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The process of prototyping is part of every scientific inquiry, product design, and learn-
ing activity. The new economic realities require the rapid prototyping of manufactured
artifacts and rapid solutions to problems with numerous interrelated elements. This, in
turn, requires the fast, accurate simulation of physical processes and design optimization
using knowledge and computational models from multiple disciplines (multi-physics and
multi-scale models) in science and engineering. Thus, the realization of rapid mul-
tidisciplinary prototyping is the new grand challenge. In this application scenario
the natural computational resource is a “computational grid” that connects the needed
distributed hardware and software resources used to simulate the elements of the arti-
fact. Our research goal is to address this application scenario in the context of parallel
computing, cluster computing (LAN based computational grids), and Intranet/Internet
computational grids. In this document, we describe the initial design of a generic MPSE
framework based on a network of computational agents assuming a net-centric run-time
support environment. Moreover, we present the realization of this framework for design-
ing a prototype MPSE (GasTurbnLab) for supporting simulations needed for the design
of efficient gas turbine engines.

1. Introduction

It is predicted that in the next century, the available computational power will
enable any one with access to a computer to find an answer to any question that
has a known or effectively computable answer. The recently “proposed concept of
problem solving environments (PSEs)®>%” promises to contribute toward the real-
ization of this prediction for physical modeling and to provide students, scientists,
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and engineers with environments that allow them to spend more time doing science
and engineering rather than computing.

The predicted growth of computational power and network bandwidth suggests
that computational modeling and experimentation will be one of the main tools
in big and small science. In this scenario, computational modeling will shift from
the current single physical component design to the design of a whole physical sys-
tem with a large number of components that have different shapes, obey different
physical laws and manufacturing constraints, and interact with each other through
geometric and physical interfaces. For example, the analysis of an engine involves
the domains of thermodynamics (behavior of the gases in the piston-cylinder assem-
blies), mechanics (kinematics and dynamic behaviors of pistons, links, cranks, etc.),
structures (stresses and strains on the parts) and geometry (shape of the compo-
nents and the structural constraints). The design of the engine requires that these
different domain-specific analyses interact in order to find the final solution. The
different domains share common parameters and interfaces but each has its own
parameters and constraints. We refer to these multi-component based physical sys-
tems as multi-physics applications (MPAs). The realization of the above scenario,
which is expected to have significant impact in industry, education, and training,
will require the development of new algorithmic strategies and software for manag-
ing the complexity and harvesting the power of the expected HPCC resources; it
will require PSE technology to support programming-in-the-large and reduce the
overhead of HPCC computing. The main research thrust in this area should be to
identify the framework for the numerical simulation of multi-physics applications
and to develop the enabling theories and technologies needed to support and realize
this framework in specific applications. The MPSE is the software implementation
of this framework. It is assumed that its elements are discipline-specific problem
solving environments. The MPSE design objective is to allow the natural speci-
fication of multi-physics applications and their simulation with interacting PSEs
through mathematical and software interfaces across networks of computational re-
sources. In this document, we describe a software architecture for MPSEs and its
implementation for an MPA related to the simulation of gas turbine engines.

This document is organized as follows: Section 2 defines the concepts of PSE
and MPSE and reviews the associated research issues. Section 3 presents the gas
turbine engine MPA. Section 4 discusses an MPSE, referred to as GasTurbnLab,
for the simulation of gas turbine engines. In section 5, we describe the application
software infrastructure in the GasTurbnLab prototype. In section 6, we describe
the architectural components for a generic MPSE framework, along with issues per-
taining to the GasTurbnLab instantiation of this MPSE framework. In Section 7,
a prototype implementation of the GasTurbnLab MPSE is described. We conclude
our discussion in Section 8, with an analysis of the overall MPSE framework ar-
chitecture and the major challenges in validating this architecture and its principle
objectives through the implementation of the GasTurbnLab prototype.



2. MPSES - Definitions And Research Issues

In the following we define the PSE and MPSE concepts, and review the associated
research issues.

2.1. PSEs AND MPSEs

Domain Specific PSEs: Even in the early 1960s, scientists had begun to envision
problem-solving computing environments not only powerful enough to solve complex
problems, but also able to interact with users on human terms. The rationale of our
research is that the dream of the 1960s will be the reality of the 21°¢ century: High
performance computers combined with better algorithms and better understanding
of computational science have put PSEs well within our reach.

What are PSEs? A PSE is a computer system that provides all the computa-
tional facilities needed to solve a target class of problems. These facilities include
advanced solution methods, automatic selection of appropriate methods, use of the
application domain’s language, use of powerful graphics, symbolic and geometry
based code generation for parallel machines, and programming-in-the-large. The
scope of a PSE is the extent of the problem set it addresses. This scope can be very
narrow, making the PSE construction very simple. Nevertheless, even what appears
to be a modest scope can be a serious scientific challenge. For example, we have
created “a PSE for bioseparation analysis!»?”. This has a narrow scope, but is still
a complex challenge as we incorporate both a computational model and an experi-
mental process supported by physical laboratory instruments. We are also creating
a PSE called PDELab for “partial differential equations®*” (PDEs). This is a far
more difficult area than bioseparation and the resulting PSE will be less powerful
(less able to solve all the problems posed to it), less reliable (less able to guarantee
the correctness of results), but more generic (more able to parse the specifications
of many PDE models). Nevertheless, PDELab will provide a quantum jump in the
PDE solving power delivered into the hands of the working scientist and engineer.

What are the PSE related research issues to be addressed? A substantive research
effort is needed to lay the foundations for building PSEs. This effort should be
directed towards i) “a PSE kernel for building scientific PSEs?6”, ii) “a knowledge
based framework to address computational intelligence issues for PSEs!%-16” and for
PDELab, iii) “infrastructure for solving PDEs!1:12:13:23,25” "and iv) “parallel PDE
methodologies?17:18:27:28,29” anq “yirtual computational environments*1%:31”,

MPSEs for prototyping of physical systems: If PSEs are so powerful, what
then is an MPSE? In simple terms, an MPSE is a framework and software kernel
for combining PSEs for tailored, flexible multidisciplinary applications. A physical
system in the real world normally consists of a large number of components that
have different shapes, obey different physical laws and manufacturing/design con-
straints, and interact through geometric and physical interfaces. Mathematically,
the physical behavior of each component is modeled by a PDE or ODE system with
various formulations for the geometry, PDE, ODE, interface/boundary/linkage and



constraint conditions in many different geometric regions. It is difficult to imag-
ine creating a monolithic software system to accurately model such a real problem
with complicated artifacts such as the turbo engine, which has literally hundreds
of odd shaped parts and a dozen physical phenomena. Therefore, one needs an
MPSE mathematical/software framework which, first, is applicable to a wide vari-
ety of practical problems, second, allows for software reuse in order to achieve lower
costs and high quality, and, finally, is suitable for some reasonably fast numerical
methods. Most physical systems and manufactured artifacts can be modeled as a
mathematical network whose nodes represent the physical components in a system
or artifact. Each node has a mathematical model of the physics of the component it
represents and a solver agent for its analysis. Individual components are chosen so
that each node corresponds to a simple PDE or ODE problem defined on a regular
geometry.

2.2. The Research Issues

What are the mathematical network methodologies required? What are the research
issues? There exist many standard, reliable PDE/ODE solvers that can be applied
to these local node problems. In addition, there are nodes that correspond to in-
terfaces (e.g. ODEs, objective functions, relations, common parameters and their
constraints) that model the collaborating parts in the global model. Moreover, the
analysis of an artifact changes through time, thus some of the interfaces appear and
disappear during the analysis session. To solve the global problem, we let these local
solvers collaborate with each other to relax (i.e., resolve) the interface conditions.
An interface controller or mediator agent collects boundary values, dynamic/shape
coordinates, and parameters/constraints from neighboring subdomains and adjusts
boundary values and dynamic/shape coordinates to better satisfy the interface con-
ditions. Therefore, the network abstraction of a physical system or artifact allows
us to build a software system that is a network of collaborating well-defined nu-
merical objects through a set of interfaces. Some of the “theoretical issues of this
methodology!?-20-21:22” have been addressed for the case of collaborating PDE mod-
els. The results obtained so far verify the feasibility and potential of network-based
prototyping.

What are the software methodologies for implementing the mathematical net-
work? What are the research issues? A successful architecture for PSEs requires
heavy reuse of existing software within a modular, object oriented framework con-
sisting of layers of objects. The kernel layer integrates those components common
to most PSEs or MPSEs for physical systems. We observe that this architecture
can be combined with an “agent-oriented paradigm and collaborating solvers®” to
create MPSE as a powerful prototyping tool. MPSEs must exploit and build on the
new technologies of computing. By the time MPSEs are operational, the advances
in computing power and the communication infrastructure will allow ubiquitous
high performance computing, i.e., every where by every one. The designs for MPSE



must be application and user driven. An MPSE must simultaneously minimize
the effort and maximize the solution power delivered to researchers, engineers and
scientists, students, and trainees. We should not restrict our design just to use
the current technology of high performance computers, powerful graphics, modular
software engineering, and advanced algorithms. We see MPSE as delivering prob-
lem solving services over the Net. This viewpoint leads naturally to collaborating
agent-based methodologies. This, in turn, leads to very substantial advantages in
both software development and quality of service as follows. We envision that a
user of a MPSE will receive at his location only the user interface. Thus, the MPSE
server will export to the user’s machine an agent that provides an interactive user
interface built on top of the standard services of the Net. The bulk of the software
and computing is done at the server’s site using software tailored to a known and
controlled environment. The server site can, in turn, request services from special-
ized resources it knows, e.g., a commercial PDE solver, a proprietary optimization
package, a 1000 node supercomputer, an ad hoc collection of 122 workstations, a
database of physical properties of materials. Each of these resources is contacted
by an agent from the MPSE with a specific request for problem solving or infor-
mation service. Again, all this collaboration is built on standard network services.
All of this can be managed without involving the user (if desired), without moving
software to arbitrary platforms, and without revealing source codes.

What are the design objectives of an MPSE for physical system design? What
are the research issues? These mathematical networks can be very big for major
applications. For a realistic turbine simulation, there are perhaps 100 million vari-
ables and many different time scales. This problem has very complex geometry
and is very non-homogeneous. The answer (a data set that allows one to display
an accurate approximate solution at any point) is 20 gigabytes in size and requires
about 10 teraflops to compute. This data set is much smaller than the computed
numerical solution. The network of PDE solvers might have 10,000 subdomains
and 35,000 interfaces. A software network of this type is a natural mapping of a
physical system and simulates how the real world evolves. This allows the use of the
software parts technology (object-oriented programming) that is the natural evolu-
tion of the software library idea. It allows software reuse for easy software update
and evolution, things that are extremely important in practice. The real world is so
complicated and diverse that we believe it is impractical to build monolithic, univer-
sal solvers for such problems. Without software reuse, it is impractical for anyone to
create on his own a large software system for a reasonably complicated application.
Each new automobile normally results in a new software system. Recreating such a
system could easily take several months or years. In contrast, the execution time to
perform the required computation might only be a few days. Notice that a prticular
design change usually corresponds to replacing, adding, or deleting a few nodes in
the network with a corresponding change in interface conditions. These are simple
manipulations on a network, which do not affect the rest of the system and can thus
be easily done. In this application, each physical component can be viewed both as



a physical object and as a software object. In addition, this mathematical network
approach is naturally suitable for parallel computing as it exploits the parallelism
in physical systems.

One can handle issues like data partition, assignment, and load balancing on
the physics level using the structure of a given physical system. Synchronization
and communication are controlled by the mathematical network specifications and
are restricted to interfaces of subdomains, which results in a coarse-grained com-
putational problem. This is especially suitable for today’s most advanced parallel
supercomputer architectures. The network approach also allows high scalability.
Realizing this MPSE technology requires research advances both in the general
structure and implementation area and in more specific areas from the target ap-
plications. For example, we must design and create the tools that allow the MPSE
agents to collaborate over the Net. We must create a flexible and general methodol-
ogy for interfacing large and heterogeneous software systems. Following we propose
a software framework for MPSEs supporting PDE based applications and realize it
for a multi-physics application related to the simulation of gas turbine engines.

3. The Gas Turbine Engine Multidisciplinary Application

The gas turbine engine is an engineering triumph. It has more than 1,300 parts with
rotational speeds to 16,000 rpm for axial and 50,000 rpm for radial flow components.
For aircraft applications, it operates with maneuver loads of up to 10g, with flow
path pressures and temperatures to 40 atmospheres and 1400 F. The extreme com-
plexity and high-performance requirements of aircraft gas turbines are illustrated
in Figure 1 . The important physical phenomena take place on scales from 10-1000
microns to meters. A complete and accurate simulation of an entire engine is enor-
mously demanding; it is unlikely that the required computing power, simulation
technology or software systems will be available in the next decade. The primary
goal of the GasTurbnLab research project is to advance the state-of-the-art in very
complex scientific simulations and their validation. Specifically, we consider “sim-
ulating the compressor-combustor-turbine coupling in a gas turbine engine®”. For
this we plan to design and implement a MPSE, referred as GasTurbnLab, to study
complex physical phenomena such as stall, surge and turbine blade fatigue. Figure 2
presents an abstraction of a MPA and the corresponding software infrastructure.
The hardware infrastructure assumed for these simulations and the implementation
of MPSE consists of a computational grid involving a SP-2, 128 PC cluster running
Solaris, and SGI Origin 2000 with 32 CPUs. In this study we will utilize the agent
system “Grasshopper’?” that is MASIF (Mobile Agent System Interoperability Fa-
cilities Specification) standard compliant and runs on the top of CORBA. Details
of this implementation follow.
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Fig. 1. View of a gas turbine showing some of its detail, some of its operational characteristics
and the engineering methodologies involved in its design, simulation and construction.

4. GASTURBNLAB: A Prototype MPSE Framework For Gas Turbine

Engine Simulations

In this section we describe the “design of a MPSE framework®” that can be used
to simulate complex multi-physics phenomena governed by PDE network models in
general and the requirements of the GasTurbnLab MPSE. A network of distributed
machines is assumed as the hardware infrastructure. The PDE simulations are often
defined on geometric domains. Thus, the natural geometric boundaries or artificial
geometric boundaries can be used to split the problem and the underlying simulation
into many smaller sub-problems. Each sub-problem is then solved independently,
with mediator interactions along the boundaries for “interface relaxation!®-20-22”,
Thus, the MPSE framework for PDE simulations must support domain decomposi-
tion with geometric objects, usage of a network of PDE solver agents, and interface
relaxation. Figure 3 gives a brief overview of this simulation paradigm. Our design
goal in GasTurbnLab MPSE is to identify existing software solvers that can sup-
port this paradigm assuming that the application computational resources consist
primarily of “legacy” code.

4.1. Functional Specifications of GASTURBNLAB

In the case of PDE simulations, the MPSE framework user interface is driven
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Fig. 2. Functional view of a multidisciplinary PSE. The computations (and the major data ex-
change) are concentrated in the network of solver (PSE) and mediator agents. The solver agents
communicate with the recommender ones through queries to obtain “advice” on computational
parameters. The user interacts with the system through the global and local user interfaces, which
send queries and receive replies from the various agents.

by the underlying geometric modularity of the problem. The geometry is assumed
to have a root node for the target object and the user is allowed to subdivide it in
multiple ways, resulting in a hierarchy of geometrical objects. The interface would
allow user-access to relevant data associated with the geometric objects at every
level.

This geometric domain decomposition of the target simulation object defines a
network of PDE problems. On each subdomain, a PDE problem models the physics
on that geometric object (domain). Each subdomain has some neighbors and, pos-
sibly, some fixed boundaries. If each neighborhood connection is represented by an
arrow, we get an abstraction of a network of PDE problems. Since the PDEs on
each domain are usually not the same, these represent a composite PDE problem.
The MPSE framework maps the network of PDE problems resulting from a user-
specified partitioning onto a set of computational agents on a pre-specified collec-
tion of machines. This resource allocation will be done in an optimal manner to
minimize the communication overheard between computational agents of neighbor-
ing subdomains. However, the MPSE framework interface would allow the user to
manipulate this mapping to achieve a custom resource allocation.
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Fig. 3. Interface relaxation iteration.

Under the assumption that any single PDE problem of the composite prob-
lem can be solved exactly, the interface relaxation mathematical technique will be
used to solve the composite PDE problem. The interface relaxation methodology is
based on the iteration shown in Figure 3. In the GasTurbnLab MPSE, the initial
target object is the entire gas turbine engine. A GasTurbnLab simulation consists
of a user-specified set of geometrical objects that partition the engine and a corre-
sponding network of PDE solver agents that collaborate to find a solution for the
composite PDE problem. The geometrical objects that partition the engine may
be hierarchical, resulting in a corresponding set of hierarchical computations in an
asynchronous simulation process.

Gasiurbnkab MPSE

TrieGad Grasshopper KIVA-3V
Agent ALE-3D
Platform PELLPACK

Fig. 4. Major components of the GasTurbnLab MPSE.
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Fig. 5. IRIS Explorer top level user interface for the GasTurbnLab MPSE.

4.2. Enabling Technologies and Software Infrastructure

Utilizing existing technology and legacy software is an important goal in the design
of this MPSE framework and its prototype implementation, GasTurbnLab. The
MPSE framework is built across three main architectural components - the user
interface layer, the middleware, and the computational software infrastructure layer.
The “IRIS Explorer application builder and visualization system®3” is used for
the MPSE framework user interface and the middleware component is based on
the “Grasshopper32”
dependent upon the MPE’s target class of simulation problems. This computational
application software infrastructure is discussed in Section 5. Figure 4 depicts these
architectural layers and their major constituents for the GasTurbnLab PSE.

mobile agent platform. The computational infrastructure is

4.3. Graphical User Interface

The IRIS Explorer system is a toolkit for building user interfaces for data visualiza-
tion, and uses a data flow paradigm. The interface is built by creating the requisite
modules and wiring them together via Explorer’s map editor. The connections in an
Explorer map depict the flow of data between modules and act as module triggers
(Figure 5). Modules have input ports and output ports, interactively controllable
parameters and the ability to execute on different machines on a network. A module
is activated when all its input ports are triggered. IRIS Explorer allows modules
written in C/C++ to issue scripting commands. The SKM language with Lisp-like
syntax is used to create these scripts for the Explorer command interface.
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The Explorer interface provides access to all MPSE framework components that
are user-steerable, including problem specification, simulation launch and control,
and solution visualization. Users define the target simulation object (domain) and
its geometric domain decomposition with the Problem Specification Module. User-
selected subdomains of the target object are passed to the “TrueGrid®*” software
tool, which is incorporated into the module as a self-contained system. TrueGrid
is applied to each subdomain to generate a grid and define boundary conditions.
The Problem Specification Module provides tools for specifying interface conditions
between the subdomains and assigning solvers and their parameters to each subdo-
main. This information is the required input for the Dispatch Module.

Users launch the simulation via the Dispatch and Compute Modules, which in-
teract with the underlying Grasshopper agent platform. Grasshopper’s graphical
monitoring tool is used within the Compute module to view and monitor the un-
derlying agent interactions in the simulation process for possible computational
steering. Once the Compute Module completes its simulation task, control is re-
turned to the Explorer interface for the solution visualization and analysis phases.
Explorer’s data visualization module, Render, is utilized by the Visualization Mod-
ule for post-simulation solution display and analysis. Render is a built-in Explorer
module which displays a geometric object, rendered from a 3D geometry structure
sent to it by a compatible preprocessing module. Render provides a wide selection
of visual enhancement techniques for manipulating and examining a display object.
The GasTurbnLab Visualization Module (Visualizer) is the first Explorer module
to be implemented. A brief description of its implementation and some solution
images from the prototype simulations (presented in Section 6) follow. The Visual-
izer displays the final solutions for the simulation of any number of subdomains by
any of the integrated legacy solvers. The Visualization Module can be viewed (Fig-
ure 6) as an integrated system of preprocessing programs, preprocessing modules
and Render. The Visualizer’s preprocessor recognizes a standardized file format for
node and element data which has been defined for the solvers of the GasTurbn-
Lab MPSE; all solvers are expected to write their final results to a solution file
in this format. Solution files contain vertex and element connectivity information,
along with nodal and element based solution values. The files are presented to the
Visualizer, which invokes the preprocessor for

Loading the solver-generated data,

Building a pyramid data structure as required by Explorer,
Selecting which solution values to display, and

Passing the data structure and display parameters to Render.
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Fig. 6. A portion of the Visualizer implementation, shown as a wired map of modules in IRIS
Explorer. Each module has an input port, and output port and a parameter dialog.

When data is loaded from the solver generated files, the preprocessor must nor-
malize values from different solvers so they can be presented as a single image. Ad-
ditional image processing is necessary to handle large differences in solution values
between solvers, data values with an extremely small range, solution representation
differences, etc. The pyramid data structure created for the GasTurbnLab simu-
lation output data is a layered structure which contains the information required
for the image display: vertex (nodal) coordinates, vertex solutions, edges (connec-
tions between nodes), edge based solutions, surfaces, surface based solutions, solids
(3D elements), element based solutions. When the pyramid structure is complete,
internal Explorer modules are used to transform it to the Render geometry data
structure. Finally, the Visualizer creates a user selection panel allowing users to
choose which solution to display. The prototype simulation discussed in Section 6
generates nodal based velocities (in the x, y and z directions) and element based
density, energy and pressure. Users choose which of these solutions to pass to
Render. Figure 7 shows some Visualizer images from the prototype simulation.

Fig. 7. Images from the GasTrubnlab MPSE for the rotor simulation. To the left is the TrueGrid
domain specification. The middle and right images are Visualizer images, displaying the mediated
ALE-3D solution.
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4.4. Middleware

The MPSE framework uses the Grasshopper Distributed Agent Environment (DAE)
as middleware to facilitate the agent-based computational simulation paradigm.
The Grasshopper mobile agent platform is MASIF compliant (the first mobile agent
standard of OMG), and is built on top of a distributed processing environment. It
is implemented in Java to achieve platform interoperability and offers a range of
communication protocols for remote interaction (IIOP, RMI or plain socket con-
nections). The DAE is composed of regions, places, agencies and different types of
agents that may be either stationary or mobile. Agencies are the actual runtime en-
vironments for the agents and hence at least one agency should be running on each
host machine. A place provides a functional grouping within an agency. Regions
facilitate the management of the distributed components with a region registry used
to maintain information about all components in a specific region.

During their lifecycle, Grasshopper agents may be in one of the following states:
active, suspended or deactivated. Grasshopper agents may be either mobile or
stationary. Unlike traditional mobile code that usually features remote execution
(where the program is sent before execution), mobile agents can migrate during
execution. Integrating mobile agent technology and client/server or peer-to-peer
communication technology yields many possible agent interaction scenarios:

e Remote communication

Client agent migration to a traditional server

Server agent migration to a traditional client

Dual peer agent migration to an intermediate location plus local communica-

tion

e Single peer agent migration to a convenient intermediate location plus remote
communication

Due to the importance of legacy code usage and the problems inherent to legacy
code migration, the MPSE framework utilizes a combination of these interactions.
The Grasshopper communication service provides the means for location transpar-
ent, inter-agent communication with multi-protocol facilities such as IIOP, RMI
and TCP/IP sockets. However, it does not specify the ways of communication with
a specific agent language. RMI and socket connections can be made secure with
SSL (Secure Socket Layer) protection. Additionally, Grasshopper makes uses X.509
certificates to ensure confidentiality, integrity and proper authentication. For access
control, Grasshopper uses the JDK 1.2 security mechanisms. Grasshopper provides
a persistence mechanism for agents and offers a standard array of communication
modes - synchronous, asynchronous, dynamic and multicast. The MPSE framework
initially uses RMI and plain sockets for its agent interactions. A proprietary lan-
guage based on either XML or an existing agent communication language is used for
agent communication. Security issues in the MPSE framework are addressed at all
levels and the realization of the MPSE security framework includes the mechanisms
available in Grasshopper.

13
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Fig. 8. Anatomy of a legacy code embedded stationary agent.

4.5. Application Software

The computational infrastructure in the MPSE determines its target class of prob-
lems. The proposed framework provides the architecture and model infrastructure
for an agent-based simulation MPSE and facilitates a straightforward incorpora-
tion of computational code to GasTurbnLab. The framework design takes into
consideration the possibility of legacy code in the computational component, as in
the case of GasTurbnLab. The introduction of legacy code infuses a certain level
of intractability into the computational agent design since we cannot assume that
legacy software can be inserted within a mobile agent. The computational software
infrastructure in GasTurbnLab consists of ALE-3D, KIVA-3V, and PELLPACK
code modules and interface relaxation code implemented in either C/C++ or Java.
ALE-3D is an advanced CFD software module suitable for gas turbine simulation.
It is large, with about 200,000 lines of code. KIVA-3V is an advanced combustion-
simulation package with about 50,000 lines of code. PELLPACK is a versatile PSE

Cervet

C wrappet ﬁ .

Legacy Fortran Code

Fig. 9. Client /server approach for legacy code encapsulation.
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for PDE problems, encapsulating many PDE solvers and graphical support tools.
It has more than a million lines of code.

ALE3D, KIVA-3V and most of PELLPACK’s PDE solvers are implemented in
Fortran. There are two approaches to incorporate this legacy Fortran code into the
PSE framework’s Java-based agent structure.

(i) Insert the Fortran-based code within Java wrappers as stationary agents. This
can be achieved with JNI (Java Native Interface). Figure 8 illustrates the
encapsulation technique within a stationary agent.

(ii) Insert the Fortran-based code within C/C++ wrappers as servers. They can
then be accessed as local servers by client agents. Figure 9 illustrates the
legacy code embedded server and the client agent interaction.

The advantage of the first approach is that it fits elegantly into the proposed
computational scenario. However, the legacy code’s inherent interface requirements
may complicate the use of JNI and result in a very restricted wrapper. Further-
more, if the wrapper becomes very large and involves complicated programming
with many Fortran, C and Java code interactions, this would not be the best ap-
proach. The second option would then be easier to implement, albeit introducing
additional necessities such as a communication protocol between the legacy-code-
wrapped servers and client agents. Hence, choosing a specific approach should be
done on a case-by-case basis, depending on the legacy software. Both approaches
should optimize memory and bandwidth usage with attention to performance and
robustness. The MPSE framework design allows legacy code incorporation based
on either of these two approaches.

5. Architectural Overview of the Proposed MPSE Framework

In this section, we present an overview of the agents and other components contained
in the MPSE framework. We discuss the overall generic architecture (Figure 10)
and include details in the case of a specific MPSE (GasTurbnLab) implemented
using this framework. The graphical user interface of the PSE framework mainly
comprises the problem specification, dispatcher and compute modules. These are
implemented as IRIS Explorer modules. The dispatcher and compute modules
interact with specific agents in the underlying Grasshopper platform. These agents
enable the actual simulation computations in the PSE.

Enabling Services Layer: The Grasshopper distributed agent environment
runs on all the hosts of the networked computational grid. Each host agency has
an active DataBase Agent (DBA) and an active Resource Agent (RA). They are
implemented as stationary Grasshopper agents. The DBA agent controls the local
database on the host. It has sole responsibility of authenticating data entry, update
and retrieval requests. In addition, this agent may have the capability to respond to
properly authenticated HT'TP protocol requests, enabling Web-based data retrieval
and visualization. The data in these databases are stored in an XML format based
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on a proprietary DTD (Document Type Definition). Such a specification is only
applicable to meta-data. For instance, the linear system elements would not be
stored in XML-format. Instead, a pointer (URI - Universal Resource Identifier) to
the linear system data is specified in XML-format. Thus, the PSE framework does
not impose any requirements on the linear system data itself, and it may be stored in
any format determined by the underlying legacy computational software. The RA
agent monitors execution performance and gather local machine load and network
congestion information. It maintains a local resource database along with other
requisite logs. The local RA synchronizes its resource information with resource
agents on other hosts. Thus, each RA has access to dynamic network information
such as load, congestion and machine reachability. The local RA may be queried for
the latest resource data or it may be instructed to provide updates to specific remote
agents. The update frequency can be periodic or triggered by the occurrence of
certain Resource Characteristic events (RC events), such as the local host processor
load reaching a particular level. The RA may maintain the resource database as
part of the local database in conjunction with the DBA agent. This event model for
resource monitoring facilitates the incorporation of various resource management
tools and techniques in the upper layers of the architecture. For instance, the
compute layer may use the resource characteristic events to implement a range of
load balancing models.
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set
Totmabian Campute Module

Sirnulation Controller figent

Computahonal Compute fAgents | Mediator Agents
1 <

e Legacy Cods Intexface

Bgents Code Agents
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Fig. 10. The MPSE framework architecture.
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User Interface Layer: As described in Section 4, the Problem Specification
(PS) Module with the embedded TrueGrid tool is used to specify the root do-
main and its decomposition. The formatted output from this module is directed
to the Dispatcher Module. The dispatcher distributes the partitioned data to the
local databases of selected hosts on the available computational grid. It selects the
physical host locations for each subdomain computational agent, using information
provided by the resource agents and a set of allocation algorithms for optimizing
network connectivity and machine load. The dispatcher has a graphical interface to
display its actions, allowing the user to override its decisions or modify the alloca-
tion algorithm parameters. Upon successful completion of the data distribution, the
dispatcher module generates a host allocation table as its output. The dispatcher
module may also be wired in an Explorer map for other data distribution tasks
such as a distributed, collaborative solution analysis session. The output from the
dispatcher module is directed to the Compute Module (CM). The CM chooses the
appropriate mediator agents from the library of MPSE mediators, based on the
solver interface data requirements of the selected simulators on each domain. The
CM launches the simulation and controls the execution of the compute and me-
diator agents. It monitors the simulation process until the user-specified stopping
condition is reached. The output of the CM is the simulation problem solution.
Figure 5 illustrates the top level user interface.

Computational Layer: The primary “workers” within the CM are the Com-
pute Agents (CA) and Mediator Agents (MA). The CA, when activated, reside on
each target host with a single agent per domain partition. It is feasible, although
not desirable, for a host agency to have more than one active compute agent dur-
ing a simulation process (implying more than one domain partition having been
assigned to the host). The compute agents are implemented as mobile Grasshopper
agents. The mediator agents, when activated, may reside on a target host with a
domain partition or on an intermediate host in close proximity to two target hosts
with neighboring domain partitions. The mediator agents are also implemented as
mobile Grasshopper agents. After describing the CM in detail, we discuss the archi-
tectural technique that makes the compute and mediator agent mobility possible,
even when the simulation computation has to be performed by legacy code.

The compute module accomplishes its task by launching a Simulation Controller
Agent (SCA). This agent controls the entire computational simulation process by
monitoring the distributed compute agents and mediator agents on each host. The
simulation controller interacts closely with the resource agents on the target hosts
to ensure the dynamic integrity of the selected computational grid. This interac-
tion may be either via periodic updates or via RC event occurrences. For instance,
if a particular host connection deteriorates, the simulation controller agent may
instruct the corresponding compute agent to continue its computation after mi-
grating to another host. If necessary, the simulation controller informs the other
relevant compute agents and mediator agents of the migration. However, since
the Grasshopper environment supports location transparent communication for its
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Fig. 11. PSE framework agent interactions.

mobile agents, depending on the agent communication implementation, such notifi-
cation may not be required. Furthermore, for highly compute intensive simulations,
the simulation controller may employ load-balancing techniques to redistribute the
ongoing computations amongst the processors on the computational grid. The com-
pute and mediator agent mobility makes this operation possible without disrupting
or restarting the simulation computations.

We propose a two-tiered agent/wrapper architecture to facilitate compute and
mediator agent mobility within the PSE framework. The actual legacy codes for
the compute agent are encapsulated within a Legacy Code (LC) Agent. The actual
legacy codes for the mediator agent are encapsulated within an Interface Code (IC)
Agent. This second tier of wrappers exists transparently within the PSE framework.
Thus, all other agents in the framework interact solely with the compute and media-
tor agents and not the LC and IC agents. The LC and IC agents communicate only
with their corresponding compute and mediator agents. The possible agent interac-
tions within the PSE framework are schematically depicted in Figure 16. Although
we refer to these second tier components as agents, their actual implementation may
be in the form of legacy code embedded servers (as described above). For clarity,
we continue to refer to them as agents, irrespective of their possible implementation
technique.
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A compute agent may be required to migrate to another host for load balancing
purposes. In this event, the simulation controller directs it to use a different LC
agent. Since only the compute agent can physically migrate, it requests the LC
agent to stop computation of the current iteration. It then migrates with the last
completed iteration data to its next location. The compute agent then starts the
next iteration computation with the new LC agent with its saved “last completed
iteration” data. To make such mobility possible, the compute agent is required to
always save the last completed iteration data. The mediator agent migration is also
achieved in a similar manner.

The LC and IC agent availability on the computational grid hosts is recorded
as part of the resource information in the PSE framework. Thus, the LC and
IC agent locations are considered by the allocation algorithms of the dispatcher
module when assigning the partitioned domains to the computational grid hosts.
This information also available to the load balancing algorithms in the simulation
controller agent. The LC and IC agents may not be available on all the hosts of
the computational grid. In such a situation, if a compute agent migration were
triggered by load balancing requirements or network congestion, the agent would
be moved to a location with an available LC agent in close proximity.

6. Simulation Results

This section reports on the results of two prototype simulations for a functioning gas
turbine engine. The first prototype couples two principal sections of a compressor:
the stator and the rotor. This prototype problem is simulated by executing ALE-3D
legacy code on both subdomains. The second prototype couples the combustor and
stator, applying different legacy codes (ALE-3D and KIVA- 3V) to the two subdo-
mains. In both prototypes, the common boundaries (Figure 12) of the subdomains
are treated with a mediator which communicates with the two executing simulators
along the interface.

6.1. The Compressor Prototype

Initially, the implicit version of the ALE-3D legacy code is used to simulate
both subdomains of the compressor prototype. Figure 12 shows the (stationary)
stator and the (rotating) rotor, with the working area of the mediator marked on
the interface annulus. The mediator requires specialized code to handle the simple
but necessary computations involving interface data received from both simulations.
Outflow data from the stator and inflow data from the rotor are processed by the
mediator and the computed values are passed back to the two simulators. The
processing is done once for each time step of the engine simulation. At simulation
startup, an initial guess for the flow field variables is specified. This guess is not
compatible with the boundary conditions of the problem (e.g. the pressure at
the domain exit, solid surfaces within the domain). As the simulation marches
forward in time and as the flow moves through the domain, the flow variables adjust
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Fig. 12. The mediator work area is the annulus on the boundaries of the stator and rotor domains.
The mediator resolves grid and solution value differences between the two simulators.

themselves to the boundary conditions so that eventually the flow field reaches a
valid solution. This solution could include some periodic unsteadiness due to the
relative rotation of one blade row with respect to another. Thus, the solution is
usually referred to as an unsteady steady state. During the simulation, the mass
flow rate through each domain is calculated and stored at regular time intervals.
This mass flow rate is averaged over time T and 2T, where T is the period of
unsteadiness in the flow (e.g. due to rotation of blade rows). If the average mass
flow rate averaged over T is the same as that averaged over 2T, then the simulation
has converged. The amount of time required to obtain an unsteady steady state
is generally not known a-priori, but a good guess for this time can be made by an
experienced user. In the prototype, the time required for the simulation to reach an
unsteady steady state is input directly by the user into each legacy code; this time
is the same for all codes involved. Legacy codes’ iterations stop when this time is
reached.

The goal of the first prototype is to achieve solution results across both subdo-
mains with the desired level of accuracy, in particular along the interface boundary.
Passing the correct interface information between the simulations required signif-
icant changes to the original mediator code, resulting in a decision to construct
mediators specialized for the MPSE and for the solvers, Section 6.4 discusses the
resolution of the issue of building custom mediators. The remainder of this section
assumes that customized code is added to the kernel mediator code when required
by the solvers of the subdomains involved in the mediation process.
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Since the implicit mediator (used with the implicit version of the ALE-3D code
for the combustor prototype) processes data from two different simulations, it must
resolve all issues related to differences in their solution methods and data require-
ments. The mediator receives an initial grid definition for the common boundary
from both simulations, and must handle different grids on some portion of the
shared surface, as shown in Figure 12. In addition, although the stator grid re-
mains unchanged throughout the simulation, the rotor grid is redefined at each
time step according to the given rotation speed. This results in added computa-
tions for the mediator, since interpolation points are different at each time step
and must be redefined. The solvers use values both at the grid nodes and at the
centers of the finite element faces and, in general, the types of nodal and element-
based values passed to the mediator may be different for different simulators. In the
prototype, nodal values for the stationary domain are velocities in each direction.
Element-based values are pressure (from the rotor), and density and energy (from
the stator). Using periodicity and interpolation, the mediator computes velocity at
the rotor nodes, density and energy at the centers of the element faces for the rotor,
and pressure at the center of the stator element faces. The computed values are sent
to the appropriate simulations. For the interpolation, the four closest points on the
opposite section (defined by periodocity) are used for the multivariant interpolating
polynomial defined by “de Boor and Ron’s Least Polynomial Method®3”. For this
interface, no relaxation method is needed since the two domains exchange values
for different quantities.

Since the resulting solutions are not sufficiently accurate (see the implicit medi-
ator solution in Figure 13), a new mediator is designed to provide greater accuracy.
The new mediator operates with the explicit version of ALE-3D, and differs from
the implicit mediator in the types of data values that are communicated (input
and output) and in the computations. The explicit mediator processes velocity at
the stator nodes, force and mass on both stator and rotor nodes, and density and
energy at the element face centers of the stator and rotor. Element volumes are
also provided to the explicit mediator, since they are needed to compute weighted
sums of values from both subdomains. The mediator computes density and energy
on element faces, and acceleration (as a function of force and mass) on the nodes
for both subdomains. Velocity is also computed for the rotor nodes. Periodicity is
considered, and interpolation is used to obtain the desired results. The significantly
improved results for pressure are shown in Figure 13 (right part), while the mass
flown convergence is presented in Figure 14 ( T here is 166.67 usec, since there are
18 blades on each part of the compressor and the rotation rate is 20,000 rpm). The
ALE-3D code was modified by adding several Fortran routines to output key data
to the mediator three times for each time step, and to read in the mediator supplied
data at these times.
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Fig. 13. Pressure computed on two subdomains by ALE-3D, with mediator interface relaxation on
the common boundary. The explicit version of ALE-3D in conjunction with the explicit mediator
produced good results.

6.2. The Combustor-Stator Prototype

The combustor-stator prototype couples two different legacy code solvers. ALE-3D
simulates the stator and KIVA-3V simulates the combustor. The implicit mediator
originally designed for the compressor prototype is applied successfully to mediate
the interface boundary, although some modifications are required to normalize data
values since the unit systems of the two solvers are not the same. As with ALE-3D,
the KIVA-3V legacy code is modified by adding two (Fortran) routines to write
the common boundary data (pressure at the center of element faces) to a file for
mediator input at each time step, and to read the values of velocity, density and
energy which are computed and output by the mediator. Periodicity and space
interpolation are used as before, and interpolation for time is not necessary since
the two domains release their data at equal time steps. The criteria to get the
solution (as in the compressor simulation) is the mass flow to reach a steady state.
The history of convergence for this prototype is shown in Figure 14(right part) while
the results of this prototype simulation are shown in Figure 15. The GasTurbnlab
Visualizer is used to produce the images shown.

6.3. Prototype I'mplementation

Both of the legacy codes are written in Fortran, and the implicit and explicit media-
tors are implemented in C. The solvers and the mediator are compiled and executed
on an SGI running IRIX64 version 6.5. For both prototypes, the three separate pro-
cesses are coordinated by a Unix script, which stops the solver process at the end
of each time step, calls the mediator, and resumes the solver execution when the
mediator computations are finished.
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Fig. 14. Convergence history of mass flow for the compressor (left) and the combustor-stator
(right) prototype.
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Fig. 15. Computational results for temperature produced from a mediated simulation by the
solvers ALE-3D and KIVA-3V, communicating through the mediator at the combustor inlet. To
the left is velocity, to the right, energy.

The “communication” between the three processes is achieved by writing/reading
data to specific files The legacy code requires minimal changes, with two additional
Fortran routine inserted for mediator input and output values, and a one line in-
sertion for the call to the Unix script. Figure 16 shows the agent implementation of
the compressor simulation. In the prototype implementation, the Simulation Con-
trol Agent is replaced by the Unix script, and the Control and Mediator Agents
are empty wrappers for the legacy and mediator codes. The Grasshopper agent
implementation is currently underway.
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Fig. 16. Solvers and mediator interaction in the compressor prototype simulation. The information
passing between the control and mediator agents is the interface data for force, mass, velocity and
element volumes.

6.4. Prototype Issues

A major issue was raised during the prototype implementation regarding legacy code
modification (for mediator interface processing) vs. MPSE-specific, solver-specific
customization of each mediator. The interface processing required to compute me-
diated values may be complicated and messy. In addition, the types of data values
and the types of computations are specific to the simulation codes which are medi-
ated. During the building of the first prototype, the issue of which code (legacy vs.
mediator) is responsible for the computations was raised. Since one of the objectives
of MPSE legacy code integration is that the legacy code should not be modified in
any significant way, this forces the mediators to be both MPSE and solver specific,
resulting in a case-by-case determination of customized code to be added to the
mediator kernel code. Thus, MPSEs will have a library of custom mediators, and
the specific mediator used to mediate two solver agents will be determined by the
Simulation Control Agent based on the two legacy solvers involved and the kind of
calculations required for the specific instance of domain-to-domain communication.

In order to allow the mediator kernel to be general, a Java/C-agent wrapper
for the mediator can be implemented (Figure 17) to handle case-specific data and
computations. This defines a clean, layered architecture for the mediator agents.
The innermost core consists of general mediator code, and each layer around it
introduces additional specialization.
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Fig. 17. Layered architecture for the mediator agent.

7. Conclusion

In summary, we present an agent-based framework to build problem-solving envi-
ronments for large- scale simulation tasks. This framework design is based on the
geometric modularity approach for the simulation computations.

The MPSE framework uses the IRIS Explorer system as its front-end and the
Grasshopper agent platform as its middleware infrastructure. We use a layered
architecture for the framework to incorporate the extensibility features of the Ex-
plorer system and the mobile agent features of the Grasshopper platform. The
MPSE framework may be extended at the user interface level by wiring additional
modules based on the Explorer model. Furthermore, the framework may be ex-
tended at the enabling services and computational levels by inserting new mobile
or stationary agents to perform additional services or computations. To facilitate
legacy code incorporation, we propose a two-tiered agent/wrapper architecture for
the computational agents in the PSE framework. This design allows the use of
mobile agents with legacy computational code, promoting robustness and better
performance for this class of simulation problems.

Optimum resource usage and management are important goals for a distributed
PSE. We facilitate these tasks with the Resource Characteristic event model in the
enabling services layer. This design feature enables the implementation of load bal-
ancing techniques and optimization algorithms for memory and bandwidth usage.

The MPSE framework design does not specify the underlying database technol-
ogy. Thus, the implementation may include an off-the-shelf database system or a
custom-designed database. In either case, the database system needs to have an
interface that allows interaction with the MPSE framework’s database agents.

The GasTurbnLab MPSE is a realization of the agent based MPSE framework
for the simulation of gas turbines. The large body of legacy code needed for this
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simulation can be easily incorporated within the MPSE framework using the two
techniques outlined in Section 4. A suitable load balancing algorithm can be imple-
mented within the simulation controller agent for better distributed performance of
the highly compute intensive simulations. The graphical user interface can be tai-
lored appropriately with suitable problem specification modules that include tools
such as TrueGrid and MeshTV. The GasTurbnLab MPSE implementation may
contain a library of Explorer modules for such problem specification tools, or for
different, solution visualization tools. This would enable the scientist to customize
the GasTurbnLab user interface with suitable pre- and post-processing modules for
each target gas turbine simulation problem.

The proposed MPSE framework architecture is scalable, enabling it to be used to
build very large scale, distributed problem solving environments for scientific simu-
lations. It is also versatile and simple enough to be used to rapidly build prototype
problem solving environments to analyze and validate mathematical techniques for
interface relaxation. Thus, it would be a useful environment towards advancing the
state-of-the-art in simulating complex physical phenomena.
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