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SUMMARY

Instabilities can introduce highly non-linear effects into structural problems. The instabilities, not
clearly associated with a change in a parameter, result in a stochastic variation of the responses.
This process variation can be distinguished from the effects of the parameter variation by mapping
the response variation onto a predictable space and a residual space, where the predictable space
contains the possible effects of the parameter variation, and the residual space contains the pro-
cess effects. This study discusses the sources (mechanics) of the response variation in this class
of problems, the use of response surfaces to distinguish between effects driven by design variable
changes and bifurcations, and the visualization of unstable zones in the structure. Analytical problems,
a headform impact problem, and an occupant safety study clarify the use of the proposed methodology.
Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computational results of highly non-linear structural problems—for example: vehicle crash—
has a variation in the response values not associated with changes in the design variables. Due to
the nature of the structural problem, bifurcations occur, resulting in multiple solution branches.
This study shows how this behaviour can be considered in a non-deterministic evaluation using
response surfaces.

Designing for uncertainty requires that the sources of the uncertainty be well understood.
A number of sources of uncertainty apply to reliability analysis [1, 2]. The uncertainty in a
problem is usually classified into reducible (epistemic) and irreducible (aleatoric) uncertainty
[2]. The reducible uncertainties are a lack of knowledge or information, while irreducible
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uncertainties are known fluctuations of the model parameters. Only irreducible uncertainties
are considered in this study; the uncertainty associated with the bifurcations is considered
irreducible once quantified. In general, the contribution of the reducible uncertainties must be
considered as well: the consideration of certification tests and conservative material properties
may be crucial for the association of the theoretical safety with the actual safety [3].

For these highly non-linear structural problems, several physical solutions are considered
plausible for a design [4], and it has been shown how small changes in the model result in
substantial changes in the response due to the bifurcations [5]. Computationally, a high degree
of precision in the results may be unobtainable, even if the program meets certain standards,
due to smoothness and stability issues [6]. Of particular interest for this study is the loss
of stability (some smoothness problems can be overcome using more powerful computers),
because stability issues such as imperfection sensitivity and multiple equilibrium branches can
dramatically amplify the variation of the parameters. This paper shows that a visual indicator
of stability and smoothness problems can be obtained by plotting the residuals of the response
surface fits to the nodal displacements on the computational model.

The structural response variation can accordingly be attributed to deterministic variation as
well as process variation. The deterministic effects are associated with changes in the parameter
values, while the process variation cannot be associated with changes in parameter values,
though it can be triggered by a perturbation in a parameter value. The process variation can
be due to a physical occurrence and must therefore be considered in a probabilistic evaluation.
Distinguishing between the deterministic and process effects is however challenging; this paper
addresses some of the aspects.

Larger assemblies of components seem to be more prone to bifurcation problems due to
the problem size and a richer set of interacting eigenvalues. Simplifying a model may remove
unexpected, though safety-critical, structural behaviour. The bifurcation behaviour can however
be observed in simpler models; for example, the tube crush design study of Missoum et al. [7]
where the tube was long enough to undergo crushing and occasional global buckling (a shorter
tube would probably not have exhibited the occasional global buckling). Increasing the mesh
density (smoothness) on the other hand, will reduce the process variation; a sufficiently fine
mesh can be crucial as shown by Crisfield and Peng [8], who demonstrated that too coarse a
mesh might introduce a range of artificial limit points in the non-linear analysis of a cantilevered
cylinder. Similar problems occur in CFD simulations, where grid refinement can be crucial and
outliers can be associated with significantly different physical behaviour [9].

The benchmark method for investigating the variability of these problems is Monte Carlo
simulation. This method usually has a prohibitively high cost due to the large number of
expensive simulations required. Metamodels—approximations to the structural behaviour, built
using FEA evaluations of a selected set of designs—are therefore used to reduce cost. This
study shows that the process variation (noise) must be incorporated (not filtered out) if the
metamodel results are to be comparable to the Monte Carlo results. The current practice using
metamodels is to smooth out and discard the noise in the solution [10]. This practice dates
back to the formative research on using metamodels in structural design [11], in which the
residuals were only examined to establish the goodness of fit of the metamodel. The motivation
for smoothing out the noise is that the random error exists in physical experiments, but not in
numerical experiments [10].

But well-constructed numerical experimentation should reproduce the process variation (noise)
if it is a physical property of the system. The physical origin for the process variation
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in the example problems given is taken to be structural impact. The impact induces a
broadband spectrum of initial conditions (white noise), which, in turn, leads to different bi-
furcation paths. To model the physical causation, random fields describing the geometric im-
perfections as used by Schenk and Schuëller [12] can be also used. They showed reasonably
good correlation between the scatter introduced by the random imperfection fields and the
scatter of experimental results for the limit load of thin-walled, cylindrical shells under axial
compression.

In the following sections, the paper discusses the origins of the response variation, a method
of estimating the process variation, visualization of the process variation (stability problems),
and demonstrates the phenomena and methodology using example problems.

2. PROBABILISTIC BACKGROUND

2.1. Response variation

The association between the variation of the responses and the variation of the structural
parameters may not always be clear, especially if a bifurcation occurred during the analysis.
A change in results may be due to a change of a parameter value or a bifurcation; this section
classifies the response variation in this context.

The decomposition of variation of the response is shown in Figure 1. Of particular interest
is the buckling of the column shown on the right-hand side of the figure: the column can (i)
buckle left at the top, (ii) buckle right at the top and hit a wall, or (iii) continue buckling
locally at the bottom; all giving different results for the top displacement and energy absorption.
All three cases are physically allowable, and the process variation is therefore a physical attribute
of the system. The on–off impact condition shown next to the column should be seen in the
context of a vehicle crash where many on–off conditions are possible, particularly in the engine
compartment—multiple bifurcations in a single simulation are therefore possible.

Figure 1. Decomposition of the response variation. The deterministic variation of the response is
associated with a variation in the parameter value, while the process variation, caused by bifurcations

and on–off impact, can occur without a change in the structural parameter value.
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The response variation can therefore be decomposed as

• Deterministic variation: An expected, predictable, and repeatable variation in a response
associated with a variation in a structural parameter. It can occur as a result of controllable
or uncontrollable changes in the design. This distinction is made using the following
definitions:

◦ Design variables: These are the variation of structural parameters under the control of
the designer; for example, a gauge thickness.

◦ Noise variables: These are variations of the structure or environment not under the
control of the engineer during the operation or manufacturing of the structure, but
which can be controlled during analysis; for example, variation in a load.

• Process variation: Variation that cannot be associated with a change of a structural
parameter.

◦ Physical:

— Instability: Slightly different initial conditions, especially when driven by a rich
spectrum of eigenvalues, can lead to noticeable differences in responses. These
different solution paths are caused by instability, and are represented in the solution
mostly as bifurcations. The solution paths can be sensitive to initial values; for
example, buckling initiation.

— On–off impact: Slight changes in the model may cause different components to
come into contact, not to come in contact, or change the order of impact.

◦ Non-physical:

— Discretization: The spatial and temporal discretizations must be fine enough that
transitions occur over several increments in space and time [6, 8]. Amongst others,
the following factors may cause changes in results: discretization density (mesh
size), automated mesh (re)generation, and the resolution and filtering of data gath-
ered.

— Numeric settings: Iterative solvers and contact algorithm options.
— Different computers: A small change in machine precision and compiler differ-

ences can lead to a large change of the response values if it triggers a (different)
bifurcation.

The physical and non-physical variations are not necessarily disjoint, and can interact; for
example, a mesh change acting as a seed for a buckling mode. More sources of variability
exist; see Belytschko and Mish [6] for an in-depth discussion on the various physical
phenomena and related computational barriers.

The total response variation, assuming the deterministic variation and process variation are
independent, can be computed as

�2
total = �2

deterministic + �2
process

For linear structural behaviour this typically reduces to �2
total = �2

deterministic, while for highly
non-linear problems with fixed values of the parameters, it reduces to �2

total = �2
process. The

replacement of homogeneous material properties and perfect geometries with stochastic fields
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[12] is presumably the best method of simulating the process variation. A stochastic field
is a spatial perturbation of the idealized perfect model generated using random numbers to
conform to a given correlation function. Generating a number of stochastic fields allows different
equilibrium branches of a structure to be explored with a Monte Carlo evaluation, with all the
equilibrium branches found considered plausible for the design.

2.2. Probabilistic evaluations

Probabilistic methods should ideally have the following key properties for highly non-linear
structural problems:

• Quantify the variation in the responses.
• Establish the link between cause and effect.
• Distinguish deterministic effects from random occurrences.

What constitutes engineering accuracy, especially at the low probabilities, is an open question.
A definition such as six-sigma (a requirement for the mean and the constraint on a response
to be separated by six standard deviations) may be the best way of specifying the engineering
requirement; a precise numerical value may not be meaningful. The accuracy of the probabilities
should however be such that different designs can be compared.

In this study, Monte Carlo simulation both with and without a metamodel is used. Much
more accurate and sophisticated methods of computing reliability are available [1, 13, 14], but
are outside the scope of this study. The contribution of the process variation should however
be independent from the reliability method used.

Monte Carlo simulation is very expensive for the computation of small probabilities. Prob-
abilistic computations are therefore usually combined with metamodels for which millions of
function evaluations are feasible. The error of the fit of the metamodel, amongst others, con-
tributes to the total error of computing reliability [15]. If only the mean value and the standard
deviation of the response are desired, then the Monte Carlo method may be more attractive.
The Monte Carlo method is actually the best method in cases where the process variation is
the primary source of variation, because the use of metamodels will only contribute additional
complexity and potential errors if the deterministic variation is unimportant.

3. RESPONSE SURFACE METHODOLOGY

The finite element evaluations of crash problems can be extremely expensive (100+ CPU hours).
Metamodels—approximations to the structural performance, built using FEA evaluations of a
selected set of designs—are commonly used to reduce costs.

Accurate probabilistic results requires an accurate metamodel. A significant body of research
exists on the application of metamodels to structural optimization and probabilistic evaluation.
It has been shown that (i) the accuracy of a response surface is best improved by considering
a smaller region of interest [16] and (ii) computing the variance (standard deviation) of the
response is more demanding than the computation of the mean value [17].

Impact problems are distinguished from other structural problems by (i) noise in the results
and (ii) very sparse sampling of the design space due to the high computational costs of,
for example, a full vehicle crash simulation. The requirements dictate a metamodel that can
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separate the effects of the design parameters from the noise in the solution using a parsimonious
number of structural evaluations. Using a small region of interest is a crucial first step because it
reduces the curvature in the structural performance thereby allowing more structural evaluations
to be used to estimate the noise. Quadratic response surfaces seem ideal, but in cases with
extreme computational cost, linear response surfaces with an associated reduction in accuracy
may be the only computationally feasible solution. Response surfaces built over a small region
of interest, as used in this study, is the simplest and most robust metamodel formulation
successfully meeting the requirements. The size of the region of interest must be selected
carefully, because for very small regions of interest, it may be difficult to distinguish the effect
of the design variables from the noise in the problem, while for large regions of interest it can
be difficult to create an approximation to the potentially substantial amount of curvature in the
structural performance. Should global approximations be essential and affordable, or should the
response be very non-linear, then neural networks [18] and Kriging approximations [19] may
be considered, provided that the robustness of the implementation with respect to noisy results
is well understood.

3.1. Response surfaces as a projection on a predictable space

Consider a scalar response y dependent on the variable vector x through the relationship y(x)

including potential bifurcations, noise, and errors. We have

y = y(x)

where we want to approximate the relationship y using a response surface [20] f (x) as

f (x) =
p∑

i=0
ai�i (x)

with ai the coefficient for the basis function �i , and using p basis functions. The basis functions
form a basis space for the changes in response that can be ascribed to the design variables,
and are frequently chosen as the monomials (1, x1, . . . , xm, x2

1 , x1x2, . . . , x1xm, . . . , x2
m) for the

quadratic approximation using m variables. The coefficients a are computed as

a = (XTX)−1XTy

which minimizes rTr, the square of the residuals. The basis function matrix is

X = [Xi�] = [��(xi)]
where the response is evaluated at x1, x2, . . . , xn for a total of n experiments. The points in the
design space where the response must be evaluated in order to create the response surface are
selected using design of experiment techniques [20]. A number of experimental design methods
are available [10]. For the problems considered in this study, techniques that can handle random
variation are appropriate.

Variation in the responses, such as buckling, that cannot be described by this basis function
space will be residuals, r(x). We have therefore

y(x) = f (x) + r(x) = P(y(x)) + R(y(x))

with fTr = 0, P(y(x)) the projection of the response onto the predictable space, and R(y(x)) =
R(P (y(x))) the projection onto the one-dimensional residual space.
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The response variation and probabilities of events can be computed cheaply doing a Monte
Carlo analysis considering the response surface f (x), the variation of the variables, and the
process variation as

y = f (x) + N(0, s2)

where the process variation is approximated as the normal distribution N with a zero mean
and variance s2. Different methods of treating the process variation are considered in the next
section.

3.2. Estimation of the process variation

The predicted values of the response are

ŷ = X(XTX)−1XTy = Hy

from which the residuals can be computed, using the hat matrix H, as

r = y − ŷ = (I − H)y

The process variation is estimated from the sum of the residual mean squares as

s2 =
∑n

i r2
i

n − p

with n the number of sampling points and p the number of basis functions. A normal distribution
with zero mean and variance s2 is usually assumed for the residuals. This assumption is not
compulsory. For known behaviour of the structure, a different statistical distribution may be
substituted; for example, a Bernoulli distribution describing a single bifurcation.

Assuming a distribution for the process variation is not essential. If it is believed that the
residuals contain a representative population of all the possible values of the process varia-
tion, then the residuals can be bootstrapped [21] instead of using samples from a distribution
describing the residuals. Bootstrapping the residuals is simply achieved by drawing a random
sample from the residuals with replacements during the Monte Carlo evaluation. Bootstrapping
the residuals is therefore desirable in cases where it is unclear which distribution to assume
for the process variation, because bootstrapping can reproduce variation consisting of clusters
of data as well as variation following a smooth statistical distribution.

Use of the PRESS residuals [20] is investigated for bootstrapping the process variation.
A PRESS residual is computed using a response surface built using all the experimental points
except the one used to compute the residual. The correlation between the response surface and
the residuals is therefore reduced and outliers are easier to identify. The PRESS residuals can
be computed using the diagonal terms of the hat matrix (H) as

r(i) = ri

1 − hii

3.3. Error estimation

If the predictable space cannot completely describe the effect of the design variables then we
have a bias error, �(x) = �(x) − f (x), the difference between the chosen metamodel and the
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true effect of the design variables. The decomposition can be rewritten as

y = f (x) + r(x) = f (x) + �(x) + �

The residuals therefore contain both the bias (fitting error) and the process variation � containing
any possible bifurcations; if the process variance is estimated using the residuals then the bias
component is included in our estimate of the process variance. The bias error may be significant
especially in the case of a large subregion in conjunction with high curvature of the response
[22], in which case the estimate of �2

process will usually be too large. For a model-independent
estimate, replicate runs (multiple observations for the same design) are required, but is not
always possible in practice, because a computer experiment, unlike most physical experiments,
will always give exactly the same results if executed again using exactly the same setup. Given
that the process variation should be overestimated, we estimate the upper bound on the process
variation as the computed value and the lower bound as no process variation at all. Experi-
ence with a specific problem and the methodology is crucial for an accurate estimate of the
process variation.

4. INSTABILITY VISUALIZATION

The proposed instability visualization methodology is simply the visualization of the process
variation. The metamodels fit to the effects of the design variables but not to the instabilities. The
nodal displacement residuals (process variation) are therefore composed of instability effects
such as different buckling modes. The instabilities can therefore be viewed by viewing the
process variation. In the following sections, we use the terms process variation, residuals, and
outliers interchangeably, depending on context, because the process variation is estimated using
the residuals as described earlier, while outliers are residuals indicative of bifurcations.

4.1. Visualization of unstable zones

A basic algorithm is

Step 1: For every node in the FE model

For every displacement component
Fit a response surface to the nodal displacement of the node
Collect the residuals of the response surface to the nodal displacement
component
Compute the standard deviation or range of the residuals (process
variation)

Step 2: Save the residual standard deviation (process variation) or range from step 1 in a
database suitable for visualization

Step 3: For all displacement components

Fringe plot the nodal results from step 2 on the model

Unstable areas in the structure will be clearly identifiable in step 3.
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4.2. Visualization of instability cause–effect relationships

To see whether two events A and B are related, the covariance of the random variables YA
and YB can be computed as

Cov(YA, YB) = E[(YA − �A)(YB − �B)]
with �A = E(YA), �B = E(YB), and E(Y ) = 1/n

∑n
i=1 yi . The covariance can be difficult to

assess because it is not scaled. The coefficient of correlation, which will vary between −1
and 1, can be used instead. The coefficient of correlation is

� = Cov(Y1, Y2)

�1�2

The coefficient of correlation of all the nodal displacement component residuals (process
variation) with respect to the residuals (process variation) of a response can be plotted on
the model using the algorithm given in the previous section. Evaluation of the coefficient of
correlation with different displacement components may identify the instability mechanism; for
example, an x-displacement coefficient of correlation of −1 would indicate that the area is
always moving in the negative x-direction when the response value is larger than expected.

The number of experiments required for the correlation to be significant depends on the
magnitude of the coefficient of correlation: a large coefficient of correlation requires only a
small number of experiments, while, inversely, a small coefficient of correlation requires a large
number of experiment points. If the coefficient of correlation is small, then it is cost-effective to
consider it insignificant rather than to conduct additional experiments to investigate significance.
Additionally, the industrial problems considered indicate that at least 30 numerical experiments
should be planned for, because the use of fewer experiments may result in ambiguous plots
for large, fairly noisy structural problems.

An alternative methodology is to use cluster analysis to trace a bifurcation back to its
origin [5].

5. EXAMPLES

Three examples are used: the analytical problems clarify accuracy, the head impact model
clarifies some structural mechanics details, and the occupant safety study shows applicability
to large industrial models. The structures were evaluated using LS-DYNA [23] finite element
analysis code and the LS-OPT design optimization code [24] was used to conduct the non-
deterministic analysis.

5.1. Analytical examples

The analytical examples are used to investigate the accuracy of predicting the process variation
and residuals for ten design variables and a varying number of experimental points. The
process variation is estimated using the residuals; the difference between the residuals computed
and the known process variation is therefore investigated. Also, a physical occurrence such
as a bifurcation may manifest itself as an outlier amongst the residuals, and the residuals
must therefore be computed as accurately as possible in order to investigate these physical
occurrences.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1221–1242



1230 W. ROUX ET AL.

The data considered have no deterministic component and consist only of process variation.
The results are however computed as if there were a deterministic contribution, which allows the
methodology to ascribe some of the process variation to deterministic variation, and accordingly
allows us to evaluate how accurate the process variation can be estimated using the method.
The accuracy of the method is established by monitoring the standard deviation of the process
variation and the error of computing the individual residuals. The error of computing the
residuals is quantified using the mean and standard deviation of the error of estimating each
residual as Error(ri) = |� − ri | with � the correct value of the residual (the process variation)
and ri the value of the computed residual. The correct values of the process variation � and
accordingly the correct value of each individual residual are simply that of the response values
entering the computations. Note that the computation considers the computation of the residuals
of the residuals (higher order residuals)—the correct values of the residuals (process variation)
are known, and by comparing these with the computed residuals, one obtains the residuals of
computing the residuals, or rather the error of computing the residuals (process variation).

The experimental designs used in the following two experiments are D-optimal [20] for
linear approximations with the larger experimental designs obtained by augmenting the smaller
experimental designs. The design variables have lower bounds of −1 and upper bounds of 1.
A linear response surface is fitted to the results to simulate the effect of incorrectly assigning
process variation to the design variables.

In the first test a single outlier of value 1 is considered, with all other points having no
process variation (of value 0). The results are as given in Table I. Of particular interest for this
study is the error of estimating the residuals. The table shows that for a very small number of
experiments, a single outlier may cause significant errors in the residuals. It can be seen that the
PRESS residuals overestimate the residuals for a small number of experiments signifying that
the detrimental effect of using a smaller number of experimental points to build the response
surface is larger than the benefit gained by using the PRESS residuals.

In the second test the results are a Bernoulli distribution with a 50% chance of having
a value of 0 or 1. The results are as given in Table II. Both the error of estimating the
process variation and the error of estimating the residuals are of interest for this study. The
table indicates that the residuals can be a good predictor of the process variation. But, for a
small number of experiments, both the estimation of the process variance and the estimation
of outlier distances are problematic.

Table I. Process variation of single outlier.

�process Residual estimation error

Experiments Actual Estimated∗ Mean∗ �∗

15 0.26 0.26 (0.46) 0.13 (0.28) 0.21 (0.33)
20 0.22 0.29 (0.32) 0.11 (0.17) 0.14 (0.16)
30 0.18 0.22 (0.24) 0.08 (0.10) 0.08 (0.10)
50 0.14 0.16 (0.16) 0.05 (0.06) 0.04 (0.05)

100 0.10 0.11 (0.11) 0.03 (0.03) 0.02 (0.02)
500 0.04 0.05 (0.05) 0.01 (0.01) 0.00 (0.00)

∗The standard method of computing the residuals were used to compute the
first value, while the PRESS residuals were used to produce the values in
brackets.
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Table II. Process variation of Bernoulli distribution.

�process Residual estimation error

Experiments Actual Estimated∗ Mean∗ �∗

15 0.47 1.11 (1.37) 0.33 (0.86) 0.23 (0.67)
20 0.50 0.68 (0.76) 0.30 (0.44) 0.24 (0.37)
30 0.50 0.54 (0.56) 0.29 (0.34) 0.21 (0.24)
50 0.49 0.52 (0.53) 0.22 (0.23) 0.14 (0.17)

100 0.50 0.50 (0.50) 0.17 (0.18) 0.13 (0.14)
500 0.50 0.51 (0.51) 0.04 (0.04) 0.03 (0.03)

∗The standard method of computing the residuals were used to compute the
first value, while the PRESS residuals were used to produce the values in
brackets.

Both tests show that if it is not feasible to assume a statistical distribution for the process
variation then the PRESS residuals can be bootstrapped instead. The PRESS residuals tend to
overestimate each individual residual and accordingly the process variation, especially for a
small number of experiments.

5.2. Head impact problem

We consider the problem of a Free Motion Headform impacting an A-pillar as shown in
Figure 2. The mesh is parameterized using the TrueGrid preprocessor [25]. We consider two
variables: the angle of the impact and the rib stiffener height of the pillar padding. We investigate
the variance on the Head Injury Criterion, HIC-d = 166.4 + 0.75466∗HIC15. The HIC15 Head
Injury Criterion is computed by finding the 15 ms interval with the maximum average head
acceleration and averaging the acceleration over this interval.

Firstly we investigate the problem using a parametric study in which we vary only one of
the variables at a time. The results for varying the angle of impact are as shown in Figure 3.
From the figure it is clear that the problem has some noise and it suggests that the variables
have a mostly linear effect on the HIC response. The results for varying only the rib height
variable are similar. If clear clustering can be distinguished, then state-selecting metamodels
[26] or a Bernoulli distribution describing the process variation can be considered. But this is
not the case here and a normal distribution is assumed for the process variation.

5.2.1. Probabilistic investigation. The statistics of the HIC-d response was investigated using
(i) a Monte Carlo analysis and (ii) a quadratic response surface. The angle of impact is taken
to be 15◦ with a 2.5 percent standard deviation, normally distributed, while the rib height is
12.5 mm with a 5 percent standard deviation, also normally distributed. These values allow the
angle of impact variation, rib height variation, and process variation to have a roughly equal
influence on the HIC-d variation.

The Monte Carlo analysis was done using 500 FEA evaluations and a Latin Hypercube
experimental design. The results from this Monte Carlo analysis along with their confidence
bounds are given in Table III.

A quadratic response surface was computed using the FEA results from the 500 points
Monte Carlo analysis. The adjusted R2 indicator of quality of fit was 0.817 and the process
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Figure 2. Head impact FE model. A Free Motion Headform impacts an A-pillar. The
pillar padding is internally stiffened with ribs. Both the angle of impact and the rib

stiffener height are varied during the analysis.

Figure 3. HIC-d—horizontal angle variation. The horizontal angle variation has a linear
effect of the HIC-d response, and some noise in the response can be observed. The noise

does not exhibit a clear clustering behaviour.
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Table III. Comparison of Monte Carlo and response surface results.

Monte Carlo Quadratic response surface

Lower Upper

bound∗ Value bound∗ �2
total = �2

deterministic + �2
process

†
�2

total = �2
deterministic

HIC-d Mean 363 363 (363) 363
HIC-d Std dev 1.89 2.14 2.43 2.06 (2.06) 1.85
P[HIC-d>357.5] 1.000 1.000 1.000 0.999 (0.998) 1.000
P[HIC-d>360.0] 0.931 0.95 0.969 0.946 (0.947) 0.967
P[HIC-d>362.5] 0.556 0.600 0.644 0.622 (0.622) 0.633
P[HIC-d>365.0] 0.164 0.200 0.236 0.187 (0.186) 0.161
P[HIC-d>367.5] 0.017 0.034 0.050 0.024 (0.024) 0.159
P[HIC-d>370.0] 0.000 0.000 0.000 0.001 (0.001) 0.001

∗95% confidence interval.
†A normal distribution was assumed for the process variation to compute the first value, while the PRESS

residuals were bootstrapped to produce the values in brackets.

variation is estimated to have a standard deviation of 0.918 (0.2% of the mean value). Results
are computed from the metamodel using a Monte Carlo analysis of 106 points. The results
from this metamodel-based Monte Carlo analysis are given in Table III along with the values
from the pure Monte Carlo analysis.

The results for the probabilistic evaluation are also given in Table III. The table shows that
if the variance of the response is estimated using only the deterministic variation as computed
using the quadratic response surface, then the resulting value underestimate the Monte Carlo
(benchmark) value. The process variation (estimated using the residuals from the response
surface fit) must be included into the computations in order to correlate with the Monte Carlo
results.

Table III also shows that the two different methods of estimating the process variation,
assuming a normal distribution and bootstrapping the PRESS residuals, gave practically identical
results.

5.2.2. Bifurcation investigation. Significant residuals were obtained from the response surface
fit. This lack of fit is judged not to be due to the choice of metamodel (bias error)—the
preliminary study considering only a single variable showed that a quadratic response surface
should fit well over the region of interest. Bifurcations (buckling) or poor modelling may
be responsible for these residuals; in this section we show how the process variation can be
investigated to identify bifurcations.

The proposed instability visualization method is used. We approximate the displacement of
every node in the model using quadratic responses surfaces, from which the process varia-
tions of the displacements are computed. Problem areas in the structure are visible when the
process variation is plotted on the model as demonstrated in Figure 4, which shows that the
displacements of one rib edge are not explained by the variation of the design variables.

Examining the identified region for the FEA experiments associated with the maximum and
minimum outlier highlights the different buckling modes are as shown in Figure 5.
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Figure 4. Fringe plot of the z-displacement process variation. The dark areas, having high
values of the process variation, indicate that the changes in the z-displacements values
in these areas cannot be associated with changes in the design variable values. Stability

problems are therefore suspected in these dark areas.

5.3. Occupant simulation model

A sled model test for the validation of occupant simulation is used to evaluate the technology for
large finite element models and a large number of variables. The model has 123 000 elements
and a simulation takes 9.5 h on 16 processors. The overlay plot of the model in Figure 6 shows
the bifurcation of the right-hand movement.

Ten variables were considered using the following four setups:

1. Convergence of the number of points: The full set of variables is used and the number
of experimental points is varied over a number of studies using this setup.

2. Invariance with respect to the region of interest: The range of the design variables is
increased and the number of design variables is decreased.

3. Control setup for the computation of the derivatives: Only one parameter is varied with
the number of points selected in order to compare the process variation with setup four.

4. Control setup for the process variation computation: The structural parameters are not
varied; instead process parameters such as the number of CPUs and contact parameters
are varied to estimate the process variation.

Scaled values of the design variables for the four setups are given in Table IV. For
every setup a number of studies are considered with the resulting eleven studies as given
in Table V.
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Figure 5. Buckling modes of the maximum and minimum outlier. The different buckling
modes were found by identifying an area having stability problems using Figure 4 and
subsequently examining the FE jobs producing the minimum and maximum value of the

z-displacement residuals in this area.

The responses monitored are the head impact criterion (HIC36), the chest intrusion, the
shoulder belt force, the pelvis belt force, the chest acceleration, and the pelvis acceleration.
The HIC36 Head Injury Criterion is computed by finding the 36 ms interval with the maximum
average head acceleration and averaging the acceleration over this interval.

The deterministic and the process x-displacement variation of the FE model are shown in
Figure 7. The head displacement is quite predictable, because it has a high value of the deter-
ministic variation and a low process variation value. The difficulty of predicting the movement
of the extremities of the occupant model and the bifurcation of the hand movement is clearly
visible from the process variation plot.

Figure 8 shows the coefficient of correlation of the pelvis belt force residuals with the
nodal z-displacement residuals. The coefficient of correlation is high for the seatbelt; the plot
therefore alleges that slip-stick conditions of the seatbelt are causing the process variation of
the belt pelvis force.

The results from the studies are summarized in the graphs in Figures 9–11. The mean
response computed from the response surfaces are compared with the results at the nominal
design in Figure 9. In Figure 10 we show the derivatives of the responses with respect to
the sled acceleration. The ‘correct’ value of the derivative given is the average from studies
L3-33 and Q3-33, which were in very close agreement. The accuracies of the derivatives
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Figure 6. Overlay plot of two occupant simulation runs. Note the
bifurcation of the right-hand movement.

Table IV. Occupant simulation variable setups.

Setup 1 Setup 2 Setup 3

Nominal
Variable value � Range∗ � Range∗ � Range∗

Sled acceleration 1.00 0.03 0.95–1.05 0.05 0.90–1.10 0.05 0.90–1.10
Slip ring 1 friction 1.00 0.25 0.50–1.50 0.50 0.00–2.00
Slip ring 2 friction 1.00 0.25 0.50–1.50 0.50 0.00–2.00
Seat belt pre-tension 1.00 0.04 0.91–1.09 0.09 0.82–1.18
Force limit retractor 1.00 0.06 0.89–1.11 0.11 0.78–1.22
Steering wheel rotation −1.00 0.05 −1.10 –−0.9 0.10 1.19–−0.81
Dashboard x-translation 0.00 0.50 −1.00–1.00 1.00 −2.00–2.00
Dashboard z-translation 0.00 0.50 −1.00–1.00
Airbag mass flow 1.00 0.05 0.90–1.10
Young’s modulus dashboard
Aluminum 1.00 0.05 0.90–1.10

Note: Setup 4 contained computational parameters only: the number of CPUs, the computer manufacturer,
a soft constraint formulation, a non-structural beam thickness, a contact penalty, the contact bucket sort
frequency, and the offset of some non-structural nodes.∗For the construction of the response surface, the variables are allowed to vary over a given range. This

range affects only the construction of the response surfaces and not the probabilistic computations.
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Table V. Occupant simulation studies.

Number of Experimental Design variables Response surface
Study Setup experiments selection and ranges order

L1-30 1 30 D-optimal for linear Setup 1 Linear
L1-60 1 60 response surface [19] Setup 1 Linear
L1-90 1 90 Setup 1 Linear
L1-120 1 120 Setup 1 Linear

L2-30 2 30 D-optimal for linear Setup 2 Linear
L2-60 2 60 response surface [19] Setup 2 Linear

Q1-90 1 90 D-optimal for linear Setup 1 Quadratic
Q1-120 1 120 response surface [19] Setup 1 Quadratic

L3-33 3 33 Space filling [27] Setup 3 Linear
Q3-33 3 33 Setup 3 Quadratic

Pure noise 4 30 Random Setup 4 None

Figure 7. Occupant x-displacement variations. Red areas have the highest
x-displacement variation; blue areas, the least. The deterministic and process vari-
ations are not to the same scale. Note the predictability of the head displacement

compared to the difficulty of predicting the right-hand movement.
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Figure 8. Correlation of pelvis belt force and nodal z-displacement outliers. The figure shows that the
seatbelt z-displacement outliers are correlated with the pelvis belt force outliers—stick-slip conditions

of the seatbelt may therefore be causing the pelvis belt force variation.

Figure 9. Response mean scaled with nominal response. The mean differs slightly between
experimental setups and response surface order.
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Figure 10. Response derivatives with respect to sled acceleration. The derivatives are
scaled with the mean response and their accuracies are indicative of the accuracy
of the deterministic variation. Differences of up to 25% with respect to the ‘correct’
derivative can be noted, presumably due to noise and curvature of the responses.

Figure 11. Standard deviation of the estimated process variation scaled with the nominal
value of the response. The results are the same order of magnitude. The process variation

is overestimated by the response surfaces, presumably due to bias error.
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are indicators of the accuracy of the deterministic variation—for linear response surfaces, the
deterministic variation is obtained by summing the squares of the products of the derivatives
with the standard deviation of the variables. The estimates to the process variance are shown in
Figure 11. The results from the eleven studies indicate good agreement of the mean, derivatives,
and process variation estimates for the different response surfaces. The process variation and
the response surface estimate have similar orders of magnitude, but the response surfaces
consistently overestimate the process variation, presumably due to the bias error (additional
investigation of this problem [28] has shown that feed forward neural networks [18] provides
an estimate of the process variation in close agreement to the pure noise estimate). The quadratic
response surfaces perform slightly better than the linear response surfaces, but the corresponding
cost increase (additional FEA runs) is difficult to justify.

The HIC36, the pelvis belt force, and the chest acceleration have the highest process vari-
ances. Assigning a specific cause to a process variance is not easy: the potential sources—the
hand movement bifurcation shown, stick-slip conditions of the seat belt, and effects from the
airbag—are acting simultaneously. In particular, the variation of the HIC36 criterion will require
careful study to be understood—the HIC36 criterion is a complex computation dependent on the
head acceleration, influenced by both the airbag deployment process variation and stick-slip of
the seat belt; but the noise in the HIC36 postprocessing computations may also be responsible.
Stick-slip conditions of the seat belt are a likely cause of variance of the pelvis belt force.

Linear response surfaces computed from 30 FE runs seem suitable for this structural problem.
More complex metamodels, associated with a larger number of experimental points, will be
required only for regions of the design space known to have a larger curvature in the response.

6. CONCLUSIONS

The process variation—variation not associated with a change in the variables, though intrinsic
to the structural mechanics of the event—contributes to the variation of the responses. This
uncertainty can be used in conjunction with the metamodels when computing probabilities of
events. But if the process variation is not associated with the physics of the problem, then it
should not be incorporated into the reliability computations and a metamodel filtering out the
process variation should be used.

Using metamodels to compute the response variation is attractive for reasons of cost and
distinguishing between bifurcation driven changes in the results and changes in the results due
to changes in the design variables.

The residuals (outliers) obtained from the metamodel fitting procedure are not always due
to an inadequate metamodel and may indicate the presence of different physical solutions.

Designing for uncertainty requires a focus on the eigenvalues (stability) of the structure in
addition to considering the design variable values.

The proposed stability visualization methodology, possibly the principal contribution of this
study, was shown to be effective for industrial problems. Computing the process variation
accurately in industrial problems, on the other hand, is challenging and requires care in both
the modelling and the analysis of the problem.

The process variation can be reduced by redesigning the structure if the process variation is
physical, and by careful modelling if non-physical.
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To reduce the bias component of the residuals, more advanced meta-models may be
considered. Response surfaces are used here for efficiency and clarity.
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