalues of P and Q are either 0 or 1
so that the projections are norm-reducing.

4.2 Time Integration Method

In GILA, the optimal Projection-2 (P2) method identified by Gresho24 forms
the starting point for a discussion of the finite element projection algorithms.
Before proceeding with a description of the P2 algorithm, the semi-discrete
Navier-Stokes equations are presented. The spatial discretization of the con-
servation equations is achieved using the Q1Q0 element with bilinear support
for velocity and piecewise constant support for the pressure in two dimen-
sions. In three dimensions, the velocity support is trilinear with piecewise
constant support for pressure. The methods for obtaining the weak-form
of the conservation equations are well known and will not be repeated here
(see for example, Gresho, et al.,30 Hughes,44 and Zienkiewicz and Taylor68).
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The spatially discrete form of momentum conservation Eq. (2.1) and the
divergence constraint Eq. (2.7) are

M u̇+ A(u)u+Ku+MM−1
L Cp = F, (4.14)

CTu = 0, (4.15)

where M is the unit mass matrix, A(u) and K are the advection and
the viscous diffusion operators respectively, and F is the body force. C is
the gradient operator, and CT is the divergence operator, i.e., C and CT are
nearly the discrete finite element analogues of G and GT discussed above. In
order to simplify the nomenclature, u and p are understood to be discrete
approximations to the continuous velocity and pressure fields.
Following the development of the projection method introduced above,

M

(

ũn+1 − un

∆t

)

= Fh(u, p), (4.16)

where Fh(u, p) may involve an explicit or implicit dependence upon u and
is understood to be a discrete vector quantity. From this, it is clear that
the intermediate velocity, ũn+1, corresponds to an approximate velocity field
that has not yet felt the influence of the current pressure field, and therefore
is not necessarily solenoidal.
Incorporating the pressure gradient contribution, the approximation to

Fh(u) is,

M

(

un+1 − un

∆t

)

=M

(

ũn+1 − un

∆t

)

+MM−1
L Cpn+1. (4.17)

Eliminating the velocity at time level n, yields the discrete statement
of the Helmholtz decomposition with the concomitant div-free constraint,
CTun+1 = 0, viz.,

[

ML C
CT 0

]{

un+1

λ

}

=

{

MLũ
n+1

0

}

. (4.18)

Here, ML is the row-sum lumped, i.e., diagonalized, mass matrix, and λ =
∆t(pn+1 − pn)
The system of equations in Eq. (4.18) is analogous to those introduced by

Chorin.10 Although Chorin suggested using a method of successive substitu-
tions to obtain the velocity and pressure fields corresponding to the div-free
state, the solution of Eq. (4.18) via a gradient-based iterative method and
the solution of the Schur complement of Eq. (4.18) has proven more efficient.
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The Schur complement of the projection operator may be formed explicitly
from Eq. (4.18) yielding

[CTM−1
L C]λ = CT ũn+1, (4.19)

whereML is the diagonalized, i.e., row-sum lumped mass matrix and includes
the prescription of essential velocity boundary conditions. Note that the
term projection operator is used loosely here to describe Eq. (4.18) since
its solution yields a div-free velocity field and the corresponding Lagrange
multiplier. However, this operator is not to be confused with the continuous
projection operators, P and Q.
Eq. (4.18) is the consistent, discrete form of the elliptic operator for

the projection algorithm. It represents an algebraic system of equations
that is solved for the element-centered Lagrange multiplier during the time-
marching procedure. Figure 3.1 shows the dual, staggered grid where λ and
P are centered. The projection operator in Eq. (4.19) incorporates the effect
of the essential velocity boundary conditions, and automatically builds in the
boundary conditions from Eq. (2.15) and (2.17) – see Gresho, et al.25

The projection algorithm proceeds as follows. Given a div-free velocity,
un, and its corresponding pressure field, pn, solve the momentum equations
for an approximate velocity field at n+ 1.

1. Calculate the approximate velocity field ũn+1

[M +∆tθKK]ũn+1 =

[M −∆t(1− θK)K]u
n +

∆t{θFFn+1 + (1− θF )F
n − Aun −MM−1

L Cpn}. (4.20)

Here, θK and θF control the time-weighting applied to the viscous and
body force terms with 0 ≤ θK , θF ≤ 1. For θK = 1, the viscous terms
are treated explicitly, while for θK = 0, the viscous terms are treated
implicitly, i.e., via backward-Euler, and for θK = 1/2, the viscous treat-
ment corresponds to a Crank-Nicolson integrator.

2. Given the approximate velocity, ũn+1, solve Eq. (4.19) for λ.

3. Project the approximate velocity to a div-free subspace.

un+1 = ũn+1 −M−1
L Cλ (4.21)

4. After the velocity update, an updated pressure at time level n + 1 is
obtained via

pn+1 = pn +
λ

∆t
. (4.22)
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Remark

In the projection algorithm, the start-up procedure to obtain the pressure,
p0, proceeds as follows.

1. Calculate the partial acceleration, i.e., acceleration neglecting the pres-
sure gradient, at time level n by solving the mass-matrix problem.

M ã0 = F0 −Ku0 − A(u)u0 (4.23)

where ã0 is the instantaneous acceleration neglecting the pressure gra-
dient.

2. Solve the global PPE for the current pressure field.

[CTM−1
L C]p0 = CT ã0 (4.24)

In GILA, the prescribed initial conditions and boundary con-
ditions are tested and, if necessary, a projection to a div-free
subspace is performed on the initial velocity field, u0. This guar-
antees that the flow problem is well-posed, even if the user pre-
scribed initial conditions violate the conditions of Eq. (2.25) –
(2.26).

In practice, the criterion for performing a div-free projection is
based upon the RMS divergence error

√

(CTu) · (CTu)

Nel
≤ ε (4.25)

where Nel is the number of elements and ε is a user-specified
tolerance typically 10−10 to 10−7. If the RMS divergence error
is greater than the specified tolerance for the initial candidate
velocity field, ũ0, then the PPE problem in Eq. (4.26) is solved for
λ, and a mass-consistent projection performed using Eq. (4.27).

[CTM−1
L C]λ = CT ũ0 (4.26)

u0 = ũ0 −M−1
L Cλ (4.27)

The semi-implicit projection algorithm must respect a relaxed convective
stability limit where CFL ≤ O(5− 10) as described in Gresho and Chan.25
Because of the semi-implicit treatment of viscous terms, there is no diffusive
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stability constraint. Computational experiments have demonstrated that
CFL ≤ 5 is a reasonable tradeoff between accuracy and computational cost.
In an unstructured grid, with variable element size, the calculation of the

grid Re (Reynolds) and CFL (Courant-Freidrichs-Levy) numbers uses the
element-local coordinates and centroid velocities as described in Chapter 3.
The second-order semi-implicit projection method uses one additional

modification to the finite element formulation that derives from the explicit
treatment of the advective terms. For advection dominated flows, it is well
known that the use of a backward-Euler treatment of the advective terms
introduces excessive diffusion. Similarly, Gresho, et al.28 have shown that
forward-Euler treatment of the advective terms results in negative diffusivity,
or an under-diffusive scheme. In order to remedy this problem, balancing-
tensor diffusivity (BTD), derived from a Taylor series analysis to exactly
balance the diffusivity deficit, is adopted. In the one-point quadrature ele-
ment, the BTD term is simply added to the kinematic viscosity in Eq. (4.28)
to form the tensorial diffusivity.

µ̂ij = µij + ρ
∆t

2
uiuj (4.28)
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Chapter 5

Boundary Conditions and
Source Terms

This chapter summarizes the boundary conditions that are available in GILA.
The keywords that may be used to prescribe boundary conditions are sum-
marized in Chapter 7.

5.1 Node and Side Sets

Sets provide a generalized concept for grouping nodes and element faces (or
sides). In GILA, node sets and side sets provide the basic entities for the
prescription of boundary conditions. Node sets consist of an arbitrary list of
nodes that are treated as one entity for the application of nodal boundary
conditions. Side sets consist of an arbitrary list of quadrilateral edges in two
dimensions and a list of hexahedral faces in three dimensions. Figure 5.1
shows a node set associated with inflow conditions and a side set associated
with traction boundary conditions for an external flow problem.

5.2 Nodal Boundary Conditions

The prescription of nodal boundary conditions in GILA encompasses all
nodal degrees-of-freedom, e.g., velocity, temperature, mass concentration
species, and turbulent kinetic energy. These boundary conditions are typ-
ically referred to as essential or Dirichlet boundary conditions and fix the
nodal values of the field variable according to a prescribed value or function
of time.
As an example of nodal boundary conditions, consider the prescription

of boundary conditions based on the flow domain shown in Figure 5.1. In-
flow boundary velocity conditions that emulate free-stream conditions are
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No−Slip, No−Penetration
(Node Set) Γs

Γi(Node Set)
Inflow Boundary

Γo

Outflow/Traction Boundary
(Side Set)

U

Figure 5.1: Flow domain with inflow Γi, outflow Γo, and no-slip, no-
penetration Γs boundaries.
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prescribed as u1 = U and u2 = 0 on Γi. No-slip and no-penetration velocity
boundary conditions are prescribed at the cylinder wall, (u, v) = (0, 0) on Γs.

5.3 Traction Boundary Conditions

The formulation of the weak-form of the momentum equations Eq. (2.1)
yields traction boundary conditions also known as natural boundary condi-
tions. In terms of the shape functions Na, the traction boundary conditions
may be computed as

F e
ia
=
∫ e

Γ
Na f̂i(xi, t) dΓ, (5.1)

where f̂i are the components of the prescribed traction. Here, 1 ≤ i ≤ Ndim
and 1 ≤ a ≤ Nnpe where Ndim is the number of space dimensions and
Nnpe is the number of nodes per element.
Alternatively, the boundary conditions may be written in terms of the

stress,

F e
ia
=
∫ e

Γ
Na σ̂ijnj dΓ, (5.2)

where σ̂ij is the prescribed stress and nj is the outward normal for the domain
boundary.
In terms of the pressure and strain-rate, the traction boundary conditions

are
F e

ia
=
∫ e

Γ
Na {−p̂δij + 2µ ε̂ij}nj. (5.3)

By default, homogenous traction boundary conditions are applied unless
other boundary conditions are prescribed, i.e., homogeneous traction (natu-
ral) boundary conditions are the do-nothing boundary conditions. The trac-
tion and velocity boundary conditions can be mixed. In a two-dimensional
sense, mixed boundary conditions can consist of a prescribed normal traction
and a tangential velocity. For example, at the outflow boundary in Figure
2.1, a homogeneous normal traction and vertical velocity on Γ2 constitutes a
valid set of mixed boundary conditions. A detailed discussion of boundary
conditions for the incompressible Navier-Stokes equations may be found in
Gresho and Sani.32 Note that this boundary condition provides an impor-
tant component for the coupling between fluid and structural components
for coupled problems and is computed internally for this class of problems.

5.3.1 Pressure Boundary Conditions

In many practical situations, the viscous contributions in Eq. (5.3) may be
neglected. This is typically the case in situations where the viscosity is small,
i.e., the Reynolds number is relatively large. In this case, the viscous terms
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are ignored leaving only the pressure contribution to the traction boundary
conditions,

F e
ia
=
∫ e

Γ
Na {−p̂}ni, (5.4)

where p̂ is the prescribed pressure.
Due to the common occurrence of this type of limiting traction boundary

condition, GILA refers to this as a pressure boundary condition which reflects
its use in finite element models. The pbc – end keyword block is used to
prescribe the pressure as a function of time, p̂(t) on a boundary side set.

5.4 Outflow Boundary Conditions

In many problems, it is necessary to truncate the physical domain resulting
in an artificial outflow boundary. In the presence of strong vortical struc-
tures the homogeneous natural (do-nothing) boundary conditions can result
in a global pressure response that is physically unrealistic. Heinrich, et al.38

present a summary of this problem and suggest several remedies.
In GILA, outflow boundary conditions that are similar to the pressure

boundary condition in Eq. (5.4) are used. However, the outflow boundary
conditions use a known pressure distribution that has been computed during
the solution procedure. This boundary condition results in an equilibrating
force applied on the outflow boundary,

F e
ia
=
∫ e

Γ
Na {−pn}ni, (5.5)

where pn is the pressure field computed at time tn.
The outflow boundary condition is prescribed using the outflow – end

keyword block which may be used to apply the outflow boundary conditions
on a list of side sets.

5.5 Body Forces

The presence of body forces in the momentum equations results in element-
level force contributions. At the element-level, the forces are

F e
ia
=
∫

Ω
Na ρfi dΩ, (5.6)

where fi represents the body-force per unit volume.
In thermal-convection problems where a Boussinesq fluid is appropriate,

the body-force due to buoyancy is

F e
ia
=
∫

Ω
Na ρgi β(T − Tref ) dΩ. (5.7)

54



where, gi is the acceleration due to gravity, β is the coefficient of thermal
expansion, and Tref is a reference temperature. The specification of the
gravity vector, reference temperature and fluid properties is achieved with
the material – end keyword block.

Remark

By default, the fluid temperature is initialized to the reference
temperature Tref specified in thematerial – end keyword block.
Each fluid is initialized material-by-material resulting in built-in
temperature initial conditions.

5.6 Flux Boundary Conditions

The heat flux rate at a boundary is prescribed as

Qe
a =

∫

Γ
Na q̂i(xi, t) ni dΓ (5.8)

where q̂i is the known flux rate through the boundary with normal ni. Using
the constitutive relationship between temperature and heat-flux is

q̂i(xi, t) = −kij

∂T

∂xj

, (5.9)

where kij is the thermal conductivity tensor. The homogeneous form of
the heat-flux boundary condition is the default and represents a perfectly
insulated, i.e., zero heat-flux boundary.
The heat flux rate may also be prescribed in terms of a convective heat

transfer coefficient,

q̂i(xi, t) ni = h(T − T∞), (5.10)

where h is the heat transfer coefficient, and T∞ is a reference temperature.
For the species transport equations, the prescribed mass flux rate for

species-1 is

ṁe
a =

∫

Γ
Na Ĵ1i

ni dΓ, (5.11)

where Ĵ1i
is the known flux rate through the boundary with normal ni. (For

simplicity in the presentation, only the boundary conditions for species-1 are
presented here.) Using the constitutive relation between species concentra-
tion and mass-flux rate,

Ĵ1(xi, t) = −ρD1ij

∂Z1
∂xj

, (5.12)
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where D1ij
is the tensorial mass diffusivity. The homogeneous form of the

mass-flux boundary condition is the default and represents a boundary where
the gradient of the species in the boundary normal direction is zero.
The prescribed flux rate may also be specified in terms of a convective

mass transfer coefficient as

Ĵ1i
ni = hD∞

(Z1 − Z1∞), (5.13)

where hD∞
is the mass transfer coefficient and Z1∞ is a reference species

concentration.

5.7 Pressure Levels

In incompressible flow, the pressure is typically only known up to an additive
constant – the hydrostatic pressure level. The prescription of a specific hy-
drostatic pressure level is achieved through the ppebc – end keyword block.
For the Q1Q0 element technology, setting the hydrostatic pressure level re-
quires a shell-set in 2-D or a solid-set in 3-D to identify those elements for
which the pressure level will be fixed.
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Chapter 6

Running GILA

GILA has been developed to permit rapid configuration making it adaptable
to many computer architectures. GILA has been exercised on computers
ranging from SUN, SGI and Linux workstations to networks of workstations,
CRAY vector supercomputers, the Meiko CS-2, the Intel Pargon, Sandia’s
CPLANT and ASCI TFLOPs machines. The common thread for all of these
machines is a UNIX (or UNIX like) environment. Thus, GILA provides a
single command line interface which functions in the fashion which most
common UNIX commands operate, i.e, a single command followed by a list
of command line arguments.

6.1 Execution

GILA may be executed with the following command line options:

gila -i mesh -c cntl -o out -s plot -h hist

-g glob -d dump -r restart -x part

GILA Command Line Arguments

Keyword Meaning
-i mesh GILA mesh file
-c cntl GILA control file
-o out Human readable output file (default: out)
-s plot binary state database for graphics (default: plot)
-h hist time history database (default: hist)
-g glob ASCII global time history data (default: glob)
-d dump Check-point file for writing restarts (default: dump)
-r restart Check-point file for reading restarts (no default)
-x part Parallel partition file (default: part)
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All of the file names may include a path name as well. For example, the
following command line makes use of the automatic expansion of the user’s
login directory and both absolute and relative paths for files.

gila -i /scr/plate/flow1.msh -c../cntl1 -o/home/joe/plate.out

There are several notable exceptions where file names may not include
a path. GILA relies upon the “Sacket” I/O library for the generation of
the GRIZ and THUG data files. For the state plot file names (-s plot) and
the time history file names (-h hist), it is assumed that a six character root
file name will be used. As the familied graphics files are generated during
a simulation, the root file name and subsequent family members will be
written to disk with the family member file names being the root file name
concatenated with a two digit family number. Hopefully, future graphical
data file formats will not be so limited.

6.2 Restarts

GILA will write a binary check-point file which contains all of the data
necessary to restart a computation at intervals specified in the control file.
An existing check-point file can be used to restart gila using the following
command-line syntax.

gila -i flow1.msh -c cntl1 -r old dump -d new dump

Note that the dump keyword must be used in the analyze – end key-
word block to activate restarts (see Chapter 7).
The state and time history plot files are preserved when a restart is per-

formed. Similarly, the global output data is simply concatenated to the
existing glob file when a restart is performed. However, the human output
file is not preserved, i.e., it is over-written when a restart is performed unless
a different output file is specified.
GILA will permit the user to change only a limited number of analysis

parameters when a check-point file is used to restart a computation. For ex-
ample, changing mesh parameters such as the number of nodes and elements
is not possible. However, changing material properties, the number of time
steps, plot intervals, etc. is acceptable.

58



Chapter 7

GILA Control File

The necessary input data for a GILA simulation is split into multiple files.
The first file, the control file, contains all of the control information for the
problem, e.g., analysis type, solver options, fluid properties, etc. The mesh
file contains the nodal spatial coordinates, connectivity, node-set and side-set
data, etc.
In the ensuing description, bold text denotes keywords, while italic text

identifies keyword parameters or optional data in the control file. Primary
sections of the control file are delimited by a keyword – end sequence that
may contain a series of keyword – parameter sequences. The presence of a
keyword and a parameter implies that the parameter is expected as input.
Where possible, default values have been identified in order to minimize the
number of keywords that are necessary in an input file.
Every attempt has been made to eliminate order-dependence in the con-

trol file, however it is necessary for the analyze – end block to occur before
any boundary condition blocks. Comments in the control file must be pre-
ceded by a “$” symbol or a “#” symbol, or may be enclosed in a pair of
braces “{ }”. All input in the control file is case insensitive. Figure 7.1
shows the typical format of a GILA control file.

7.1 Analysis Title (title)

title
80-character analysis title

The analysis title may be specified in the input file using the title key-
word. This keyword assumes that the following line of the input file contains
an 80-character title. Comment characters are ignored in the title character
string. The title character string is echoed to the screen and to the out file
at execution time with the 80-character mesh title. An example of how the
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title

Analysis Title {80 characters or less}

# starts a comment line

$ starts a comment line

{ Comments may be enclosed in braces as well }

# The analyze-end block describes the analysis parameters

analyze

...

end

# The material-end block defines material properties

material 1

...

end

# The turb-end block defines the turbulence model

turb

...

end

# The momsol-end block defines the momentum equation solver

momsol

...

end

# The ppesol-end block defines the PPE equation solver

ppesol

...

end

# The ndhist-end block defines the time-history nodes

ndhist

...

end

end

Figure 7.1: A Sample GILA Control File
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title keyword appears in the input file is shown below and in Figure 7.1.

title

An 80-character string follows the ‘‘title’’ keyword

7.2 Analysis Parameters (analyze – end)

analyze – Starts the analyze – end block.

end – Terminates the analysis block.

The analysis parameters define the method of solution, i.e., the type of
analysis to be performed and the solution algorithm to be used. These pa-
rameters also define algorithm specific options such as hourglass stabilization,
the number of times steps to take, termination time, output intervals, etc.
The analysis parameters are specified in the analyze – end block in the
control file.
An example of how the analyze – end block would appear in the control

file is shown below.

analyze

solve 3

nstep 10

plti 10

...

end

Remark. In order to properly map nodal degrees-of-freedom at
run-time, the analyze – end block must appear in the control
file before any boundary condition blocks. This is the only order
dependence that must be respected in the control file.

7.2.1 solve

solve solver id

GILA provides multiple solver options for a variety of flow-related physics.
The selection of the physics and related solver is obtained with the solve
keyword in the analyze - end block. The solve command requires one
argument that defines the physics and the underlying assumptions for solving
the associated partial differential equations. Currently, there are 4 valid
values for solver id.
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1: Transient, incompressible, Navier-Stokes using single-point quadrature,
lumped mass, and Forward Euler time integration (default).

3: Transient, incompressible, Navier-Stokes using full quadrature and P2.

101: Transient advection-diffusion using Forward Euler with a prescribed
velocity field (û). This option makes use of single-point integration.

102: Transient advection diffusion using semi-implicit implicit time integra-
tion with a prescribed velocity field (û). This option makes use of fully
integrated elements.

7.2.2 temp

temp flag

Activate (temp=1) the solution of the temperature equation with the
Navier-Stokes. (default: temp=0).

7.2.3 species

species flag

Activate (species=1) the solution of the species transport equations with
the Navier-Stokes. (default: species=0).

7.2.4 react

react flag

Activate (react=1) chemical reactions with the transport of species and
temperature. This option requires that temp=1 and species=1. (default:
react=0).

Time Step and Time Integration Options

The following keywords are provided to set/modify the parameters associated
with the time step and the associated time integration methods.

7.2.5 nstep

nstep Nstep

Define the number of time steps, Nstep, to be taken during a single simu-
lation. (default: nstep=10).
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7.2.6 term

term τf

Define the simulation termination time, τf , in units consistent with the
problem definition. (default: term=1.0).

Remark. The term keyword and nstep keywords both affect
the the length of simulated time in GILA. If the number of time
steps specified using the nstep keyword would yield a simulation
time greater than the termination time, the number of time steps
is reduced to terminate the calculation according to the term
command. Thus, the term keyword places a ceiling on the sim-
ulation termination time regardless of how many time steps have
been specified by the nstep keyword.

7.2.7 deltat

deltat ∆t

Define the time step size, ∆t, to be used. This value may be over-ridden
during the stable time step computation. (default: deltat=0.01).

7.2.8 average – ;

average
stats level
start time
avgi Navg

;

The average – ; keyword sequence activates time-averaging by setting
the statistics level to a non-zero value of 10, 20 or 30, and prescribing a time
to start accumulating statistics. Activating the time averaging results in an
additional plot file containing the mean field values, correlations, skewness
and flatness generated at the end of a simulation. The time-average plot file
is the plot file name with .avg appended, e.g., plot.avg. By default, the
time averaging parameters are: stats=0, start=0.0, and avgi=100.

Remark. Note that time averaging is only available for analy-
ses that solve the time-dependent Navier-Stokes equations, and is
not fully operational for the time-dependent advection-diffusion
solvers. Currently, the accumulated time-averages are only avail-
able with the EXODUS and PXI state graphics databases. The
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derivation of additional statics require the use of the statistics
post-processor, LESTATS.15

stats level

Set the level of statistics to gather during the calculation.

stats=10: Mean quantities are computed during the computation and out-
put at the selected time averaging interval. The mean quantities gener-
ated at this level include the velocity, < ui >, pressure, < p >, vorticity
< ωi >, enstrophy, 1/2 < ωi > · < ωi >, and helicity, < ωi > · < ui >.
For thermal problems, the mean quantities also include the tempera-
ture, < T >, and for species transport, the mean species concentration,
< Zj >.

stats=20: At this level of statistics, second moments are computed during
the computation and output at in the time-average dump interval. In
addition to the mean quantities, for stats=10, the turbulent stress
tensor and scalar flux vectors are computed and output. That is, <
uiuj >, < uiT >, < uiZj >, < uip > are added to the time average
database.

stats=30: In addition to the mean and derived flux quantities, the higher-
order averages are generated that include < u3i > and < u4i >.

start tstart

Set the simulation time to start collecting statistics.

avgi Navg

Set the interval to write plot files containing the time-averaged statistics
to Navg. The statistics are re-initialized and collection of new statistics starts
after the time-averaged data is written to the plot file.

7.2.9 cfl

cfl CFLmax

Specify the maximum CFL number, CFLmax, for the problem. The max-
imum CFL number is used in the time-step calculation for explicit algorithm
only when it controls the time step. In the projection algorithm, the maxi-
mum CFL number is used to compute the time step in conjunction when the
dtchk keyword is activated. (default: cfl=1.0).
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7.2.10 dtchk

dtchk N∆t

Interval to check the stable time step size and report grid parameters. A
negative value for the interval causes the time step to be checked but not
changed at the specified interval, i.e., it forces the grid parameters (Reh,
CFLh) to be reported (default: dtchk=10).

7.2.11 thetak

thetak θK

Time weight for viscous terms: 0 ≤ thetak ≤ 1 (default: thetak=0.5).

7.2.12 thetab

thetab θB

Time weight for balancing tensor diffusivity (BTD): 0 ≤ thetab ≤ 1
(default: thetab=0.5).

7.2.13 thetaa

thetaa θA

Time weight for advection: 0 ≤ thetaa ≤ 1 (default: thetaa=0.0). This
option is currently parsed, but ignored.

7.2.14 thetaf

thetaf θF

Time weight for body forces: 0 ≤ thetaf ≤ 1 (default: thetaf=0.5).

Hourglass Control Options

The following keywords are provided to set/modify the parameters associated
with the hourglass stabilization. These keywords are effective only for the
explicit time integration algorithms that make use of the reduced-integration
element.
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7.2.15 hglass

hglass type

Specify the hourglass type to use. (default: hglass=1). Valid options for
type are:

1: Specifies h-type hourglass control.

2: Specifies that the Γ-stabilization should be used. Currently, Γ-stabilization
is only available for two dimensional calculations.

7.2.16 epshg

epshg εhg

Set the hourglass coefficient. (default: epshg=1.0).

Miscellaneous Options

7.2.17 epsdt

epsdt ε∆t

Set the accuracy measure for sub-cycling the pressure solves. This is ap-
plicable only to the explicit time-integration algorithm. (default: epsdt=1.0e-
10).

7.2.18 divu

divu ‖∇ · u‖RMS

Set the RMS divergence tolerance. (default: divu=1.0e− 10).

7.2.19 mass

mass type

Set the type of mass matrix. In GILA, the mass matrix can take on
the form of a lumped mass matrix, Ml, a consistent mass matrix, Mc, or
the higher-order mass matrix. The higher order mass matrix is defined as
Mho =

1
2
Ml +

1
2
Mc. Valid options for mass matrix type are:

mass=1: Sets the lumped Mass.

mass=2: Sets the consistent mass matrix.
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mass=3: Sets the “higher-order” mass matrix.

(default: mass=1) for solve=1,101, default: mass=2 for solve=3,103.)

Advection Options

There are currently three advection schemes in GILA. All of the advection
schemes are explicit in time and rely on a basic underlying second-order
central advection scheme. For low Reynolds number flows, balancing tensor
diffusivity (BTD) preserves stability by promoting the advection scheme to
second-order in time. The flux-limiting algorithm (FCT) is monotonicity
preserving and can work in conjunction with BTD to yield very accurate
high-Reynolds number simulations. The third option is an experimental
scheme that relies upon a gradient-based metric.

7.2.20 btd

btd flag

Toggle the balancing tensor diffusivity flag. btd=1 turns balancing ten-
sor diffusivity (BTD) on, while btd=0 turns BTD off. (default: btd=1).

7.2.21 fct

fct flag

Toggle the flux-limiting advection scheme on or off. fct=1 turns the
flux-limiting algorithm on, while fct=0 turns it off. (default: fct=1).

7.2.22 icset

icset
set u u0
set v v0
set w w0
set T T0
set z1 Z10
set k k0
set e ε0
set a2 A20

;
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The icset – ; sequence is used to control the initialization of the velocity,
temperature, etc. The complete command syntax is provided with the ex-
planation of each parameter below. The keyword, icset starts the command
block, and the ‘;’ terminates the block.

set u u0

Set the initial x-velocity to u0.

set v v0

Set the initial y-velocity to v0.

set w w0

Set the initial z-velocity to w0.

set t T0

Set the initial temperature to T0.

set z1 Z10

Set the initial mass fraction to Z10.

set k k0

Set the initial turbulent kinetic energy to k0.

set e ε0

Set the initial turbulent dissipation rate to ε0.

set a2 A20

Set the initial second invariant of the Reynolds stress tensor to A20.

Output Options

The following commands are used to control the type of ASCII output, plot
files, and the intervals at which data is written to each type of file.
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7.2.23 pltype

pltype type

Select the type of state graphics database to be generated. Valid options
for type are:

pltype=0: disables all graphics state output.

pltype=1: generates GRIZ18 compatible plot files. Note that if this file
option is selected for state databases, the time history database defaults
to the THUG61 database.

pltype=10: generates EXODUS state and time-average output files. Note
that if this file option is selected for state databases, the time history
database defaults to the HISPLT64 database.

pltype=20: generates PXI state and time-average output files. Note that if
this file option is selected for state databases, the time history database
defaults to the HISPLT64 database.

7.2.24 plti

plti Nplot

Set the plot state output interval, Nplot. (default: plti=10).

7.2.25 prtlev

prtlev level

Set the print level to control the amount of data written to the ASCII
(human-readable) output file. level=0 suppresses all output except for the
primary code settings. level=1 produces a data echo of the mesh coordinates
and topology, while level=2 produces a data echo of the primitive variables
every Nprint time steps. (default: prtlev=0).

7.2.26 prti

prti Nprint

Set the hard copy print interval, Nprint, for the output of primitive vari-
ables. This requires prtlev=2. (default: prti=10).
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7.2.27 ttyi

ttyi Nstep

Set the interval to report the min/max values of the velocity to Nstep.
The min/max values are normally written to the screen at run-time. (default:
ttyi=10).

7.2.28 thtype

thtype type

Select the type of time-history database to be generated. type may take
on one of the following values.

thtype=0: disables all graphics state output.

thtype=1: generates THUG61 compatible time history files. Note that
if this file option is selected for the time history database, the state
database defaults to the GRIZ18 database.

thtype=20: generates time history files compatible with HISPLT.64

7.2.29 vortics

vortics flag
This command activates the output of the voriticity field associated with

the velocity field at the final time-step of the simulation to a file to be used as
initial conditions in a subsequent vorticity-based calculation. Any non-zero
value for flag activates this option. The velocity initial conditions are written
to the output file name with a ’.vor’ appended to the name. This provides
the ability to dump a vorticity field in a “frozen” state for later use with a
vorticity-based flow solver. (default: vortics=0).

7.2.30 icwrt

icwrt flag
This command activates the output of primitive variables at the final

time-step of a simulation to a file to be used as initial conditions in a sub-
sequent calculation. Any non-zero value for flag activates this option. The
velocity initial conditions are written to the output file name with a ’.ics’
appended to the name. This provides the ability to dump a velocity field in
a “frozen” state for later use with the advection-diffusion options in GILA.
(default: icwrt=0).
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7.2.31 dump

dump Ndump

Activate checkpoint-restart files where a restart file will be written every
Ndump time steps. In addition, a restart file will be written at the termination
of the calculation. (default: dump=0).

7.3 Fluid Models (material – end)

material id – Start the material block with the material identifier, id.

end – Terminate the material block.

The specification of a material model occurs in thematerial – end block
in the control file. In the specification of the material, an integer identifi-
cation, id, is required. The material id must match the material (element
block) numbers produced during mesh generation for each material (element
block) in the mesh.
An example of how the material – end block would appear in the input

file is shown below.

material 1

model 10

rho 1000.0

mu 1.0e-3

...

end

Material Parameters

The following keyword – parameter commands are provided to specify fluid
properties.

7.3.1 model

model type

Set the model that is to be identified with the material/block id. The
table below shows the models that may be selected. (default: model=1).

Model Number Description
1 Constant properties (no EOS)
10 Reacting flow - ideal gas EOS
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7.3.2 rho

rho ρ

Set the reference fluid density, ρ. (default: rho=1.0).

7.3.3 mu

mu µ

Set the reference fluid dynamic viscosity, µ. (default: mu=1.0).

7.3.4 k

k k

Set the reference thermal conductivity, k. (default: k=1.0).

7.3.5 diff1

diff1 D1

Set the reference mass diffusivity D1. (default: diff1=1.0).

7.3.6 beta

beta β

Set the volumetric expansion coefficient, β. (default: beta=0.0).

7.3.7 t ref

t ref T∞

Set the reference temperature, T∞. (default: t ref=0.0).

7.3.8 gx

gx gx

Set the x-component of the gravity to gx. (default: gx=0.0).
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7.3.9 gy

gy gy

Set the y-component of the gravity to gy. (default: gy=0.0).

7.3.10 gz

gz gz

Set the z-component of the gravity to gz. (default: gz=0.0).

7.3.11 p0

p0 p0

Set the reference thermodynamic pressure to p0. This pressure is used as
the initial condition for the evolution of the thermodynamic pressure in the
low-Mach number formulation (default: p0=0.0).

Arrenhius Reaction Constants

7.3.12 a

a a

Set the Arrenhius constant, a.

7.3.13 e

e E

Set the activation energy, E.

7.3.14 r

r R

Set the gas constant, R.

7.3.15 cp

cp Cp

Set the constant-pressure specific heat, Cp.
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7.3.16 gamma

gamma γ

Set the ratio of the specific heats, γ. (default: gamma=1.4).

7.3.17 q0

q0 q0

Set the heat release coefficient, q0.

7.4 Momentum Equation Solver (momsol –

end)

The solution of the Navier-Stokes equations using the P2 algorithm, or the
solution of advection-diffusion equation with the semi-implicit algorithm re-
quires the selection of an linear equation solver and the concomitant solver
parameters. For example, selection of an iterative solver requires the specifi-
cation of a convergence criteria, the maximum number of iterations, and the
interval to check the residual norms. See Chapter 3 for definitions of error
norms used in the iterative solvers.

momsol solver Specify the momentum solver, solver to be used. Valid
parameters for the momentum solver are:

1: Jacobi pre-conditioned conjugate gradient solver.

end Terminate the momentum solver block.

An example of how the momsol – end block would appear in the input
file is shown below.

momsol 1

itmax 100

itchk 10

eps 1.0e-5

wrt 0

hist 0

end
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Remark. In the selection of an analysis option, the selection
of a momentum equation solver is implied. For example, solve
1 selects the explicit time integration scheme which requires no
momentum solver. Similarly, solve 101 selects the explicit solver
for the transient advection-diffusion equation and does not require
any solver options to be set.

By selecting an analysis option that can perform a variety of time
integration schemes, it is implied that the user select appropriate
convergence criteria and limits. For example, solve 2 selects the
P2 option which employs an element-by-element conjugate gradi-
ent solver for the momentum equations, and will use the default
iteration limits and convergence criteria unless otherwise speci-
fied by the user. In a similar fashion, the selection of solve = 3 or
solve = 102 implicitly requires the user to set the iteration limit
and convergence criteria.

Momentum Equation Solver Parameters

The following keyword-parameter pairs may be used to control the linear
equation solver used for the momentum equations.

7.4.1 itmax

itmax Nitmax

Set the iteration limit, Nitmax. (default: itmax=10).

7.4.2 itchk

itchk Ncheck

Set the interval to check convergence, Ncheck. (default: itchk=5).

7.4.3 eps

eps ε

Convergence tolerance. (default: eps=1.0e− 10).

7.4.4 wrt

wrt flag
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Toggle the output of diagnostic information to the screen. wrt=0 sup-
presses diagnostic information from the solver, while wrt=1 activates diag-
nostic information from solver. (default: wrt=0).

7.4.5 hist

hist flag

Toggle the output of the ASCII convergence history file called history.mom.
hist=0 suppresses writing the ASCII convergence history file, while hist=1
activates the ASCII convergence history file. (default: hist=0).

7.5 Pressure Equation Solvers (ppesol – end)

In the solution of the Navier-Stokes equations using either the explicit, or
the implicit (P2) algorithms, a pressure equation (PPE) must be solved. The
selection of either a direct or an iterative solver requires the specification
of parameters such as the convergence criteria, the maximum number of
iterations, and the interval to check the residual norms.
There are a variety of options that may be enabled to control the behavior

of the pressure solvers. However, each solver can have its own unique control
keywords and parameters. Thus, each solver is presented with its complete
set of keywords. Note that the direct solvers do not require any parameters
to be set other than the solver id. In the list of valid solver options, each
solver is identified as either (MP) indicating that the solver may be used in
parallel, or (Serial) indicating that the solver is only available for serial/vector
platforms.

ppesol solver id

solver id may be one of the following pressure solvers.

1: Element-by-element, Jacobi-preconditioned conjugate gradient with
pressure extrapolation (MP).

2: Saddle-point solver (MP).

11: UDU format Gaussian elimination (Serial).

12: UDU format ITLIB solver options (Serial).

41: Parallel-vector (PVS) row solver (Serial).

42: Parallel-vector (PVS) preconditioner with EBE solver (MP).

61: compact storage ITPACK Jacobi-preconditioned conjugate gradi-
ent (MP).
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62: row-sum stabilized ITPACK Jacobi-preconditioned conjugate gra-
dient (MP).

63: compact storage ITPACK SSOR-preconditioned conjugate gradi-
ent (MP). In MP mode, this preconditioner is effectively a sub-
domain preconditioner.

64: compact storage ITPACK SSOR-preconditioned conjugate gradi-
ent with Eisenstat transformation.

end Terminate the pressure solver block.

An example of how the ppesol – end block would appear in the input
file is shown below.

ppesol 1

itmax 100

itchk 10

eps 1.0e-5

wrt 0

hist 0

end

Pressure Equation Solver Parameters

The following keyword-parameter pairs may be used to set to control the
linear equation solver used for the momentum equations.

7.5.1 itmax

itmax Nitmax

Set the iteration limit, Nitmax. (default: itmax=10).

7.5.2 itchk

itchk Ncheck

Set the interval to check convergence, Ncheck. (default: itchk=5).

7.5.3 novec

novec Nvec

Set the number of vectors used in the orthogonal projection conjugate
gradient solvers. This option is valid for ppesol=1,61,62,63,64. (default:
novec=0).
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7.5.4 eps

eps ε

Convergence tolerance. (default: eps=1.0e− 10).

7.5.5 wrt

wrt flag

Toggle the output of diagnostic information to the screen. wrt=0 sup-
presses diagnostic information from the solver, while wrt=1 activates diag-
nostic information from solver. (default: wrt=0).

7.5.6 hist

hist flag

Toggle the output of the ASCII convergence history file called history.ppe.
hist=0 suppresses writing an ASCII convergence history file, while hist=1
activates the ASCII convergence history file. (default: hist=0).

7.5.7 omega

omega ω

SSOR over-relaxation parameter, 1 ≤ ω ≤ 2, applies only to solvers 63 –
64. (default: omega=1.0).

7.5.8 stab

stab flag

Activate the stabilization for the Pressure Poisson equation. The stabi-
lization options below apply only to solvers 61 – 64. A complete description
of these stabilization techniques may be found in Christon.13 Valid values
for the stabilization flag are:

10: Simple row-sum stabilization.

20: Global jump stabilization.

30: Local jump stabilization.
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7.5.9 beta

beta β

Associated with the stabilization option is a stabilization parameter β.
The beta keyword sets the global jump stabilization parameter to β. (default:
beta=0.0)

7.6 Nodal Time History Blocks (ndhist – end)

Time history nodes may be defined to track primitive variables at a small
number of nodes where the interval that the nodal data is recorded at is much
smaller than for state data. The time history data is recorded in the time
history database specified as a command line execution option. All nodal
time history parameters are specified in a ndhist – end block in the control
file.

ndhist n Specify n time history nodes. (default: n=0).

end Terminate the nodal time history block.

An example of how the ndhist – end block would appear in the control
file is shown below.

ndhist 10

st 100

en 110

...

nstep 2

end

Nodal Time History Parameters

The following keywords may be used to set the nodal time history parameters.

7.6.1 st

st start node

Set the starting node number in the block.
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7.6.2 en

en end node

Set the ending node number in the block.

7.6.3 nstep

nstep Nstep

Set the time history output interval. (default: nstep=1).

7.7 Turbulence Models

Turbulence models and their associated parameters are specified in turb –
end block in the the control file.

turb model Specify the turbulence model, model to be used. Valid param-
eters for the turbulence model are:

1: Smagorinsky model without dynamic subgrid scale.

100: Baseline k − ε model.

102: Experimental version of Lien – Leschziner k − ε model.

103: Experimental version of Launder’s k − ε− a2 model.

end Terminate the turbulence model block.

An example of how the turb – end block would appear in the input file
is shown below.

turb 1

smagc 0.1

...

end

Turbulence Model Parameters

The following keywords may be used to set the turbulence model parameters.

7.7.1 smagc

smagc Cs

Set the value of the Smagorinsky constant, Cs. (default: smagc=0.1).
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7.8 Nodal Boundary Conditions

Prescribed nodal boundary conditions are input in a block in the control file
that is initiated with a boundary condition keyword and terminated with
end. For example, to prescribe boundary values for the x-velocity the ubc –
end block would be used with a nodeset keyword included in the block. The
arguments for the nodeset command consist of the nodeset id, the amplitude
for the load curve, amp, and the load curve identifier, lc as shown below.

ubc
nodeset id amp lc

end

7.8.1 nodeset

nodeset id amp lc

Specify the nodeset identifier, id, the nodeset amplitude, amp, and the
nodeset load curve, lc. Any valid load curve id greater than 0 may be used
for lc. In addition, pre-programmed analytic load curves may be specified
with the following values for the load curve id:

0: Specifies a fixed amplitude essential boundary condition.

-1: Prescribes a steady, parabolic distribution for the velocity.

-2: Prescribes a time-dependent, parabolic distribution for the velocity

7.8.2 ubc – end

The ubc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the x-velocity

7.8.3 vbc – end

The vbc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the y-velocity
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7.8.4 wbc – end

The wbc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the z-velocity

7.8.5 tbc – end

The tbc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the temperature field.

7.8.6 rbc – end

The rbc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the mass density, ρ.

7.8.7 kbc – end

The kbc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the turbulent kinetic energy.

7.8.8 ebc – end

The ubc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the turbulent rate of dissipation, ε.

7.8.9 abc – end

The abc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the second invariant of the Reynolds stress tensor, A2.

7.8.10 zbc – end

The zbc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the mass fraction, Z1.
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7.8.11 ybc – end

The ybc – end block is used with the nodeset keyword to prescribe the
nodeset id, the nodeset amplitude, amp, and the associated load curve, lc,
for the mass fraction, Z2.

7.9 Outflow Boundary Conditions

outflow
sideset id

end

Outflow boundary conditions are input in a outflow – end block in the
control file. Outflow boundaries are identified in the outflow – end block
with the sideset keyword. The arguments for the sideset command consist
of the sideset id as shown below.

7.9.1 sideset

sideset id

Specify the sideset identifier, id. Valid values for id are restricted to the
sideset id’s produced during the mesh generation process.

7.10 Pressure Boundary Condition (pbc – end)

The pbc – end block is used to apply a pressure load over each face in a
sideset . This keyword activates what is commonly referred to as the pressure
boundary condition according to §5.3.1.

7.11 Pressure Levels (ppebc – end)

Set the number of pressure values, Npbc to be pegged during the pressure
solve. In the ppebc – end block, Npbc pressure levels, Pid may be associated
with each element id in the list of Npbc elements.

ppebc Npbc

el id Pid

end
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7.12 Initial Conditions

Initial conditions may be input in GILA in a variety of ways. The simplest
method is to use the icset command in the analyze – end section of the
control file. In addition, there are a variety of specialized functions for ini-
tializing the velocity field. Finally, an existing velocity field may be read
from a PXI file using the icfile command.

7.12.1 Initial Condition Functions (icfn – end)

Option 1:

Option 1 of the icfn – end command initializes the temperature field to
T in a spherical/circular region of radius, R centered at (X,Y ,Z). If the frac
option is specified then the mass fraction is set to F in the spherical region.

icfn 1
x X
y Y
z Z
radius R
temp T
frac F

end

Option 2:

Option 2 of the icfn – end command initializes a fixed velocity field with
amplitude V in the entire domain.

icfn 2
vel V

end

Option 3:

Option 3 of the icfn – end command initializes a velocity field with
counter-rotating cells. The amplitude of the velocity field, V , and the number
of cells, Ncell, in a single spatial dimension may be specified.

icfn 3
vel V
ncell Ncell

end
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Option 10:

Option 10 of the icfn – end command initializes a velocity field by read-
ing an ASCII file generated by a previous run using the icwrt command.

icfn 10
file filename

end

7.12.2 Initial Condition Input (icfile – end)

icfile
file filename
index id
type filetype

end

The icfile – end section of the input file identifies a local filename that
contains the velocity field to be read and used as initial conditions. The
filename may be up to 80 characters long and can contain relative path
information. Currently, only velocity values are read from the file.

Valid file types are either ASCII or pxi. For type=pxi, the id is the
time index in the PXI database associated with the velocity data. The icwrt
command is used to generate an ascii file that is compatible with the type
= ascii initial condition file.

7.13 Derived Force Computation (dforce – end)

dforce
sideset id

end

The computation of derived forces is selected with the dforce – end
block in the control file. The computation of derived forces yields the Carte-
sian components of the resultant forces on each prescribed sideset surface.
Currently, the derived forces are output to the global results file, glob.

The surfaces to be used for the derived force computations are identified
in the dforce – end block with the sideset keyword. The arguments for
the sideset command consist of the sideset id as shown below.
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7.13.1 sideset

sideset id

Specify the sideset identifier, id. Valid values for id are restricted to the
sideset id’s produced during the mesh generation process.

7.14 Load Curve (lcurve – end)

lcurve id Npts
t1 v1
t2 v2
t3 v3
. . .
tNpts vNpts

end

The input of load-curve data for time-dependent boundary conditions
requires the specification of a load curve id, the number of points associated
with the load curve, Npts, and the data associated with the load curve. The
load curve id must be positive and non-zero. The time – value (ti, vi) pairs
are expected to be in a space-delimited contiguous list.

7.15 Parallel File Sytem (pfs – end)

The parallel file system block activates the use of the parallel file system of
the ASCI Red TFLOPs machine, or similar system that provides an array of
parallel file systems. The available options for using a parallel file system are
listed below and control the output of graphics state databases only when
pltype = 1 in the analyze – end block. Otherwise, the pfs options apply
to the ASCII output, time history databases, and checkpoint-restart files.

pfs id
ndisk Ndisk

start starting disk
end

Valid values for id are:

1: Sets the root portion of the path for files written on the raid system to :
/raid/io .
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2: Sets the root portion of the path for files written on the pfs to : /pfs/io .

3: Sets the root portion of the path for files written on the pfs to : /pfs/tmp .

Remark. The use of the pfs control block assumes that disks
on the parallel file system are numbered sequentially from some
starting disk number. This model also assumes that one file per
processor will be written in a “round-robin” fashion on Ndisk pfs
disks beginning with the starting disk. Currently, this option
applies only to the parallel file systems on Sandia’s Intel Paragon
and ASCI Red machines. Here, a user id must be provided on
the command-line options in order for GILA to properly open
and write the files across the parallel file system. For example,
-o /machris/out, where machris is the user id, is required as a
command line option in order to properly place the output files
on the parallel file system.

Parallel File System Options

The following keywords may be used to set the pfs options.

7.15.1 ndisk

ndisk Ndisk

Set the number of disks in the parallel file system to use. Typically, this
number also corresponds to the number of I/O nodes to be used.

7.15.2 start

start starting disk

Set the starting disk number to be used. For example, if Ndisk pfs disks
is specified with a starting disk number of 10, and id = 1, then the state,
time-history and checkpoint-restart files will be written in parallel directories
starting with /raid/io 10/.
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Chapter 8

Example Problems

This chapter presents several GILA calculations for the first-time user who
wishes to perform simple computations for comparison before embarking on
a full-blown analysis. For this reason, the control files are replicated here
with representative results that can be compared for a rough verification of
the local GILA installation. In addition, most of the sample problems use
relatively coarse grids to minimize run times and provide a starting point for
the user who wishes to experiment with code options before attempting any
significant calculations.

8.1 Entrance Region in a 2-D Duct

This sample problem consists of the entrance region to a two-dimensional
duct. At the duct inlet, a plug inlet velocity profile (u = 1) is prescribed
for the x-velocity along with homogeneous natural boundary conditions in
the y-direction. This permits a vertical “slip” velocity along the inlet plane.
No-slip and no-penetration conditions (u = 0, v = 0) are prescribed along
the top and bottom duct walls. Natural boundary conditions are applied at
the outflow boundary. The computaional grid contains 1000 elements, and
has a 20 : 1 aspect ratio as shown in Figure 8.1. The boundary conditions
have been designed to result in a pressure singularity at the corners of the
inlet to the duct.
The GILA control file is shown in Figure 8.2 for a Reynolds number of

100 based on the channel height. In this example, the time-accurate, second-
order projection algorithm for incompressible flow is used along with the PVS
direct solver for the pressure.
A segment of the screen output that reports the RMS divergence for the

initial conditions before and after the div-free projection is shown in Figure
8.3. In this calculation, the divergence for the specified initial conditions
failed the divergence test, so a mass-consistent projection to a divergence-
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NodeSet ID: 4

NodeSet ID: 1

NodeSet ID: 3

Figure 8.1: Mesh for the two-dimensional duct entrance region.

title
Duct Entrance Region

{ Analysis paramters }
analyze
  solve      3
  nstep    250
  pltype    10
  plti      10
  prtlev     0         
  prti       1
  term     100.00      
  deltat     0.10
  dtchk     −1         
  divu       1.0e−18
  thetak     1.0       
  thetab     1.0
  mass       1
  icset   
    set_u 0.0
    set_v 0.0 
  ;
end

material 1
  model      1
  rho        1.0       
  mu         1.0e−2
end

{ Prescribed x−velocity }
ubc
  nodeset  4  1.0475 0 
  nodeset  1  0.0    0 
  nodeset  3  0.0    0
end

{ Prescribed y−velocity }
vbc
  nodeset  1  0.0 0 
  nodeset  3  0.0 0
end

{ Pressure solver }
ppesol 41 end

{ Momentum solver }
momsol     1 
  itmax  50       
  itchk   2
  eps     1.0e−8 
  wrt     0
end

{ Time history nodes
  along the outlet 
  plane }
ndhist 6
  nstep  1
  st 312 en 312
  st 516 en 516
  st 720 en 720
end

exit

Figure 8.2: Control file for two-dimensional duct entrance region.
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D i v e r g e n c e E r r o r

Allowable Divergence ......................... 1.0000E-18

Initial Divergence ......................... 7.1238E-03

Projected Divergence ......................... 1.3261E-14

Figure 8.3: Divergence diagnostics for the initial conditions before and after
the div-free projection.

free subspace was performed on the initial velocity data in order to produce
boundary conditions and intial conditions that are compatible. The resulting
velocity field yielded an RMS divergence of ‖∇ · u‖RMS = 1.3261E − 14.
GILA also reports the grid CFL and Reynolds numbers at the interval

specified by the dtchk keyword. Sample screen output of the grid parameters
are shown in Figure 8.4. The grid CFL and Reynolds numbers are reported
in terms of the element local coordinates (ξ,η). For this calculation, the
maximum grid CFL number was 1.1937 at t = 0 in element 001 as indicated
by the grid parameters. In addition to the grid parameters, GILA reports the
minimum and maximum velocities at intervals specified by the ttyi keyword
as shown in Figure 8.5.
The duct calculation is carried out until a steady-state is essentially

achieved as indicated in Figure 8.6. The time-history points were placed
along the duct cross section at node 312 located at (0.488, 0.3), node 516
at (0.488, 0.5), and node 720 at (0.488, 0.7). The outlet x-velocity profile in
Figure 8.6 d) is plotted as points over the the exact solution for Poiseuille
flow. Poiseuille flow in a channel is characterized by a balance between a
constant pressure gradient and viscous shear forces, i.e., for steady-flow,

1

Re

∂2u

∂y2
=

∂p

∂x
. (8.1)

For the duct flow, the exact pressure gradient is ∂p/∂x = −0.12, and at
Re = 100, the resulting parabolic velocity profile has a maximum velocity of
umax = 1.5, and average velocity of uavg = 1.0. As shown in Figure 8.6 d), the
computed velocity profile essentially interpolates the exact velocity profile at
the duct outlet. Figure 8.7 shows snapshots of the flow fields (velocity and
pressure) at t = 10 time units.
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G r i d R e y n o l d s & C F L N u m b e r s

xi-grid Reynolds Numbers:

===========================

Min. Element no. ........................... 951

Min. xi-element dimension ................. 8.7748E-02

Minimum xi-grid Reynolds Number ........... 2.2979E+00

Max. Element no. ........................... 950

Max. xi-element dimension ................. 1.0833E+00

Maximum xi-grid Reynolds Number ........... 5.6738E+01

eta-grid Reynolds Number:

==========================

Min. Element no. ........................... 1

Min. eta-element dimension ................. 5.0000E-02

Minimum eta-grid Reynolds Number ........... 6.5742E-05

Max. Element no. ........................... 785

Max. eta-element dimension ................. 5.0000E-02

Maximum eta-grid Reynolds Number ........... 8.0298E-03

xi-grid CFL Numbers:

======================

Min. Element no. ........................... 1000

Min. xi-element dimension ................. 1.0833E+00

Minimum xi-grid CFL Number ................ 4.8345E-02

Max. Element no. ........................... 901

Max. xi-element dimension ................. 8.7752E-02

Maximum xi-grid CFL Number ................ 1.1937E+00

eta-grid CFL Numbers:

======================

Min. Element no. ........................... 1

Min. eta-element dimension ................. 5.0000E-02

Minimum eta-grid CFL Number ................ 5.2594E-05

Max. Element no. ........................... 785

Max. eta-element dimension ................. 5.0000E-02

Maximum eta-grid CFL Number ................ 6.4238E-03

Figure 8.4: Screen report of grid parameters showing the minimum and max-
imum grid Reynolds and CFL numbers and and associated element numbers.
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Step # Time U-Min. U-Max. V-Min. V-Max.

======== ========== ========== ========== ========== ==========

0 0.0000E+00 0.0000E+00 0.1048E+01 -.1452E-03 0.6165E-04

10 1.0000E+00 0.0000E+00 0.1271E+01 -.1791E+00 0.1791E+00

20 2.0000E+00 0.0000E+00 0.1385E+01 -.1801E+00 0.1801E+00

30 3.0000E+00 0.0000E+00 0.1445E+01 -.1801E+00 0.1801E+00

40 4.0000E+00 0.0000E+00 0.1474E+01 -.1800E+00 0.1800E+00

50 5.0000E+00 0.0000E+00 0.1487E+01 -.1800E+00 0.1800E+00

. . .

250 2.5000E+01 0.0000E+00 0.1499E+01 -.1800E+00 0.1800E+00

Figure 8.5: Screen output of minimum and maximum velocity values at every
10 time steps.
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Figure 8.6: Nodal time history plots for a) x-velocity, b) y-velocity, c) kinetic
energy, d) outlet x-velocity profile at t=10 time units.
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a)

b)

c)

Figure 8.7: Snapshot of a) x-velocity, b) y-velocity, and c) pressure at t = 10
time units.
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8.2 Backward Facing Step

Although motivated in part by Freitas,21 the computations presented here
for the backward facing step are based upon the Re = 800 backward facing
step benchmark performed by Gartling.22 This benchmark was chosen, in
part, because it presents a demanding test for solution strategies applied to
the PPE due to the pressure singularity at the corner of the step.

The backward facing step height is taken as H/2, the total channel height
is H, and the length of the computational domain is L = 30H. A parabolic
inlet velocity profile is specified above the step with Reynolds number defined
as: Re = UavgH/ν. The isothermal flow solution is integrated in time from
initial divergence-free conditions.

Following Gartling,22 four grids with identical boundary conditions were
constructed for the backward facing step. The grids are labeled B through
E in Table 8.1 to correspond to those used by Gartling. However, the grid
spacing used here has been doubled to account for the fact that the compu-
tations use the Q1Q0 element rather than the bi-quadratic velocity, linear
discontinuous pressure elements employed by Gartling. On mesh E, this
yields 387, 362 degrees-of-freedom (DOF) in the problem corresponding to
the 355, 362 reported by Gartling.

The coarse-grid mesh used for case-B is shown in Figure 8.8. No-slip and
no-penetration boundary conditions are prescribed using Nodesets 1, 2, and
4 which correspond to the upper/lower walls and downstream face of the
step. At the inlet, Nodeset 3, a parabolic x-velocity profile was prescribed
with zero vertical velocity (v = 0).

The GILA control file for the backward-facing step problem is shown in
Figure 8.9. Here, a lumped-mass matrix (mass 1) and backward-Euler time-
integrator (thetak 1.0, thetab 1.0) have been selected with the the PVS
direct solver for the pressure. Note that a negative boundary condition load-
curve id (−1) has been used with nodeset 3 to prescribe an inline computation
of the parabolic x-velocity profile at the step inlet.

All the backward facing step calculations have been carried out to 400
time units, where the flow field has essentially established a steady-state con-
dition, e.g., time history plots of the kinetic energy, and velocity components
indicate that the solution is no longer changing in time. The separation and
re-attachment lengths shown in Table 8.1 are for a snapshot at 400 time
units. l1, and l3 are the re-attachment points on the upper and lower walls
respectively, and l2 is the separation point on the upper wall. The computed
separation/re-attachment lengths are within about 1.25% of the benchmark
results presented by Gartling, while the primary re-attachment point, l1, is
within 14% of the length estimated from Armaly, et al.5

Figure 8.10 shows snapshots of the pressure and vorticity fields for the
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Nodeset ID: 1

Nodeset ID: 2

Nodeset ID: 3

Nodeset ID: 4

Figure 8.8: Coarse-grid mesh (case-B) for the Re=800 backward facing step.

title
Backward Facing Step 

{Analysis parameters}
analyze
  solve  3
  nstep  10000
  plti     500
  prti   10000
  pltype  1
  dump    0
  prtlev  0
  ttyi    25
  icset  
     set_u 1.0
     set_v 0.0
  ;
  mass    1
  btd     1
  divu    1.0e−10
  deltat  1.0e−1
  dtchk  −1
  dtscal  1
  thetak  1.0
  thetab  1.0
  term    400.00
end

material   1
  model   1
  rho     1.0
  mu      1.25e−3
end

ubc
  nodeset 3 1.5 −1
  nodeset 1 0.0  0 
  nodeset 2 0.0  0 
  nodeset 4 0.0  0 
end

vbc
nodeset  1 0.0 0
nodeset  2 0.0 0
nodeset  3 0.0 0
nodeset  4 0.0 0
end

{PPE solver}
ppesol      64
  itmax   850
  itchk     1
  novec    15
  omega   1.0
  eps     1.0e−6
  wrt     0
end

{Momentum solver}
momsol    1
  itmax   50
  itchk    5
  omega   1.0
  eps     1.0e−5
  wrt     0
end

exit
{End−of−control file}

Figure 8.9: Control file for the backward facing step.
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Figure 8.10: Backward facing step at 400 time units: a) and b) Pressure
field, c) and d) Vorticity field.

backward facing step calculation at 400 time units. Figure 8.10a shows the
entire pressure field, while Figure 8.10b shows the pressure field for 0 ≤ x ≤
10. Similarly, Figure 8.10c and d show the vorticity field for the entire domain
and for 0 ≤ x ≤ 10 respectively. Although not an exhaustive comparison,
this calculation compares well with the published benchmark results22 in
terms of the steady-state field, and the separation/re-attachment lengths.
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Table 8.1: Separation lengths for the backward facing step, ReH = 800. Note
that the element side lengths are for the uniform region of the mesh. (l1 –
length from the step face to the lower re-attachment point, l2 – length from
the step face to upper separation point, l3 – length of the upper separation
bubble. The element size is measured at the step inlet.)

No. of No. of Element Size
Case Elements Unknowns (∆x,∆y) l1 l2 l3

B 8000 24842 0.100 5.41 4.71 9.87
C 32000 97682 0.050 5.89 4.89 10.24
D 72000 218522 0.033 6.03 4.91 10.34
E 128000 387362 0.025 6.03 4.90 10.37

Gartling22 32000 355362 0.025 6.10 4.85 10.48
Armaly5 n/a n/a n/a 7.00 5.30 9.40
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8.3 Vortex Shedding

The simulation of the von Karman vortex street behind a circular cylin-
der is a long-standing and well-known CFD benchmark for evaluating time-
dependent solution algorithms for the incompressible Navier-Stokes equa-
tions. The results presented here are for a mesh modeled after that used for
the benchmark calculation of Engleman and Jamnia.19 The computational
domain for the vortex shedding calculations consists of an interior square re-
gion −4 ≤ x ≤ 4, −4 ≤ y ≤ 4 surrounding the unit diameter cylinder. This
core region is surrounded by a grid that spans −8 ≤ x ≤ 24, −8 ≤ y ≤ 8.
Table 8.2 shows the radial grid spacing associated with each of the three
meshes of coarse, medium and fine resolution. Here, the coarse mesh shown
in Figure 8.11 is considered the base discretization, while the medium mesh
corresponds to a 2 × 2 refinement, and the fine mesh constitutes a 3 × 3
refinement relative to the coarse mesh.

“Tow-tank” boundary conditions consisting of u = 1, v = 0 are applied
at the upstream, top and bottom computational boundaries using nodeset 1,
while outflow conditions i.e., homogeneous natural boundary conditions, are
applied downstream. No-slip and no-penetration conditions are prescribed
at the cylinder wall using nodeset 2. The Reynolds number for the vortex
shedding calculations is Re = 100 based upon the cylinder diameter. The
GILA control file for this problem is shown in Figure 8.11.

All of the flow computations are started from initial conditions that are
divergence-free. After startup, the flow field evolves through a quasi-steady
vortex stretching phase before the buildup of numerical round-off trips the
vortex shedding. The number of degrees-of-freedom and the time steps as-
sociated with each of the three meshes are shown in Table 8.2. The kinetic
energy time-history for the coarse mesh indicates that a “steady” periodic
flow is achieved after approximately 160 time units – similar behavior is ob-
served with the refined meshes. For the coarse mesh, approximately 142
time steps were taken per vortex shedding cycle, while the time step for fine
mesh resulted in about 457 time steps per cycle. The measured Strouhal
number for the fine mesh computation is 0.175 based upon the shedding pe-
riod measured over 25 shedding cycles. This is consistent with the published
numerical results of 0.172− 0.173.19
Figure 8.14 shows snapshots of the vorticity and pressure fields on the

fine mesh at approximately 150 time units. The close-up of the instanta-
neous vorticity field shows two distinct secondary attached vortices in the
wake of the cylinder. The color map for the vorticity was chosen specifically
to delineate positive and negative vorticity as illustrated by the region of
essentially zero vorticity that separates the upper and lower regions of the
vortex street. The pressure field shows the regions of low pressure that cor-
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Nodeset ID: 2Nodeset ID: 1

Figure 8.11: Coarse mesh for cylinder vortex shedding.

respond to the regions of high vorticity. The decay in vortex strength due
to viscous diffusion is clear in the downstream section of the vortex street.
The low-pressure regions associated with the vortex centers also exhibit a
reduced amplitude in the downstream wake.

Table 8.2: Vortex shedding mesh parameters. (∆ri: radial mesh spacing at
the cylinder surface, ∆ro: radial mesh spacing at x = ±4.)

No. of No. of Time
Case Elements Unknowns ∆ri ∆ro Step

Coarse 2800 8584 0.0375 0.3375 0.0400
Medium 11200 33968 0.0188 0.1688 0.0200
Fine 25200 76152 0.0100 0.1125 0.0125
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title
Vortex shedding − Re=100

analyze
   solve     3
   temp      0
   species   0
   react     0
   nstep     2000
   plti      100
   prti      10000
   pltype    0
   dump      1000
   ttyi      1
   icset
      set_u  1.0
      set_v  0.0
   ;
   btd       1
   fct       1
   divu      1.0e−10
   deltat    5.00e−2
   dtchk       −1
   cfl        1.0
   term    500.00
end

material 1
   rho        1.0
   mu         1.0e−2
end

ubc
  nodeset    1 1.0  0 
  nodeset    2 0.0  0
end

vbc
  nodeset    1 0.0 0
  nodeset    2 0.0 0
end

ppesol    64
   itmax 500
   itchk   1
   eps   1.0e−5
   wrt     1
   hist    0
   stab   20
   beta   0.025
   novec  10
end

momsol 1
   itmax 20
   itchk  2
   eps   1.0e−5
   wrt   0
end

ndhist 1
   nstep  1
   st 2546 en 2570
end

exit

Figure 8.12: Control file for the Re = 100 vortex shedding problem.
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Figure 8.13: Kinetic energy time history for the coarse mesh.
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Figure 8.14: Re = 100 flow past a circular cylinder at 150 time units: a)
vorticity field, b) pressure field.
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8.4 Momentum-Driven Jet

This example computation shows the starting vortical structure associated
with a heated slot jet entering a relatively cold, quiescent fluid and the re-
sulting classical shear instability phenomena known as the Kelvin-Helmoltz
instability. The parameters for the momentum-driven jet are prescribed so
that the Reynolds number is Re = 3561 based on a 15 mm slot width and
Fr = 326 (Fr = v2/gβ∆TLc where g = 9.81 m/s2, β∆T = 1, Lc = 15 mm,
and v = 4 m/s). Here, the relatively large Froude number indicates that the
influence of buoyancy forces is small compared to the inertial forces, i.e., a
momentum driven jet.
The grid for the momentum-driven jet is shown in Figure 8.15 where a

single plane of symmetry at x = 0 is used with the jet half-width H/2. In this
computation, an energy equation is solved in conjunction with the Navier-
Stokes equations using a Boussinesq fluid, i.e., air. The initial conditions
consist of an initial div-free velocity field with a free-field temperature of
300K and an inlet air jet temperature of 400K. The working fluid is air
with a near-unit Prandtl number Pr = 0.71 resulting in a Peclet number
Pe = 2528 where Pe = RePr.
The GILA control file is shown in Figure 8.16. A time-accurate simula-

tion is of interest here, so the default second-order time-weighting parameters
(thetak 0.5) are used. The sharp gradients in the temperature and velocity
fields requires the use of advective flux limiters (fct 1) for the momentum
and scalar transport equations. The pressure is solved with the SSOR pre-
conditioned conjugate-gradient method and 5 A-conjugate projection vectors
(nvec 5). Figure 8.17 shows snapshots of the temperature, vorticity and
pressure fields.
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Symmetry
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Nodeset ID: 60

Sideset ID: 55

Sideset ID: 35

Nodeset ID: 20

Nodeset ID: 10

Sideset ID: 45

Figure 8.15: Momentum-driven jet mesh with 11250 elements and 11466
nodes.
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title
2−D hot momentum jet

{ Analysis parameters: }
analyze
   solve     3
   temp      1
   nstep  1000
   plti    100
   prti   9999
   pltype    1
   prtlev    0
   icset
      set_u  0.0
      set_v  0.0
      set_t  300.0
   ;
   ttyi    1
   btd     1
   fct     1
   divu    1.0e−10
   deltat  5.0e−4
   dtchk  −1
   dtscal  1
   thetak  0.5
   thetab  0.5
   term    10.00
end

{ Ideal gas }
material   1  
   model   1
   rho     1.177
   mu      1.685e−5
   alpha   1.685e−5
   diff1   1.685e−5
   t_ref   300.0
   beta    3.33e−3
   gx      0.0 
   gy     −9.81
   a       100.0
   k       1.4
   e       4.0e+3
   r       0.287
  q0       1.0
end

{ u−velocity BC’s: }
ubc
  nodeset    10 0.0 0
  nodeset    60 0.0 0
  nodeset    20 0.0 0
end

{ v−velocity BC’s: }
vbc
  nodeset    10 1.0 0
  nodeset    20 0.0 0
end

{ Temperature BC’s: }
tbc
  nodeset    10 400.0 0
  nodeset    20 300.0 0
end

{ Outflow BC’s: }
outflow
  sideset    55
  sideset    45
  sideset    35
end

{ PPE solver: }
ppesol      64
   itmax  1000
   itchk     1
   novec     5 
   wrt       1
   stab     30
   beta   0.1000
   eps    1.0e−5
end

{ Momentum solver: }
momsol      1
   itmax   50
   itchk    2
   wrt      0
   eps     1.0e−5
end

{ End−of−control file }
exit

Figure 8.16: Control file for the momentum-driven jet.
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a) Temperature b) Vorticity c) Pressure

Figure 8.17: Snapshot of a) temperature field, b) z-vorticity field and c) pres-
sure for the momentum driven jet. (The temperature, vorticity and pressure
fields have been reflected about the vertical centerline for presentation pur-
poses.)
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8.5 Post & Plate

Juncture flows are of interest in numerous industrial applications, and in par-
ticular, exterior flows around vehicles. The presence of geometrical junctures
can lead to the generation of longitudinal vortices that pass on each side of
the juncture in counter-rotating directions. These types of flow configura-
tions occur in turbomachinery, blade and end-wall flows, aircraft wing - body
junctures, and ship/hull appendages. A recent experimental investigation of
this type of flow configuration may be found in Devnport and Simpson.17

The flow past a plate with an attached cylinder is considered here as
a simplified prototype juncture configuration for a Reynolds number of 100
based upon the cylinder diameter. The computational domain is chosen such
that −4.5 ≤ x ≤ 6.5, −2.5 ≤ y ≤ 2.5, and 0 ≤ z ≤ 2 with a cylinder of unit
diameter at the origin oriented in the z-direction, and a plate in the x−y plane
at z = 0. The boundary conditions are specified as u = 1, v = 0, w = 0 at
the upstream inlet, with no-slip and no-penetration boundary conditions on
the plate and post. A symmetry condition is imposed at the upper boundary
(z = 2) so that only the x and y-velocity components vary in the x−y plane.
Homogeneous natural boundary conditions are used on the y − z planes of
the domain. For this example, a coarse mesh with 9120 nodes and 7840
elemensts as shown in Figure 8.18 is used. The GILA control file for this
problem is shown in Figure 8.19.

In Figure 8.20, snapshots of the pressure, helicity (ω · u), and enstrophy
(ω · ω/2) at 300 time units are shown in the left column for the medium
mesh resolution. In the right column of Figure 8.20, the three vorticity fields
are shown. The flow field in the symmetry plane at z = 2 exhibits behavior
strikingly similar to the two-dimensional von Karman vortex street discussed
above. The pressure isosurfaces illustrate the three-dimensional nature of the
flow field and highlight the stagnation regions at the leading edge of both
the plate and post.

The presence of the juncture as well as the plate itself, leads to a strongly
three-dimensional vorticity field particularly in the downstream section of
the flow. The isosurfaces of x-vorticity illustrate the orientation of the vor-
ticity with the primary flow direction at the post-plate juncture. Inspection
of the helicity field confirms that the flow field contains significant three-
dimensional structure, and identifies the regions of the juncture flow where
the longitudinal vortices are aligned with the velocity field. The blue and
gold helicity isosurfaces on either side of the cylinder-plate juncture clearly
identify the presence of counter-rotating longitudinal vortices oriented with
the primary flow direction. The fact that the helicity changes sign on the
upstream side of the juncture suggests that the flow field is subjected to
extreme strain-rates in this region.
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Figure 8.18: Post and plate Mesh.

The y-vorticity isosurfaces correlate to the development of the boundary
layer from the leading edge of the plate, and clearly identify the wake re-
gion near the plate downstream of the cylinder. The y-vorticity values on
the upstream surface of the cylinder also indicates the presence of several
counter-rotating vortices centered along the stagnation line of the cylinder.
In contrast, to the strongly three-dimensional x and y-vorticity fields, the
z-vorticity isosurfaces are relatively two-dimensional except near the plate
surface where the influence of the boundary layer is significant.
Isosurfaces of the enstrophy field are also shown in Figure 8.20. The

enstrophy isosurfaces show a three-dimensional trough in the downstream
region of the post that corresponds to the trough in the y-vorticity isosurfaces.
The measured Strouhal number (based upon the y-velocity fluctuations in the
symmetry plane) is 0.17 which agrees well with the two-dimensional vortex
shedding calculations.
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title
Post w. Re=100

analyze
   solve      3
   nstep   2000
   plti      50
   prti    9999
   pltype     1
   ttyi       1
   dump    1000
   icset
      set_u 1.0
      set_v 0.0
      set_w 0.0
   ;
   btd      1
   fct      1
   divu     1.0e−8
   term     1.000000E+03
   deltat   0.100000E+00
   dtscal   1.0
   dtchk     −1
end

material    1
   model    1
   rho      1.0
   cp       1.0
   mu       1.0e−2
   k        1.0e−2
   t_ref    0.0
   beta     0.5
   gx       0.0
   gy       0.0
   gz       0.0
end

ubc
  nodeset 1 1.0 0
  nodeset 3 1.0 0
  nodeset 4 1.0 0
  nodeset 2 0.0 0
  nodeset 6 0.0 0
end

vbc
  nodeset 1 0.0 0
  nodeset 2 0.0 0
  nodeset 3 0.0 0
  nodeset 4 0.0 0
  nodeset 5 0.0 0
  nodeset 6 0.0 0
end

wbc
  nodeset 1 0.0 0
  nodeset 2 0.0 0
  nodeset 5 0.0 0 
  nodeset 6 0.0 0
end

ppesol         64
   itmax      300
   itchk        2
   novec       10
   stab        30
   beta       1.0e−3
   omega      1.00
   eps        1.0e−5
   wrt        1
end

momsol        1
   itmax      100
   itchk        2
   eps        1.0e−5
   wrt        1
end

exit

Figure 8.19: Post and plate control file.
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a) b)

c) d)

e) f)

Figure 8.20: Re = 100 flow past post and plate at 300 time units. a) Pressure,
b) X-Vorticity (isosurface values ±0.75), c) Helicity (isosurface values ±0.15),
d) Y-Vorticity, (isosurface values ±0.75), e) Enstrophy, and f) Z-Vorticity
field.
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Appendix A

GILA Mesh File

The GILA ASCII mesh file is intended to provide a simplified, machine in-
dependent alternative to EXODUS II. The ASCII mesh file permits GILA
to interface with a number of commercial mesh generation tools. For this
reason, the ASCII mesh file has been intentionally simplified to permit easy
adaptation of existing neutral file formats produced by commercial mesh
generators.

The GILA ASCII mesh file contains a mesh description line, the spatial
coordinates of the nodes, element connectivity, and all node and side sets.
The mesh description line is limited to 80 characters, must be the first line in
the mesh file, and is echoed at run-time to the screen and the human readable
output file. Lines in the mesh file may be commented out by using a “C”
followed by a blank space, by using #, *, $, or enclosing a region of the mesh
file in braces, { }. Because the data in the mesh file is usually generated
by an automatic mesh generator, the data in this file is not accepted in a
format-free style as in the case of the GILA control file. However, all input
in the mesh file is case insensitive.

The mesh file consists of separate sections that proceed in the following
order.

1. Mesh description line (80 characters maximum).
2. Header block containing control information.
3. Nodal coordinates.
4. Element connectivity.
5. Node set data.
6. Side set data.

Typically, each section of the mesh file contains a short series of comments
describing the contents of the section.
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A.1 Mesh Description Line

The first line of the GILA ASCII mesh file is expected to contain the mesh
description. A blank line is acceptable, and there are no restrictions on spe-
cial characters. However, the mesh description line is limited to 80 characters
in length. Comment characters, “C”, #, *, $, { }, in the description line are
treated as a part of the 80 character description. There can be no comment
lines before the description line in the mesh file.

A.2 Header Block

The header block follows the mesh description line and consists of a sequence
of comment lines that contain control information describing the mesh. The
information required in the header block consists of the number of nodes,
elements, element blocks, node sets and side sets in the mesh as shown in
the table below. All keywords are case insensitive and order-independent
with the exception of the end keyword that terminates the header block. An
example of the header block is shown in Figure A.1.

ASCII Mesh File Header Block

Keyword Variable Meaning
Nnp Nnp Specify the number of nodes, Nnp.
Nel Nel Specify the number of elements, Nel.
Nnpe Nnpe Specify the number of nodes-per-element, Nnpe.
Ndim Ndim Specify the number of dimensions, Ndim.
Nel blk Nel blk Specify the number of element blocks, Nel blk.
Nnd sets Nnd sets Specify the number of node sets, Nnd sets.
Nsd sets Nsd sets Specify the number of side sets, Nsd sets.
end Terminate the header block
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The 80-character description line comes first in the mesh file.

#

# Nnp 1852

# Nel 1760

# Nnpe 4

# Ndim 2

# Nel_blk 1

# Nnd_sets 3

# Nsd_sets 3

# end

Figure A.1: Example description line and header block for ASCII mesh file.

A.3 Nodal Coordinates

Nnp nodal coordinates are required in this section of the mesh file. In the
case of a 2-D analysis (Ndim = 2), the z-coordinate is ignored in the mesh
file. The format specifications for the nodal coordinates are shown in the
table below.

Nodal Coordinates

Columns Format Description
1-8 I8 node number
14-33 E20.0 x-coordinate.
34-53 E20.0 y-coordinate.
54-73 E20.0 z-coordinate. (Ignored for 2-D, Ndim = 2)

A.4 Element Connectivity

The node numbers and material numbers associated with Nel elements are
required in this section of the mesh file. For 2-D calculations, Ndim = 2,
GILA ignores the last 4 nodes numbers if they are present in the connectivity.
The table below shows the format specifications for the element connectivity.
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Element Connectivity

Columns Format Description
9-13 I5 material number.
14-21 I8 local node #1.
22-29 I8 local node #2.
30-37 I8 local node #3.
38-45 I8 local node #4.
. . . . . .
70-77 I8 local node #8.

(Nodes 5-8 are ignored for Ndim = 2)

A.5 Node Sets

The node set section of the mesh file consists of three parts that describe the
number of node sets in the mesh, the number of nodes in each node set, and
the node lists for each node set. The following tables outline the formats
required for each part of the node set section of the mesh file. In Part 1, the
number of node sets, Nnd sets is specified. Immediately following, in Part
2, is a list containing Nnd sets lines of input that contain the node set id
or node set number, and the number of nodes associated with each node set
id. In Part 3, Nnd sets lists of input follows. Each list contains the local
node counter and the node numbers associated with the node set id’s listed
in Part 2. A short sample of this section of the input file is shown in Figure
A.2. In this example, comments are used to delineate the three sections of
the input data.

Node Sets - Part 1

Columns Format Description
1-10 I10 Number of node sets in the mesh file.

Node Sets - Part 2

Columns Format Description
1-10 I10 Integer node set identifier for the node set.
11-20 I10 Number of nodes in the node set.

Node Sets - Part 3

Columns Format Description
1-10 I10 Node counter of the current node.
11-20 I10 Node number for the current node.
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A.6 Side Sets

The input section for side sets also consists of three parts that describe the
number of side sets, the number of segments in each side set, and the side lists
for each side set. In this section, the canonical, finite element side-ordering
is used to identify element sides. The following tables outline the formats
required for each part of the side set section of the mesh file. In Part 1, the
number of side sets, Nsd sets is specified. Immediately following, in Part
2, is a list containing Nsd sets lines of input that contain the side set id
or number, and the number of side segments associated with each side set
id. In Part 3, Nsd sets lists of input follows. Each side set list contains the
element number and element side number associated with the side set id’s
listed in Part 2 of the side set data.

Side Sets - Part 1

Columns Format Description
1-10 I10 Number of side sets in the mesh file.

Side Sets - Part 2

Columns Format Description
1-10 I10 Integer side set identifier for the side set.
11-20 I10 Number of elements in the side set.

Side Sets - Part 3

Columns Format Description
1-10 I10 Element number for the current side set segment.
11-20 I10 Side number for the current segment.

The canonical local node numbering scheme is shown with the side num-
bering in Figure A.3. The following tables show the local node ordering
corresponding to each side number for the 2-D quadrilateral and 3-D hexa-
hedral element. A sample side set section of the mesh file is shown in Figure
A.4. Note that for each side set segment, the segment lists consist of the
element number and the associated side number based upon the canonical
local node ordering.
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#

# 3 Node-sets

3

#

# Node set Number of Nodes

1 118

2 56

3 175

#

# Node Set Number : 1

# No. of Nodes : 118

#

1 211

2 190

...

118 861

#

# Node Set Number : 2

# No. of Nodes : 56

#

1 21

2 42

...

56 841

#

# Node Set Number : 3

# No. of Nodes : 175

#

1 211

2 190

...

175 861

Figure A.2: Example node set section of the ASCII mesh file.
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n3

n
4

n
1

n2

n3

n
4

n6

n8

n5

n7

a) b)

S1
S2

S3
S4

S5

S6

S1

S2

S3

S4

Figure A.3: Canonical node and side numbering for the a) 2-D quadrilateral
element, and b) the 3-D hexahedral element.

Side Numbers - 2-D Quadrilateral

Side Node-1 Node-2
Side-1 (S1) 1 2
Side-2 (S2) 2 3
Side-3 (S3) 3 4
Side-4 (S4) 4 1

Side Numbers - 3-D Hexahedral Element

Side Node-1 Node-2 Node-3 Node-4
Side-1 (S1) 1 2 6 5
Side-2 (S2) 2 3 7 6
Side-3 (S3) 3 4 8 7
Side-4 (S4) 4 1 5 8
Side-5 (S5) 1 4 3 2
Side-6 (S6) 5 6 7 8
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#

# 2 Side-sets

2

# Side Set Number of Sides

15 8

65 50

#

# Side Set Number : 15

# No. of Segments : 8

#

1 1

2 1

...

32 1

#

# Side Set Number : 65

# No. of Segments : 50

#

1 4

9 4

...

393 4

Figure A.4: Example side set section of the ASCII mesh file.
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A.7 Sample ASCII Mesh File

The following sample ASCII mesh file is provided to show the overall struc-
ture of the mesh file, the use of comments to delineate the sections of the
mesh file, and the structure of the individual sections of the mesh file.

Sample GILA ASCII mesh file

#

# Nnp 1681

# Nel 1600

# Nnpe 4

# Ndim 2

# Nel_blk 1

# Nnd_sets 1

# Nsd_sets 6

# end

#

# ===== Nodal Coordinates =====

#

1 5.0000000000000e-01-5.0000000000000e-01

2 5.0000000000000e-01 5.0000000000000e-01

...

1681 -4.7499999403954e-01 4.7499999403954e-01

#

# ===== Element Connectivity =====

#

1 1 3 161 160

1 3 4 162 161

...

1 1681 81 42 83

#

# 1 Node-sets

1

# Node Set Number of Nodes

10 41

#

# Node Set Number : 10

# No. of Nodes : 41

#

1 122

2 123

...

41 1
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#

# 6 Side-sets

6

# Side Set Number of Sides

15 8

65 50

55 8

25 22

35 50

45 22

#

# Side Set Number : 15

# No. of Segments : 8

#

1 1

2 1

...

32 1

#

# Side Set Number : 65

# No. of Segments : 50

#

1 4

9 4

...

393 4

#

# Side Set Number : 55

# No. of Segments : 8

#

393 3

394 3

...

400 3

#

# Side Set Number : 25

# No. of Segments : 22

#

401 1

402 1

...

422 1
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#

# Side Set Number : 35

# No. of Segments : 50

#

422 2

444 2

...

1500 2

#

# Side Set Number : 45

# No. of Segments : 22

#

1479 3

1480 3

...

1500 3

121



122



Appendix B

Data Visualization Interfaces

B.1 GRIZ - Binary Plot Files

GILA can output several forms of graphics files. One of the primary file
formats is the binary, failed graphics data files and time history files that are
compatible with GRIZ18 and THUG.61 GRIZ is used for visualizing snapshots
of the entire flow-field (state data) or generating animations of the time vary-
ing flow-field data, while THUG61 is used for interrogating time history data
at a moderate number of mesh points. Typically, the state data is written at
relatively large time intervals while the time history data is recorded at each
time step.

GRIZ and THUG are general purpose scientific visualization tools for fi-
nite element codes, and they support analysis codes for both computational
fluid dynamics and computational mechanics. Because of their general pur-
pose nature there is a required translation from the primitive variables that
GILA writes to the graphics data files to variables which can be displayed in
GRIZ and THUG. Table B.1 shows the mapping from GILA’s 2-D primitive
variables to GRIZ and THUG variables. Table B.3 shows the mapping from
3-D GILA variables to GRIZ variables.

In GRIZ, the character strings associated with certain variables may have
to be reset to reflect the correct GILA variable, e.g., the x-acceleration
variable in GRIZ is actually the x-component of vorticity in a 3-D GILA
database. For 2-D GILA state databases, the z-velocity and x-acceleration
are omitted, and the z-vorticity and stream function are computed and out-
put at the nodes instead.

THUG provides direct support for GILA and the variable mapping is
handled automatically. However, THUG currently requires the use of the
default variable names for GILA variables. For example, to display the global
divergence error (∇ · u), the global THUG variable, rigid, must be specified
in the plot command in THUG. Table B.3 shows the relationship between
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GILA global time history variables and THUG global time history variables.

GILA GRIZ GILA THUG
State State Time History Time History

Variables Variables Variables Variables

unused x-displacement unused x-displacement
unused y-displacement unused y-displacement
unused z-displacement unused z-displacement
x-velocity x-velocity x-velocity x-velocity
y-velocity y-velocity y-velocity y-velocity
unused z-velocity unused z-velocity
unused x-acceleration unused unused
z-vorticity y-acceleration unused unused

stream function z-acceleration unused unused
temperature temperature temperature x-acceleration
pressure pressure pressure N/A

turbulent kinetic turbulent kinetic turbulent kinetic turbulent kinetic
energy (k) energy (k) energy (k) energy (k)

dissipation rate dissipation rate dissipation rate dissipation rate

Table B.1: 2-D GILA State and Time History Variables
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GILA GRIZ GILA THUG
State State Time History Time History

Variables Variables Variables Variables

unused x-displacement unused x-displacement
unused y-displacement unused y-displacement
unused z-displacement unused z-displacement
x-velocity x-velocity x-velocity x-velocity
y-velocity y-velocity y-velocity y-velocity
z-velocity z-velocity z-velocity z-velocity
x-vorticity x-acceleration unused unused
y-vorticity y-acceleration unused unused
z-vorticity z-acceleration unused unused
temperature temperature temperature x-acceleration
pressure pressure pressure unused

turbulent kinetic turbulent kinetic turbulent kinetic turbulent kinetic
energy (k) energy (k) energy (k) energy (k)

dissipation rate dissipation rate dissipation rate dissipation rate

Table B.2: 3-D GILA State and Time History Variables

GILA THUG
Global Time Global Time

History Variables History Variables

RMS Divergence Error:

√

∑nel

i=1
(CT

i
ui)2

nel
Rigid Body x-displacement

Total Kinetic Energy: 1
2
uTMLu Rigid Body y-displacement

Table B.3: GILA Global Time History Variables
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write initial conditions, 70
write voriticity initial conditions, 70
write vorticity field, 70
wrt, 75, 78

ybc – end, 83

zbc – end, 82
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