
gh qual-
b), and
und in

ize, and
f exist-
volved.
 stan-

 several
desktop
to super-
of new
provides
PELLPACK: A Problem Solving Environment for PDE Based
Applications on Multicomputer Platforms

E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin,
P. Papachiou, K.-Y. Wang and M. Gaitatzes

ABSTRACT

This paper presents the software architecture and implementation of the problem solving
environment (PSE) PELLPACK for modeling physical objects described by partial differ-
ential equations (PDEs). The scope of this PSE is broad as PELLPACK incorporates many
PDE solving systems and some of these, in turn, include several specific PDE solving
methods. Its coverage for 1-D, 2-D and 3-D elliptic or parabolic problems is quite broad,
and it handles some hyperbolic problems. Since a PSE should provide complete support
for the problem solving process, PELLPACK also contains a large amount of code to sup-
port graphical user interfaces, analytic tools, user help, domain or mesh partitioning,
machine and data selection, visualization, and various other tasks. Its total size is well over
1 million lines of code. Its open-ended software architecture consists of several software
layers. The top layer is an interactive graphical interface for specifying the PDE model
and its solution framework. This interface saves the results of the user specification in the
form of a very high level PDE language which is an alternative interface to the PELL-
PACK system. This language also allows a user to specify the PDE problem and its solu-
tion framework textually in a natural form. The PELLPACK language preprocessor
generates a Fortran control program with the interfaces, calls to specified components and
libraries of the PDE solution framework, and functions defining the PDE problem. The
PELLPACK program execution is supported by a high level tool where the virtual parallel
system is defined, where the execution mode, file system, and hardware resources are
selected, and where the compilation, loading, and execution are controlled. Finally, the
PELLPACK PSE integrates several PDE libraries and PDE systems available in the public
domain. The system employs several parallel reuse methodologies based on the decompo-
sition of discrete geometric data to map sparse PDE computations to parallel machines.
An instance of the system is available as a Web server (WebPELLPACK) for public use at
the http://pellpack.cs.purdue.edu.

keywords: domain decomposition, expert systems, framework, knowledge bases, parallel
reuse methodologies, parallel solvers, problem solving environments, programming-in-
the-large, programming frameworks, software bus.

1. INTRODUCTION

The concept of a mathematical software library was introduced in the early 70s [41] to support the reuse of hi
ity software. In addition, special journals, conferences, public domain software repositories (e.g., ACM, Netli
commercial libraries (i.e., IMSL, NAG) have been established to support this concept. Similar efforts can be fo
engineering software, particularly in the areas of structural and fluid mechanics. The increasing number, s
complexity of mathematical software libraries necessitated the development of a classification and indexing o
ing and future software modules. This software is currently organized in terms of the mathematical models in
A significant effort in this direction is the GAMS on-line catalog and advisory system [5] which has become a
dard framework for indexing mathematical software. Information about engineering software can be found in
handbooks which usually describe the applicability and functionality of existing packages. The advances in
software/hardware, workstation clustering and distributed computing technologies, and the ease of access
computing facilities have made computational prototyping a new, cost effective alternative for the design
products and for the study of science and engineering phenomena in general. Although the software library
February 15, 1999 1

 above
This rec-
t (PSE).
) to han-
the prob-
evel user
 user to

 Mathe-
can be
se PSEs
ototyping
totyping
handle.

tensible
acterized
model
plicabil-
rame-
 that the
 domain,

sses of
K [40]
view of
a target
in sec-
lution
, it pro-
gram-

e user
and its
erical

. A num-
ELL-
ics, and
 to build
rrently
ary is
 for dis-
ndi-
osition

ools and
he reuse

ethod-

he exist-
odels,
e paral-

Section
 execute
some form of abstraction and a facility of reusing software parts, it still requires a level of computing expertise
the background and skills of the average scientist and engineer who usually design manufactured products.
ognition has lead to the new concept of software reuse referred throughout as Problem Solving Environmen
The current PSEs consist of small sets of modules, usually taken from existing libraries, integrated (packaged
dle a predefined class of mathematical models. In these PSEs the specification of the mathematical model,
lem solving process, and the required pre-processing or post-processing phases are done with a high l
interface. This interface usually consists of a very high level language and graphical interface that allows the
specify the problem and visualize the solution in some “natural” form. Early examples of PSEs are Macsyma,
matica, Maple, ELLPACK, MatLab, and several engineering software systems. Similar software evolution
observed in the pre-processing (CAD, mesh generation) and post-processing (data visualization) tools. The
and the associated pre- and post-processing tools have greatly increased the abstraction of computational pr
for some applications. As a result users with minimum computational background can be engaged in the pro
of complex artifacts. PSEs are distinguished with respect to the domain of problems or applications they can

An important distinction between a PSE and a monolithic software system is that PSE's have a flexible and ex
architecture that is easy for a user to tailor or a builder to enhance. The software architecture of PSEs is char
by the integration model used to connect the software parts involved and the underlying execution
assumed.The common shortcoming of current PSEs is that the knowledge associated with the library, the ap
ity, compatibility, and performance (i.e. complexity) of library modules, the selection of the computational pa
ters, error estimation, etc. is not part of the PSE but is part of the responsibility of the user. One can argue
ideal PSE should make decisions to help the user by consulting a knowledge base about the user, the problem
and past solutions of similar problems. This leads us to the following formal definition of a PSE:

PSE = User interface + libraries + knowledge base + software bus.

In this paper we describe the architecture and functionality of a PSE called PELLPACK for solving certain cla
partial differential equations (PDEs) on sequential and multicomputer platforms. It is a descendent of ELLPAC
which allows users to solve PDEs for linear and nonlinear field and flow problems. Figure 1 depicts a user’s
the PELLPACK system in terms of the tools and libraries needed to specify and solve a PDE problem on
computational platform and to visualize the solution. Figure 1 is further illustrated by a PDE solving scenario
tion 2.4.2. PELLPACK provides an interactive graphical user interface for specifying the PDE model, its so
method and post-processing, supported by the Maxima symbolic system and well known libraries. In addition
vides an intermediate high level facility for composing new algorithms from existing parts and it supports a pro
ming-in-the large environment with a language which is an extension of the ELLPACK language [40]. Th
interface and programming environment of PELLPACK is independent of the target machine architecture
native programming environment. PELLPACK is supported by a library of parallel PDE modules for the num
solution of stationary and time dependent single equation PDE models on two and three dimensional regions
ber of well known “foreign” PDE systems have been integrated into PELLPACK which are listed in Table 1. P
PACK can simulate structural mechanics, semi-conductors, heat transfer, flow, electromagnetic, microelectron
many other scientific and engineering phenomena. Five different implementation languages have been used
the system. The current size of PELLPACK is 1,900,000 lines of code. The parallel codes of PELLPACK cu
use the PICL, PARMACS 5.1, MPI, PVM, NX and Vertex communication libraries. The size of the parallel libr
128,000 lines of Fortran code for each implementation and consists of finite element and difference modules
cretizating elliptic PDEs, a parallelization of the ITPACK library [28], [30], [32] and the MP-PCG (parallel preco
tioning conjugate gradient) package [44]. The parallel library is based on the discrete domain decomp
approach and it is implemented in both the host-node and hostless programming paradigms. A number of t
libraries exist to support the domain decomposition methodology and estimate (specify) its parameters. For t
of existing “legacy” sequential PDE software we have implemented two domain decomposition based reuse m
ologies described in [33].

The paper is organized in nine sections. Section 2 describes the exact applicability of the system in terms of t
ing PDE libraries and pre-defined frameworks. We list several standard solution frameworks for various PDE m
and we describe the frameworks needed to use one of the integrated “foreign” systems. In addition we describ
lel re-use frameworks for steady-state PDE software. The multi-level PELLPACK architecture is discussed in
3, and Section 4 describes the three level programming environment. The PELLPACK PSE allows the user to
February 15, 1999 2

ecution
ualizing
ity of the
emented
resents
are, the
io for
tworked
tation

 with the
tenance,
.cs.pur-
programs in a variety of physical and virtual parallel architectures. Section 5 describes a visual scripting ex
environment that allows the user to select the computers and to direct the running of computations and the vis
of results. Section 6 describes an expert system methodology that can be used to implement the adaptabil
system to user’s expertise and computational objectives. This methodology and its software has been impl
and tested in the context of the ELLPACK library [25] whose highlights are presented in Section 6. Section 7 p
two scenarios that demonstrate the PELLPACK design objective of reuse of high quality mathematical softw
facility for development of new PDE software, and the integration of “foreign” software. The future scenar
usage and maintenance of high quality mathematical software calls for remote “net-centered” servers and ne
software that will allows users to compute over the “network” as they compute in the world of front-end works
to an intranet computer system. We have created a Web server for PELLPACK that allow users to experiment
system and get answers, instead of downloading software and addressing issues of local installation, main
and licensing. This server and its accessibility is described in Section 8 and its Web location is http://pellpack
due.edu.

FIGURE 1. A user’s view of the PELLPACK system depicting the tools and libraries
supported. The diagram is organized in terms of the four solution phases involved in

PDE computing: problem specification, solution specification, problem execution,
and solution post-processing.

P
D

E
 P

ro
bl

em
P

D
E

 S
ol

ut
io

n
E

xe
cu

tio
n

P
os

t-
pr

oc
es

si
ng

MAXIMA

System
Symbolic

E
nv

iro
nm

en
t

E
nv

iro
nm

en
t

S
pe

ci
fic

at
io

n
S

pe
ci

fic
at

io
n

PDE

Specification
Framework

Boundary

Editors
Conditions

Geometry
Editors

Machine

Facilities
Configuration

Initial

Editors
Conditions

Geometry
Decomposers

Geometry
Discretizers

Algorithm
Editors

Output
Specification

Knowledge
Bases

S
o
f
t
w
a
r
e

b
u
s

i
n
t
e
r
f
a
c
e

E
L
L
P
A
C
K

S
E
S
S
I
O
N

Language
Processor

Execute
Tool

Performance

Tools
Analysis

Visualization
Tools

Data Analysis
Tools

Output
Tool

Foreign

Libraries
Solver

//ELLACK

Libraries
Solver

 P
February 15, 1999 3

ustrial

d into
ry high
 of the

 deter-
des the
 selected
n PEL-
as

f
e PDE

lem
d and
he 3-D
ile)
This work is the result of a significantly large group of people and the support of many government and ind
organizations listed in alphabetical order in Section 9.

2. DOMAIN OF APPLICABILITY

The applicability of the PELLPACK system is defined in terms of the types of PDE software libraries integrate
the system, and the pre-defined algorithm skeletons and frameworks directly supported at the PELLPACK ve
language and graphical user interface levels. An algorithm skeleton is a “solution driver”, i.e., a specification
methods which are to be used in the solution of a PDE problem. A PELLPACK framework is a customized solution
driver, requiring a specialized form of PDE problem and solution specification. The form of this specification is
mined by the user-selected PDE software library to be used in the solution process. The framework inclu
solver system selection, the mathematical representation of the PDE model (which often depends upon the
solver), and the interfaces between the solver library and the PELLPACK runtime system. Most frameworks i
LACK handle general (systems of) PDEs. A PELLPACK template is a framework for a specific PDE model, such
the Navier-Stokes equations. The PDE specification in this case is a set of parameter values.

2.1 PDE SOFTWARE LIBRARIES

The PDE libraries currently integrated in PELLPACK are listed in Table 1. They allow the numerical solution ofield
and flow PDE problems in various geometric regions. The integration of these simulation libraries is done at th
language, graphical interface, and data interface levels. The PELLPACK programming environment allows differen-
tial, variational, and template forms for specifying the PDE and auxiliary operators. The PELLPACK PDE prob
specification and its “derivatives” (i.e., Jacobian, linearization transformations, forcing functions) are compute
converted symbolically to the pre-defined Fortran interface format assumed by the selected PDE library. T
PDE domain geometry can be specified only in terms of files in well established geometry data formats (e.g., polyf
that PELLPACK recognizes. The system provides a 2-D geometry specification tool.

TABLE 1. PDE systems integrated in PELLPACK, their applicability, and major characteristics

 Solver Name PDE Model Type Mathematical Representa-
tion and Mesh Restrictions

Dimensionality
and Geometry

References

ELLPACK single elliptic
equation

Differential
e.g.

2-D general,
3-D box geometry

[40]

PELLPACK single elliptic
equation

Differential 2-D and 3-D
general geometry

[21], [22],
[23], [29],

[57]

VECFEM non-linear, elliptic,
parabolic systems,

eigenvalue
problems

Variational
e.g.

1-D, 2-D, 3-D
general geometry

[17]

FIDSOL nonlinear, elliptic,
parabolic systems

Differential 2-D and 3-D
box geometry

[43]

CADSOL nonlinear, elliptic,
parabolic systems

Differential 2-D general geometry [42]

PDECOL nonlinear, parabolic
systems

Differential 1-D interval [31]

uxx uyy+ f=

uxvx uyvy+() ωd

Ω
∫ fv ωd

Ω
∫=
February 15, 1999 4

e edit-
solution
reated in
w

[53] has
 mea-
ks that

n 2-D
d library
ro-

rrently
uired to
 be gen-
 uses a

rallel
l virtual
2.2 FRAMEWORKS FOR PELLPACK PDE SOLVERS

The design of the PELLPACK programming environment (i.e., a very high level PDE language and interactiv
ing tools) has been influenced by the requirements of its current solving capabilities and the structure of the
skeletons (i.e., drivers) that the user is allowed to specify and run. Other solution frameworks, can be easily c
the PELLPACK system by utilizing the pre-defined fixed interfaces among the PDE solution phases, existing or ne
PDE software parts, and Fortran code. For example, the parallel time-stepping methodology described in
been implemented in PELLPACK utilizing a variety of PELLPACK iterative solvers and its performance was
sured on a variety of platforms [48]. In this section we describe the various pre-defined solution framewor
PELLPACK currently supports.

2.2.1 ELLIPTIC AND PARABOLIC PDE SOLUTION FRAMEWORKS

PELLPACK allows the solution of single linear and non-linear elliptic and parabolic PDE equations defined o
and 3-D domains. In this framework, the user can specify a solution method by naming (referencing) selecte
modules (discretization, indexing, solution) corresponding to the phases of the PDE solution p
cess [40] (see Figure 2 for an example). In the case of coupled or single-phase solvers the name of the triple mod-
ule is specified. Framework 1 below lists the segments of this framework. The parallel elliptic framework cu
supported in PELLPACK is based on geometric partitioning of the grid or mesh data. Thus, the user is req
specify the decomposition data in the form of a file with appropriate format and parameters. This segment can
erated by an interactive editor which allows the visualization and editing of mesh/grid decomposition data and
library of semi-optimal partitioning algorithms for their automatic generation [7], [9], [54]. In the case of pa
elliptic solvers, the parallel versions of the library modules specified have been implemented using severa
(e.g., PVM, MPI) and machine native (e.g., Vertex, NX) communication libraries [28],[29],[32].

FRAMEWORK 1. Module based linear elliptic solution

ITGFS 2-D Navier-Stokes Template,
structured meshes

e.g. transonic turbulence flow
parameter values

2-D general geometry [57]

NSC2KE 2-D Navier-Stokes Template,
structured meshes

2-D general geometry [3]

NPARC3-D 3-D Navier-Stokes Template,
multi-block structured meshes

3-D general geometry [10]

PDEONE nonlinear, parabolic
systems

Differential 1-D interval [19]

Segment Description Options

Declarations, Options Space for saving solution, parallel machine configuration
and model

sequential, parallel

Equation, BCs PDE problem definition differential

Grid/Mesh Domain discretization sequential, parallel

Decomposition Grid/Mesh partitioning file needed for the parallel solution sequential, parallel

Multi-phase PDE solver

Discretization PDE problem discretization sequential, parallel

TABLE 1. PDE systems integrated in PELLPACK, their applicability, and major characteristics
February 15, 1999 5

hich is
ication
gments
For non-linear elliptic PDEs, a linearization procedure is applied at the continuous PDE problem level w
described in [51]. This framework is generated symbolically using the Maxima-based PDE framework specif
editor of the PELLPACK graphical interface, which is described in Section 4.2. Framework 2 describes the se
of this framework.

FIGURE 2. An instance of PELLPACK user interface for an elliptic framework

Indexing Discrete equations ordering scheme sequential, parallel

Solution Linear solver sequential, parallel

Single-phase PDE solver

Triple Integrated discretization, indexing, solution phases sequential

Output Format for solution output

FRAMEWORK 2. Nonlinear sequential elliptic PDE solution

Segment Description

Declarations, Options Space for saving solution(s)

Equation, BCs PDE problem definition

Grid/Mesh Domain discretization

Triple Initial guess

Fortran Newton loop start

Linearized Elliptic Solver Elliptic problem discretization, indexing, solution
February 15, 1999 6

ilable
ify their
ork for

 sequen-
enerated
for the
ic) equa-
olvers.
ribed in
Similarly, there is a framework for implementing semi-discrete parabolic PDE solvers which utilizes the ava
PELLPACK elliptic PDE solvers. In this case users can select pre-defined time discretization schemes or spec
own and reduce the parabolic PDE problem to a set of elliptic PDEs defined at each time-step. The framew
these solvers is described in Framework 3 and [51].

2.2.2 MPLUS (MATRIX PARTITIONING) STEADY -STATE SOLUTION FRAMEWORK

This framework is applicable to any non-time dependent PDE computation and is designed to re-use existing
tial PDE discretization software in a parallel solution scheme. It assumes that the discrete equations are g
sequentially with any of the existing libraries. It uses mesh/grid decomposition data or user defined partitions
algebraic data structures associated with the selected PDE solver. The partitioned discrete PDE (i.e., algebra
tions are loaded into the targeted multicomputer platform and solved in parallel by the available parallel s
Framework 4 displays the skeleton of this framework. The methodology and its performance evaluation desc
[33].

FRAMEWORK 4. Parallel matrix solution

Output Format for solution output

Fortran Convergence test

Fortran Newton loop end

Subprograms Initial guess, Jacobian and other support functions

FRAMEWORK 3. Parabolic sequential PDE solution

Segment Description

Declarations, Options Space for saving solution(s)

Equation, BCs PDE problem definition

Grid/Mesh Domain discretization

Triple Initial condition

Fortran Time stepping loop start

Elliptic PDE solver Elliptic problem discretization, indexing, solution

Output Format for solution output

Fortran Convergence test

Fortran Time stepping loop end

Subprograms Initial condition and other support functions

Segment Description

Sequential solution
framework

The PDE problem, its discretization, and sequential solver

Partition Discrete geometric or user defined algebraic data partitioning strategy

Load Loads partitioned algebraic system

FRAMEWORK 2. Nonlinear sequential elliptic PDE solution
February 15, 1999 7

c solv-
tion soft-
g of the
 equa-
 grid or
quential

 fixed
rograms
riables.

 must be
ary to
tems of
l PELL-

tware
E prob-
ter-

te system
compu-
e func-
in a
ity, and
2.2.3 DPLUS (DOMAIN PARTITIONING) STEADY -STATE SOLUTION FRAMEWORK

This framework is currently applicable to steady-state PDE models and their derivatives (i.e., implicit paraboli
ers) defined on 2-D and 3-D domains. It is also based on a methodology to reuse sequential PDE discretiza
ware in a parallel computation [33]. It involves a decomposition of the model based on a balanced partitionin
PDE domain with appropriate artificial interface conditions that allow the uncoupled generation of the discrete
tions in each subdomain. The decomposition of the domain is obtained via the partitioning of a relative course
mesh [7]. Unlike MPlus, DPlus runs the sequential discretization code in parallel (i.e., each processor runs se
code on its assigned subdomain). Framework 5 lists the segments of this framework.

2.3 FRAMEWORKS FOR “F OREIGN” PDE SYSTEMS

Most general PDE solving systems require users to define PDE problems by writing Fortran functions with
argument lists and data structures for the PDE equation, boundary, and initial conditions. Users write driver p
to allocate space, initialize variables and call the solver routines with appropriate parameters and control va
Often, Jacobians or other symbolic computations are also required, and the results of these computations
written as additional Fortran functions. The functions and driver are compiled and linked with the solver libr
produce the program. PELLPACK generates these functions and drivers symbolically for the PDE solving sys
Table 1 and the frameworks presented in the previous sections. This is the result of the integration at severa
PACK levels.

A “foreign” PDE system can be integrated in PELLPACK at the PDE language level, the graphical interface level,
and the data level. Each level of integration provides a further level of abstraction by placing an additional sof
interface layer between the user and the foreign system, thus simplifying the input required for defining a PD
lem. To support the language level integration, a specialized interface library is developed for each system. The in
face code defines the required data structures, allocates space, initializes variables, and calls the appropria
solver routines with appropriate values for the parameters. Users still specify the PDE problem and symbolic
tations via Fortran functions that are similar (or identical) to those required by the original system, and thes
tions are placed in the subprograms segment of the PELLPACK problem definition. Users name the solver
high level way and identify various high level problem characteristics such as number of equations, non-linear

Display Display the structure of partitioning system

Solve Apply a parallel solver

Output Format for solution output

FRAMEWORK 5. Parallel stationary PDE solution

Segment Description

Declarations, Options Space for saving solution, parallel machine configuration and
model

Equation, BCs PDE problem definition

Mesh generation and
decomposition

Parallel multiphase mesh generation and decomposition

Interior interface condi-
tions

Interior interface BCs definition so that the generation of glo-
bal discrete equations among sub-domains is decoupled

PDE discretization Local PDE problem discretization in parallel

Solve Parallel solution of distributed discrete PDE equations

Output Format for solution output
February 15, 1999 8

es for all
a with
ystem
 simpli-

ss of
cted sys-
ining the
ns. The

alues to
 level of
ut the

brou-

vel and

s using
K sys-
 editor

ng the
or the
nd Pois-
ational
time-dependence. The language integration supplies default parameter values when needed. Interface routin
systems generate PELLPACK format output which is used for visualization and animation of solution dat
PELLPACK’s output tool (see Section 4.3). The PELLPACK execution environment identifies the selected s
solver so that it can link automatically with the correct library to generate the program. The language interface
fies the specification of the PDE problem and sets the foundation for integration at the graphical level.

At the graphical interface level, users can define PDE problems using a graphical editor. To simplify the proce
specifying the PDE system, the interfaces are tailored to the representation of the equation(s) used in the sele
tem. After a user enters the equations, the editor determines what symbolic manipulations are needed for def
problem with the selected framework, and accesses the Maxima symbolic system to perform the computatio
editor generates the Fortran functions in the format required by the solver, and places them in the subprograms
segment. High level problem characteristics are identified symbolically, and the editor assigns appropriate v
solver parameters. Users can later view and modify these parameters via a graphical algorithm editor. At this
integration, users must still be familiar with the applicability and functionality of the PDE solving system, b
intrinsic details of problem specification are completely hidden from them.

The native data structures of the “foreign” PDE system are integrated at the Fortran level using appropriate su
tines specified at the PDE language interface.

We now describe the frameworks of the integrated “foreign” PDE systems at the PELLPACK PDE language le
depict instances of their graphical user interface.

2.3.1 VECFEM FRAMEWORK

VECFEM [17] solves non-linear, time-dependent 1-D, 2-D, and 3-D systems of equations on general domain
mixed finite element methods. Framework 6 lists the segments of the VECFEM framework in the PELLPAC
tem. Some of the PDE problem input data for VECFEM are generated by the PDE framework specification
(see Section 4.2.1). For VECFEM elliptic problems, this editor supports a variational template for specifyi
coefficients of bi-linear and linear forms and a functional template for entering the PDE in differential form. F
stress analysis of isotropic materials, a stress template is available for entering only the elasticity modulus a
son’s number of the material. The differential form of the PDE equations is symbolically transformed to a vari
form. Figure 3 displays an instance of the PELLPACK graphical interface for VECFEM.

FIGURE 3. An instance of the PELLPACK interface for the VECFEM structural analysis framework
February 15, 1999 9

ite dif-
onlinear
 editor.

r

an

ra-

tial
o

f

an
FRAMEWORK 6. VECFEM

2.3.2 FIDISOL FRAMEWORK

FIDISOL [43] solves non-linear, time-dependent 2-D and 3-D PDE systems on rectangular domains using fin
ference methods. Framework 7 describes the framework for this library. Jacobians are required for the n
equations and boundary conditions; these are computed symbolically by the PDE framework specification
Figure 4 displays an instance of the PELLPACK interface for FIDISOL.

FIGURE 4. An instance of the PELLPACK interface for the FIDISOL framework

FRAMEWORK 7. FIDISOL

Segment Description of language interface

Options VECFEM id, tags indicating the type of PDE (i.e., non-linear, parabolic), numbe
of PDE equations in the system

Equation, BCs, IC VECFEM tag for all equations indicating that the equations are defined by Fortr
subroutines in the subprogram segment

Mesh a triangular or tetrahedral mesh file generated by PELLPACK’s native mesh gene
tors, or a neutral file generated by a “foreign” mesh generator

Triple VECFEM solver and associated parameters, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, and ini
conditions. These functions are interfaces to the functions used by VECFEM t
describe the equations.

Segment Description of language interface

Options FIDISOL id, tags indicating the type of PDE (i.e., non-linear, parabolic), number o
equations in the system

Equation, BCs, IC FIDISOL tag for all equations indicating that the equations are defined by Fortr
subroutines in the subprograms segment

Boundary 2-D, 3-D box geometry

Grid Domain discretization (uniform, non-uniform grid)
February 15, 1999 10

 differ-
d by the

di-
e
nd

f

an

sh
t

di-
e
nd
2.3.3 CADSOL FRAMEWORK

CADSOL [42] solves non-linear, time-dependent 2-D systems of equations on general domains using finite
ence methods. Framework 8 describes the framework for CADSOL. The required Jacobians are compute
PDE framework specification editor. Figure 5 displays an instance of the PELLPACK interface for CADSOL.

FIGURE 5. An instance of the PELLPACK interface for the CADSOL framework

FRAMEWORK 8. CADSOL

Triple FIDISOL solver and associated parameter, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial con
tions. These functions are identical to the functions used by FIDISOL to describ
the equations. Functions describing the Jacobians for the PDE equations a
boundary conditions are also placed here.

Segment Description of language interface

Options CADSOL id, tags indicating the type of PDE (non-linear, parabolic), number o
equations in the system

Equation, BCs, IC CADSOL tag for all equations indicating that the equations are defined by Fortr
subroutines in the subprograms segment

Boundary domain definition (can be specified by the PELLPACK domain editor)

Mesh or Grid specify a body-oriented grid (can be generated by PELLPACK’s structured me
generator) or a uniform or non-uniform grid and include a user-written routine tha
generates the body-oriented grid in the subprogram segment.

Triple CADSOL solver and associated parameter, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial con
tions. These functions are identical to the functions used by CADSOL to describ
the equations. Functions describing the Jacobians for the PDE equations a
boundary conditions are also placed here.
February 15, 1999 11

. For the
eme and

ification

sical and
 In these
the “for-
on. Three
urpose

a-

ran

di-
e
nd
2.3.4 PDECOL FRAMEWORK

PDECOL [31] solves time-dependent coupled systems of 1-D non-linear equations using the method of lines
space discretization a spline collocation scheme is employed. The user can select the time discretization sch
integration method from several options. Jacobians are symbolically generated by the PDE framework spec
editor when they are required for the problem definition.

FRAMEWORK 9. PDECOL

FIGURE 6. An instance of the PELLPACK interface for the PDECOL framework

2.4 TEMPLATES FOR “FOREIGN” PDE SYSTEMS

There are PDE systems whose mathematical model and numerical solver is specified through a set of phy
numerical parameters (usually numerical data). These systems are usually associated with flow problems.
cases the PELLPACK interface consists of a hierarchical set of templates corresponding to various models
eign” system supports. In general, these solvers do not require symbolic processing or Fortran code generati
such solvers (NPARC3-D, ITGFS, NSC2KE) have been integrated into PELLPACK. NPARC3-D is a general p

Segment Description of language interface

Options PDECOL id, tags indicating the type of PDE (linear, non-linear), number of equ
tions in the system

Equation, BCs, IC PDECOL tag for all equations indicating that the equations are defined by Fort
subroutines in the SUBPROGRAMS segment

Domain interval endpoints defined in the PELLPACK domain editor

Grid points in the interval are specified with the 1-D grid editor

Triple PDECOL solver and parameter specification, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial con
tions. These functions are identical to the functions used by PDECOL to describ
the equations. Functions describing the Jacobians for the PDE equations a
boundary conditions are also placed here.
February 15, 1999 12

 prob-

 as 2-D
y flow.

ext-file
C pro-
e recom-
upport a
luding
ng the
 of the

 in an
t, Rey-
total tem-

m. We
ents of

he

s

CFD simulator for three dimensional fluid problems. ITGFS and NSC2KE are two turbulence solvers for 2-D
lems. ITGFS is only applicable for internal flows, however it is expected to be more efficient than the others.

2.4.1 NPARC3-D TEMPLATE

NPARC3-D [10] is a general purpose CFD simulator, which can be used for most gas flow computations, such
axisymmetric, or 3-D for states of inviscid, laminar, or turbulent, and steady or transient with complex geometr

 The original NPARC system requires the fluid problems to be defined through the NPARC standard input t
and the initial solution file. This case can involve very tedious work, especially for complex geometries. NPAR
vides some utility tools that assist the user in the pre-processing phase. In addition, the original solver must b
piled when the mesh sizes changes. We have created PELLPACK templates for the NPARC system that s
graphical user interface to allow direct access to the NPARC utilities for redefinition of global parameters, inc
memory allocation options. The memory space for the solver is automatically allocated without recompili
NPARC library. Further work is necessary for this solver to fully utilize the pre- and post-processing capability
PELLPACK environment. Template 1 depicts the items of the NPARC template.

TEMPLATE 1. NPARC3-D

2.4.2 ITGFS TEMPLATE

The internal turbulence gas-flow solver ITGFS [57] is designed for the simulations of transonic turbulence flow
internal flow field. The equations governing the flow consist of two-dimensional, compressible, time-dependen
nolds averaged Navier-Stokes equations, supplemented by an equation of state together with the constant
perature assumption. Template 2 describes the items of this template.

TEMPLATE 2. ITGFS

We now use the PELLPACK problem solving environment to solve a separated, transonic diffuser flow proble
will illustrate how each PELLPACK subsystem is used in the solution process, and indicate how the compon
Figure 1 are used.

 The user scenario within the PDE Problem Specification Subsystem is depicted in Figure 7 using snapshots from t
PELLPACK system along with a brief commentary for each of the editors.

Segment Description of language interface

Options NPARC id

Equation NPARC tag indicate model specific equations

Domain, BC NPARC tag indicates model specific boundary conditions

Mesh uses blocked structured meshes specified in PLOT3D or GRIDGEN format [10],
and an initial NPARC solution file in binary format

Triple NPARC solver and associated parameter, output specification parameters

Segment Description of language interface

Options ITGFS id

Equation ITGFS tag identifies model specific equations

Domain, BC specified graphically by the 2-D domain editor or textually by boundary parametri-
zation; boundary conditions are model-specific tags: inflow, outflow, wall

Mesh generated by PELLPACK’s structured mesh generator

Triple ITGFS-turbulent solver and associated parameters, output specification parameter
February 15, 1999 13

y
ain dis-
FIGURE 7. PDE Problem Specification

The user scenario within the PDE Solution Specification Subsystem is illustrated in Figure 8. Since we have alread
specified the PDE solver library via the framework selection, we need only to generate the appropriate dom
cretization and specify the solver parameters.

The PDE Framework Specification Editor

entering parameters for
governing equations

entering parameters for
the boundary conditionsselecting the CFD Template for ITGFS

The 2D Geometry Editor and
the Boundary Conditions Editor

The domain can be drawn with the
Geometry Editor, or the boundary
can be parameterized by the user
and dynamically loaded into the
editor. Note that the upper and
lower wall of the boundary have
been divided into 3 pieces. This
allows the specification of a varying
grid density across the domain.

Specialized boundary conditions
such as inflow, outflow, wall, and
slipping are recognized within this
framework, and can be assigned to
the boundary pieces.
February 15, 1999 14

PELL-

pshots

m the

-
c-
FIGURE 8. PDE Solution Specification

A PELLPACK language description of this PDE problem (.e file) is generated by the editors and written to the
PACK session. The language processor within the Execution Environment Subsystem converts the “.e file” to a For-
tran driver program. The driver is linked with the PELLPACK CFD libraries, and then executed. Below are sna
from the Execution Environment.

FIGURE 9. Execution Environment

PELLPACK format output is generated during execution, and can be loaded into the OutputTool within the Post-pro-
cessing Subsystem for solution visualization. Figure 10 contains snapshots from several visualizers available fro
OutputTool.

The 2D Structured Grid Generator

The ITGFS solver requires a structured grid. We can
define our own mapping of a general boundary to a rect
angle or let the system determine one. We can also spe
ify the number of grid points to use at each boundary
piece so that the solution is more accurately computed.

The Algorithm

The parameters of
the ITGFS solver can
be displayed or mod-
ified via this editor.

Editor

ExecuteTool accesses Compile window
Language Processor and PDE Libraries for Target Platform selection
February 15, 1999 15

ations

s

(ii) the

g with
s. At the
ditors to
 problem
 the PDE

FIGURE 10. Post-processing Environment

2.4.3 NSC2KE TEMPLATE

NSC2KE [3] is a 2-D axisymmetric fluid flow solver applied on unstructured meshes. It solves the Euler equ
using a Roe, Osher, and a Kinetic solvers and the Navier-Stokes equations using a k-epsilon method with two
approaches of wall-laws and a two-layer model of the near wall turbulence. Template 3 describes the items of thi
template.

TEMPLATE 3. NSC2KE

3. SOFTWARE ARCHITECTURE

In this section, we present the architecture of PELLPACK in terms of (i) the level of programming supported,
software subsystems involved, and (iii) the software layers used to implement PELLPACK.

3.1 THE PROGRAMMING VIEW

 In order to realize the PELLPACK computational environment, we have adopted three levels of programmin
standardized data structures and interfaces among the various PDE objects involved in the solution proces
highest level, the graphical user interface provides application users with knowledge-based, object-oriented e
define problem components, specify the solution process and perform various post-processing analyses. The
and solution specifications are expressed in terms of a high level PDE language, which is used to represent

Segment Description of language interface

Options NSC2KE id

Equation NSC2KE tag identifies model specific equations

Domain, BC specified graphically by the 2-D domain editor or textually by boundary parametri-
zation; boundary conditions are model-specific tags: inflow, outflow, wall

Mesh generated by PELLPACK’s structured mesh generator

Triple NSC2KE solver and associated parameters, output specification
parameters

Vector plot of velocities in the x and y directions.
Turbulence occurs in the mid upper and lower walls.

velocity in the

velocity in the

pressure

temperature

density

2-D Contour Plots

x-direction

 y-direction

2-D Flow Plot
February 15, 1999 16

this high
gram

ustrated

process

LL-
objects produced by the graphical editors. At the second level, the PELLPACK language processor compiles
level problem and solution specification into a procedural driver program. In the third level, the driver pro
invokes various library modules to realize the user’s solution process. These three programming levels are ill
in Figure 11.

FIGURE 11. Three level programming view of PELLPACK

TABLE 2. PELLPACK Subsystems

3.2 THE SUBSYSTEM VIEW

The functionality of PELLPACK is organized into four subsystems. These subsystems represent the solution
that application users follow. The PDE Problem Specification Subsystem, PDE Solution Specification Subsystem and
Post-processing Environment Subsystem provide users with graphical editors, “foreign” system templates, the PE
PACK language and a facility for embedding Fortran code. The Execution Environment Subsystem provides a frame-

Subsystems Components

PDE problem specification Editors, foreign templates, PDE language and embedded fortran

PDE solution specification Editors, foreign templates, PDE language and embedded Fortran

Execution environment Language processor:
Solver module database, program templates and preprocessor

PDE libraries:
ELLPACK, PELLPACK, foreign solvers

ExecuteTool:
Target platform properties database, libraries and editor

Post-processing environment Visualization tools, performance analyzers and editor

B
LA

S

framework

equation domain

algorithmmesh/grid

output

decomposition

bc

FORTRAN

P
E

LL
P

A
C

K
 L

an
gu

ag
e

Parallel Tools
Visual System
Expert System

Geometry Modeler
MAXIMA

S
ci

en
tif

ic

//M
ac

ro
s

& C
om

m

M
ac

hi
ne

A
bs

tr
ac

tio
ns

Libraries

 Knowledge-based Editor

Very High Level

 Procedural Programming

PDE Language Layer

program

Module

Language
Processor

Database

Layer

Layer
February 15, 1999 17

r, PDE
 by
n also be

lude the
M,

 soft-
lti-plat-
 by the
pport
work for processing, compiling, and executing PELLPACK programs. It consists of a language processo
libraries, and the ExecuteTool. The language processor uses the high level PDE language specification produced
the graphical editors of the problem and solution specification subsystems to generate a driver program. It ca
used to integrate new PDE solver components to the PELLPACK system.The PDE libraries implement sequential
and parallel solver components that are available to users via the solution specification subsystem. They inc
ELLPACK solver library, the PELLPACK solver library and “foreign” solver libraries such as FIDISOL, VECFE
PDECOL and PDEONE. The ExecuteTool helps users compile and execute programs on all the hardware and
ware platforms that PELLPACK supports by managing the complexities associated with sequential and mu
form parallel execution Table 2 summarizes the subsystems. This subsystem view of PELLPACK is illustrated
vertical layers of Figure 12. Contained in each vertical layer are the PELLPACK programs and libraries that su
the subsystem represented by that layer.

FIGURE 12. The subsystem (vertical) view and the software layered (horizontal) view of PELLPACK

Performance
Analysis Tools

PDE

Specification
Problem

Initial &Boundary
Condition Editors

Algorithm
Editors

Knowledge
Bases

Pellpack Solver
Libraries

Execution
Environment

Visualization
Tools

Post-processing
Environment

PELLPACK
Programming
Environment

PDE

Specification
Solution

PDE Framework
Specification

Data Analysis
Tools

Geometry

PELLPACK
Infrastructure

System
Infrastructure

Execute
Tool

X Toolkit, Motif, Mesa Libraries

Geometry
Editrors

Solution

Specification
Framework

Domain

 Libraries
Discretization

Very High Level PDE Language Layer

Procedural Language Layer

Language
Infrastructure

PYTHIA

Geometry

 Libraries
Decomposition

Equation
Editor

MAXIMA
“Foreign”

Libraries
System

Modeling
Libraries

Data
Visualization

LibrariesParallel

Libraries
Communication

Foreign Interface
Libraries
February 15, 1999 18

ained
e layers
re view
itec-

 System

isual-
 sin-
e type of

oblem
 reflects
the lan-
 tools at
appropri-
 to visu-

a struc-
nd com-
m in a
re commu-

mmitted.”
has been
tion and
3.3 THE SOFTWARE LAYERED VIEW

The software is implemented in five layers: the Programming Environment layer, the PELLPACK Very High Level
Language (VHLL) layer, the Procedural Language (Fortran) layer, the PELLPACK Infrastructure layer and the Sys-
tem Infrastructure layer. This view of the PELLPACK architecture and the specific programs and libraries cont
in each layer are illustrated in Figure 12. Notice that the Language Infrastructure layer consists of two softwar
supporting the VHLL layer and the procedural (code generation) language layer. Figure 12 shows the softwa
as horizontal layers which span the (vertical) subsystem layers. This figure illustrates how the PELLPACK arch
ture can be viewed from the standpoint of functionality and from the standpoint of system design.

The implementation language and code size for each software layer are listed in Table 3. Table entries for the
Infrastructure layer do not include generic system utilities such as X, Motif, etc.

TABLE 3. PELLPACK software layers, implementation languages, and lines of code

The next four subsections discuss the architecture of the top four software layers in more detail.

3.3.1 PROGRAMMING ENVIRONMENT (GRAPHICAL USER INTERFACE)

The GUI of PELLPACK serves two main purposes: PELLPACK program building and solution/performance v
ization/analysis. The GUI supports multiple problem sessions within the same process. Each session represents a
gle problem to be solved. The tools that are made available to the user within a session are dependent on th
session: 1-D, 2-D, 3-D and finite difference / finite element. Different tools support a different part of the pr
specification or the solution specification. As the problem and solution are being defined, the session editor
the current status by displaying the specification in the PELLPACK language. The user may choose to edit
guage directly as well, but in order to maintain consistency the user must not be running any of the graphical
the same time. For solution and performance visualization and analysis, the user specifies where to save the
ate data at problem specification time and the visualization environment loads this data at postprocessing time
alize the results.

While the graphical tools are active, the current PELLPACK program is internally represented in a set of dat
tures in a parsed form. In addition, it is textually represented within the session editor for the user’s benefit a
fort. Each tool manipulates one or more pieces of this data structure and is responsible for leaving the
consistent state. In some cases, a tool is actually a separate process. Then, the appropriate data structures a
nicated to the other process via inter-process communication and made consistent when the changes are “co
The tools also have a dependency relationship; for example, the mesh tool cannot be invoked until a domain
specified. This is supported by having the tools themselves be aware of their position in the chain of opera
having them do the appropriate tests to ensure that the proper order is maintained.

Layer Implementation language Lines of Code

Programming environment
(Graphical user interface)

C, C++, Tcl/Tk, Perl, lisp, mac, flex,
bison

 172,000

Language infrastructure:
Very high level language interface

Fortran, custom parser generator (tp, pg) 80,000

Language infrastructure:
Procedural language (Fortran) interface

PELLPACK infrastructure: PELLPACK
and “foreign” system interface libraries

Fortran, C 175,000

System infrastructure: MAXIMA, “for-
eign” PDE libraries, parallel communica-
tion libraries, visualization libraries/tools.

Fortran, C,C++, lisp, mac 1,500,000
February 15, 1999 19

lution

irectly or

ponent
) to the
n linked
rallel,

vel calls
ddition,
memory
n time.

olution
or the
 for the
/or func-
s (inter-
nditions
 notices
t data

ppropri-

ies, is
ased on
in this
ies of
onent
ies (for
lly. To
ns pro-

ortant to
task; we

atched
oftware
iffering
3.3.2 VERY HIGH LEVEL LANGUAGE INTERFACE

The PELLPACK language interface gives full flexibility to the user to specify their PDE problems and so
framework using a convenient, high level PDE-specific language. The language uses segments based on the natural
components of the PDE problem and the solution process. The user may write a program in this language d
use the graphical user interface to automatically generate the program.

The language processor translates the PELLPACK program into a FORTRAN control program that invokes the
appropriate library components to solve the problem according to the user’s specifications. Each problem com
is transformed into the PELLPACK standard representation for it. Each solution step is converted to the call(s
appropriate solver library using the standard interfaces described earlier. The resulting control program is the
with the appropriate libraries to build the program for solving the problem. If the problem is to be solved in pa
then there may be more than one control program based on the model of execution selected (see Section 5).

In order for the language processor to be able to generate the control program, information about the top-le
for each library module must be given to the system at the time a library is integrated into the system. In a
memory requirements of the module must be explicitly stated here so that the control program can allocate
before calling the module. This information is kept in a module database and looked up at language translatio

3.3.3 PROCEDURAL LANGUAGE (FORTRAN) I NTERFACE

The Fortran interface of PELLPACK is defined based on a decomposition of the PDE problem and the s
framework into their constituent parts: domain, interior equation, boundary conditions and initial conditions f
problem, domain discretization, domain decomposition, operator discretization and algebraic system solution
solution framework. Each problem part is represented at run-time using a set of standard data structures and
tions. Each solution framework part (e.g., an operator discretizer) uses a set of well-defined data structure
faces) and/or functions for input and output. In addition, each such part may use and/or set certain global co
which imply some properties about that part of the problem at hand. For example, if an operator discretizer
that the resulting matrix is symmetric, it may set the “matrix is symmetric” flag and then use a more efficien
structure for storing the matrix. Solvers are expected to first check the symmetricity flag and then select the a
ate data structures. These definitions extend those of the ELLPACK system [40].

3.4 PELLPACK I NFRASTRUCTURE

From a run-time view of the architecture the PELLPACK infrastructure, consisting mainly of PDE system librar
below the Fortran interface (Figure 12), but the libraries themselves are integrated to the PELLPACK system b
their compliance with the component interfaces. The entire PELLPACK collection of solvers is composed
manner, i.e., there is no intrinsic or built-in set of libraries. Some libraries (most notably, the ELLPACK librar
sequential solvers and the PELLPACK libraries of parallel solvers) natively support the PELLPACK comp
interface standards and hence can be “plugged-in” to the system immediately. However, many other librar
example, VECFEM, FIDISOL, PDECOL and MGGHAT) use their own interfaces and representations interna
integrate such libraries, one must develop an interface library that transforms the PELLPACK representatio
duced by higher levels of the system to the internal representations assumed by the solver library. It is imp
note that due to the structured nature of PDE components and PDE solution frameworks, this is a feasible
have so far not encountered any solver library that could not be integrated in PELLPACK in this manner.

The result of this integrated framework is that components from different libraries can easily be mixed-and-m
to form interesting and powerful PDE solvers. There is no doubt a performance cost with having a layer of s
that allows this flexibility, but it should be clear that the advantages of having standard interfaces to widely d
software packages easily outweighs the cost.
February 15, 1999 20

 in
arting

olved:
ts, and
nguage,
tion of
ch are
and it is
s) which
uage.

problem
u-

s the
and
t can be
 PELL-

tion

d/or ani-
gy [21]

 of the
itates the

rmation
ers work

r This
itor. The
 how to
t and the
o reload
r mod-
 editor.
 to mesh
 object
4. THE PELLPACK P ROGRAMMING ENVIRONMENT

The implementation of PDE frameworks in PELLPACK provides a three level programming environment depicted
Figure 11. In this section we give a brief description of PELLPACK programming-in-the-large environment st
with the PDE language.

4.1 VERY HIGH LEVEL PDE LANGUAGE

In the PELLPACK problem solving environment, a PDE problem is defined in terms of the PDE objects inv
PDE equations, domain of definition, boundary and initial conditions, solution strategy, output requiremen
option parameters. The textual representation of the PDE objects and its syntax comprise the PELLPACK la
which is a significant extension of the ELLPACK language defined in [40]. This language layer is the founda
the PELLPACK environment and underlies all levels and components. It defines the intrinsic objects whi
needed to specify a PDE problem and its solution strategy. It is parsed and generated by special editors,
loaded by the execution environment and processed by the language translator into Fortran control program(
are compiled and executed. All PELLPACK system functionality is represented in some way by the PDE lang

In the ELLPACK language, the PDE objects are defined by language segments which either specify the PDE
(equation , boundary and associated boundary and initial conditions) or name the module to be used in the sol
tion process (grid , discretization , indexing, solution, triple , output). To support the inser-
tion of arbitrary Fortran code for control and assignment statements, the ELLPACK language use
declarations, global, procedure , and Fortran segments. The number and types of segments
modules which have been added to the original ELLPACK have greatly increased the types of problems tha
solved and the methods for solving them. The extensions to the ELLPACK language which were defined by
PACK follow.

PELLPACK introduced a mesh segment to support solution schemes using finite element methods. The integra
of “foreign” solvers required the introduction of tags and specialized identifiers in the option segment for relaying
information about the system solver and its interface requirements to the language processor. The triple segment
is the standard which was adopted to specify the numerical solver associated with a foreign system. The save seg-
ment allows persistent storage of solutions, linear system matrices, and performance data for visualization an
mation. Finally, the ELLPACK language and system was extended to support a domain decomposition strate
to solve PDE problems in parallel on multicomputer platforms. Specifically, the decomposition and paral-
lelsolution segments define the geometry partitioning of the discrete domain and handle the assembly
partitioned solutions from the parallel processors. The existence of several parallel execution models necess
use of tags in the option segment (i.e., hostless, Mplus) to identify the parallel model selection.

The language definition of existing segments, modules and module parameters was amplified to contain info
related to the graphical environment. In this way, the language, the graphical interface, and the execution lay
smoothly together to provide a unified PDE problem solving environment.

4.2 PDE OBJECT BASED GRAPHICAL USER INTERFACE

The process of specifying, solving, and analyzing a PDE problem occurs within a PELLPACK session edito
editor consists of a text window and an attached toolbox of editors. Figure 13 displays an instance of this ed
toolbox editors are used to create or modify the PDE objects which specify the PDE problem and describe
solve it. Each toolbox editor is a graphical, interactive tool that generates a textual representation of the objec
associated PELLPACK language segment in the main session editor window. Editors in the toolbox are able t
a PDE object by reading its PELLPACK language representation, and then displaying the object for viewing o
ification. PDE objects are communicated between editors or between an editor and the PELLPACK session
Moreover, these editors may transform objects when needed. For example, domain objects are transported
editors, where any generator requiring a piecewise-linearization of the boundary will transform the domain
appropriately. Table 4 lists the editors and their design objective in PELLPACK.
February 15, 1999 21

E prob-
r each of
d self-
 via a
itor then
s in the
ar region
lues of

puter
r equa-
t deriva-
tem of

d inside
it to a
ssion

-

d

-

y

TABLE 4. The PDE object based editors in PELLPACK

4.2.1 PDE FRAMEWORK SPECIFICATION EDITOR

This editor is used to specify the PDE equations and generate the program framework used for solving the PD
lem. The format of the framework generated depends upon the PDE-solving system selected by the user. Fo
these systems, certain forms of the equation are valid. For example, PELLPACK solvers allow differential an
adjoint forms of the equation; VECFEM allows differential and variational forms. PDE equations are specified
graphical interface which has been tailored to the representation of the chosen form of the equation. The ed
performs the specialized symbolic processing and code generation required for the definition of PDE problem
format required by the selected system solver. It generates by default a boundary segment for a rectangul
with Dirichlet boundary conditions and zero initial condition. Toolbox editors are used to define the actual va
these PDE objects.

To implement the PELLPACK framework generation, the PDE system is sent in string form to the Maxima com
algebra system. Depending on the framework, different symbolic transformations are performed. If non-linea
tions are entered for the PELLPACK system solver, these equations are linearized by computing their Freche
tives. If FIDISOL or CADSOL is the selected system solver, Jacobians are computed for the specified sys
equations and boundary conditions. A symbolic representation of the PELLPACK template is then develope
Maxima. This representation is communicated to the PDE framework specification editor which converts
PELLPACK template using the GENCRAY system [49]. Finally, this template is written in the PELLPACK se
window. All symbolic operations of this editor are provided by Maxima [12].

Editor Design objective

PELLPACK session editable textual representation of the PELLPACK problem and solu
tion specification

PDE framework specification symbolic PDE operators definition, input functions transformation in
Fortran, linearization, Jacobian, and default framework generation
for each PDE library

Domain and boundary conditions CAD tools for 1-D, 2-D, 3-D domain boundary specification an
auxiliary conditions, or file in some standard format

Mesh generators 2-D, 3-D mesh generators using PELLPACK domain (or other stan
dard format) as input.

Grid generators 1-D, 2-D, 3-D uniform/non-uniform grid generators

Domain decomposers 2-D, 3-D geometry decomposition using a library of partitioning
heuristics

Discretizers
Linear system solvers
Triples / Foreign system solvers

algorithm specification, where choices for the solution scheme are
controlled by a knowledge base to provide numerical method mod-
ules from the data base (using dimension, domain discretization,
sequential vs. parallel, etc.)

Output specification solution or performance data output format specification

Output visualization visualization and animation of all possible output data produced b
solution (solutions, error analysis, performance data), including nec-
essary data conversion when accessing “integrated” visualizers
February 15, 1999 22

s that are
hese tem-
ropriate

ns. For 1-
 estab-
.

ndpoint.
bound-
rtran rou-

ce, and
using the
ions to
 into the
n defini-
systems
dicat-

sor and

 domain
editor.
FIGURE 13. An instance of the PELLPACK session editor

In addition to the general PDE frameworks generated by this editor, there are several model specific template
supported. In these cases, users enter the crucial pieces of information that define the problem parameters. T
plates are implemented without support from a computer algebra system. User input is inserted in the app
locations in the template for the selected model, and the result is written in the PELLPACK session window.

4.2.2 DOMAIN AND BOUNDARY CONDITIONS EDITORS

These editors are used to generate the boundary segment and define the PDE domain and boundary conditio
D and 2-D domains, PELLPACK provides its own geometry editors. For 3-D cases, PELLPACK supports well
lished geometry interfaces and the XXoX CAD editor [55] for the geometry modeling library XoX Shapes [46]

With the 1-D domain editor, users can define the interval endpoints and assign a boundary condition to each e
Boundary conditions for 1-D problems which are solved by PDECOL use a foreign system tag to identify the
ary equations in the boundary segment, since the equations are defined in the subprograms segment by Fo
tines as described in previous sections.

For 2-D domains, PELLPACK provides a 2-D drawing tool where users can draw the boundary piece by pie
then assign boundary conditions to each piece. Users may instead define any 2-D boundary parametrically,
session editor and following the PELLPACK language syntax. This includes using complicated Fortran funct
describes boundary pieces, holes and slits. These parameterized functions are then dynamically loaded
domain editor so that the domain can be displayed and boundary conditions assigned. Any of these domai
tions can be used as input to the PELLPACK grid and mesh generators. Boundary conditions for foreign
either follow the ELLPACK language syntax, or they are tags to foreign system or model-specific identifiers in
ing specialized conditions such as inflow, outflow, wall, etc. All identifiers are handled by the language proces
the PELLPACK foreign system interface so that the appropriate boundary conditions are applied.

In the 3-D case, box geometries with associated boundary conditions per face can be specified using a 3-D
editor. More complicated domains are defined using constructive solid geometry in the XXoX geometry
February 15, 1999 23

 gener-
ing from
 apply
cify the

 PELL-
 as True-

iform
-click

orm in
e corre-
 addition,
ain to a
omain
ted grid

K. The
ve been
hus, the
s can be
e trian-
nherit the
undary
XXoX generates surface triangulations which can be used to define the geometry for PELLPACK’s 3-D mesh
ators. Boundary conditions are generally applied discretely on groups of surface nodes (called patches) result
the mesh generating process. PELLPACK provides a 3-D boundary conditions editor which allows users to
boundary conditions on surface patches of nodes. Tags or model-specific identifiers may be used to spe
boundary conditions for foreign system solvers.

For many solvers integrated into PELLPACK, the domain and boundary conditions may be defined outside of
PACK and saved in files which are then accessed by PELLPACK during the solution process. Packages such
Grid [56] and Patran [2] can be used to define the domain (or subsequent mesh) and boundary conditions.

4.2.3 GRID GENERATION EDITORS

 PELLPACK supports both uniform and non-uniform grid generation for 1-D, 2-D, and 3-D domains. For un
grids, the number of grid lines in any direction can be specified. Non-uniform grids are specified by point-and
(to add, move or delete grid lines) or by listing coordinates. Grids can be uniform in one direction and non-unif
another. For collocation methods based on tensor product spline basis functions, the 2-D grid editor and th
sponding overlay grid to a domain can be used to generate and display the collocation meshes and points. In
PELLPACK supports a body-oriented grid generator. It allows users to define the mapping of an arbitrary dom
four-sided domain, and allows the specification of an arbitrary number of grid lines per piece of the original d
definition. The body-oriented grid generator supports systems such as CADSOL, which require a body-orien
for the solution method.

4.2.4 MESH GENERATION EDITOR

This editor is the driver and graphical interface to the finite element mesh generators integrated in PELLPAC
available mesh generators are listed in Table 5. For 2-D mesh generators, boundary conditions which ha
defined on the original domain boundary pieces are maintained throughout the mesh generation process. T
element edges on the domain boundary inherit the conditions of the original boundary piece. These meshe
graphically modified by moving appropriate nodes. In the 3-D case, boundary conditions defined on the surfac
gulations are maintained throughout the mesh generation process, so that additional faces on the surface i
appropriate boundary condition. A 3-D mesh editor is also available to display or modify 3-D meshes and bo
condition assignments.

TABLE 5. PELLPACK s upported mesh generators and their applicability

Mesh generator Domain definition Description

2-D triangular PELLPACK domain editor

for given edge length, generates a uniform,
triangular mesh and outputs a PELLPACK
mesh format file

2-D adaptive

piece-wise linear approximation
of domain from PELLPACK
domain editor

 uses quadtree method to generate a first-cut
mesh which users refine by point-and-click,
outputs a PELLPACK mesh format file

2-D structured

arbitrary domain from
PELLPACK domain editor is
mapped to 4-sided figure

user specifies any number of “points” per side
on original domain then structured mesh is
generated, outputs a PELLPACK mesh format
file

2-D QMG [37]

piece-wise linear approximation
of domain from PELLPACK
domain editor

user specifies maximum edge length which is
used to generate a mesh using the quadtree
algorithm and the mesh is refined by
subsequent applications of algorithm, outputs a
neutral [2] format file.
February 15, 1999 24

data are
mati-

rocessors
uristics,
 users to
e modi-
el plat-
cessing
s, plat-

ions that
lution
ite differ-
tization
e par-

r, where

dentified
PELL-
e triple

ocess.

e scien-
sed to
g the
olution
 can be
reof) are
rid vs.
 output

l PELL-
e perfor-
4.2.5 DOMAIN DECOMPOSITION EDITOR

The decomposition editor supports the decomposition of meshes/grids into “balanced” subdomains. These
used to parallelize the underlying PDE computations. A library of partitioning algorithms is provided to auto
cally generate the decomposition. These algorithms produce decompositions that balance the load among p
and minimize communication between processors. Users may choose from many automatic partioning he
such as Inertia Axis, Neighborhood Search, Recursive Spectral Bisection, and others. These algorithms allow
specify numerous input parameters which control the partitioning process. In addition, decompositions can b
fied manually. The decomposition data is written to file(s) used uniformly across all supported target parall
forms, communication libraries, and execution models (hosted, hostless, Mplus, Dplus). Extensive parallel pro
performance data has been collected using the PELLPACK environment, comparing and analyzing algorithm
forms, communication libraries, and execution models [29],[32],[33].

4.2.6 ALGORITHM AND OUTPUT SPECIFICATION EDITORS

These editors help the user to specify the solution and output segments by visualizing in a menu form the opt
currently exist in various PDE libraries. The ELLPACK and PELLPACK modules which are available for the so
process depend on the problem description in the session. The problem dimension and selected method (fin
ence or finite element) are used by internal filters to identify the applicable modules displayed in the discre
and triple menus of the algorithm editor. If the problem language specification has parallel information, only th
allel modules are listed in the menus. Any controlling parameters are accessible through the algorithm edito
they can be viewed, modified and saved.

For a solution process which uses foreign system solvers, users must specify the appropriate triple module i
by the framework they selected when defining the problem (e.g., VECFEM, NSC2KE). As in the case of a
PACK triple, the foreign system triple module represents the entire numerical solution process. Selecting th
module and specifying the values of the required parameters is done within the algorithm editor.

To specify output requirements, the output editor may be used for any ELLPACK or PELLPACK solution pr
Foreign system output requirements are identified directly in the triple module as one of the parameters.

4.3 POST-PROCESSING TOOLS

This software layer includes the output tool which is an interactive environment used to analyze and visualiz
tific data generated by PELLPACK solvers. It consists of customized and public domain visualization tools u
visualize and/or animate 1-D, 2-D, and 3-D PDE solution data. Every solver available in PELLPACK includin
integrated foreign systems supports the PELLPACK output file format. In addition, some solvers generate “s
component” data files, which together with a mesh file describe the problem solution. Any of these file formats
loaded into the output tool. Once the data is loaded, all tools that can load the data (or a transformation the
made available for selection. Tool applicability is based on problem dimension, domain discretization type (g
mesh), and the possibility for animation (time-dependent solution). When a visualization tool is selected, the
tool handles all conversions and data transformation required by the visualization tool.

In addition, it contains performance tools that use timing and trace files generated by sequential or paralle
PACK programs to evaluate the performance of pre-processing and solution modules (the algorithms) and th
mance of execution models.

3-D Geompack [27]
surface triangulation from 3-D
domain editor (e.g. XXoX)

users specify a set of parameters controlling
edges, angles, etc., and a tetrahedral mesh is
generated, outputs a neutral format file.

3-D QMG [36]
surface triangulation from 3-D
domain editor (e.g. XXoX)

generates a tetrahedral mesh and outputs a
neutral format file
February 15, 1999 25

 of the
 proces-
ualiza-
ata is
rations
n certain

ms pro-
compil-
es. This
tform-
LPACK
TABLE 6. Output tool applications and recognized input

All PELLPACK solvers generate timing information which identifies the elapsed CPU time used by each step
numerical solution process. When programs are executed in parallel, timing information is generated for each
sor. The timing information can be loaded into the output tool and analyzed via PELLPACK’s performance vis
tion tool, ViPerform. Timing and trace data can also be analyzed by Pablo [38] and PATool [39]. Timing d
transformed by the output tool into the required format, and users can select any of the built-in configu
required by these performance analysis tools. ParaGraph [12] is available for parallel execution analysis whe
parallel communication libraries are used.

5. EXECUTION ENVIRONMENT

The design objective of the execution environment is to assist users in compiling, linking, and running progra
duced by the different frameworks discussed earlier. In addition, the environment is responsible for locating
ers, allocating machines, running execution scripts, and scattering/gathering data to/from distributed machin
environment is realized by the execute tool which provides support for remote login, file transfer, and pla
dependent execution management. In this section we describe the functionality and architecture of the PEL
execute tool.

Visualization
tools

Applicability Solutions generated by solvers

XGraph 1-D solutions
1-D time-dependent solutions

PDECOL

Time1-D 1-D time-dependent solutions PDECOL

Visual2-D 2-D grid or mesh solutions
2-D grid or mesh time-dependent solutions (anima-
tion)

solutions generated by any 2-D
solver, including PELLPACK,
VECFEM, FIDISOL, CADSOL,
ITGFS, NSC2KE.

Flow2-D 2-D mesh solutions
2-D body-oriented grid solutions
(Vector plot visualization)

solutions generated by any 2-D
mesh or body-oriented grid solver,
including PELLPACK, VECFEM,
CADSOL, ITGFS, NSC2KE.

Contour2-D 2-D mesh solutions
2-D body-oriented grid solutions
(Contour plot visualization)

solutions generated by any 2-D
mesh or body-oriented grid solver,
including PELLPACK, VECFEM,
CADSOL, ITGFS, NSC2KE.

MeshTV [6] 2-D and 3-D mesh solutions
2-D and 3-D body-oriented grid solutions

solutions generated by any 2-D or
3-D mesh or body-oriented grid
solver, including PELLPACK,
VECFEM, CADSOL, ITGFS,
NSC2KE.

Visual3-D 2-D and 3-D mesh solutions
2-D body-oriented grid solutions
3-D solutions on a box geometry

solutions generated by any 2-D or
3-D mesh solver, including PELL-
PACK, VECFEM, ITGFS,
NSC2KE.

PATRAN 2-D and 3-D mesh solutions
2-D and 3-D body-oriented grid solutions
3-D grid solutions on a box geometry

solutions generated by any 2-D or
3-D mesh solver, including PELL-
PACK, VECFEM, ITGFS,
NSC2KE.

XDS 2-D and 3-D grid solutions on a box geometry 2-D or 3-D PELLPACK FDM solv-
ers
February 15, 1999 26

e. The
format
xecution

.g.,
PACK
system
ntial or
gle For-
roblem

s to be
one on a
) parallel
domains
e to com-
pute the
ing spe-
ion tasks

am until
 PDE
ing the
e version
e used at
used for
 different
are per-

r-
5.1 EXECUTETOOL FUNCTIONALITY

The main task of the execute tool is to execute a PDE solving program specified in the PELLPACK languag
PELLPACK language file is first translated to one or more Fortran programs, and then compiled to binary
using the native Fortran compiler. Different types and numbers of programs are generated based on the e
model selected by the user.

5.1.1 FRAMEWORK AND EXECUTION MODEL DETERMINATION

Special identifiers in the options segment of the PELLPACK source file specify the type of framework (e
PELLPACK, CADSOL) and the execution model [33] to be used. When the execute tool first loads the PELL
program, it uses this information to configure its operation appropriately. The framework determines which
solver library will be used in the linking stage. The execution model identifies whether the execution is seque
parallel, and when execution is parallel, it specifies the type of parallel model. For sequential execution, a sin
tran program corresponding to the PELLPACK problem specification is generated. This program solves the p
and generates the global solution in a single output file.

5.1.2 PARALLEL EXECUTION MODELS

For parallel execution, the parallel model tells the execution environment the number and types of Fortran file
generated. In the parallel case, a partitioning of the PDE mesh/grid is assumed, and all computations are d
per-subdomain (local) basis. Computations for each subdomain are mapped to the processors of a (virtual
machine, where multiple processors compute on different parts of the domain. Communication between sub
occurs on the subdomain interfaces, which are specified in the decomposition data. Processors are thus abl
pute a local solution. To generate the global solution, the system needs to collect the local solutions and com
global one. Different control programs are generated for each of the parallel execution models, each perform
cific phases of the numerical solution process. The parallel execution models and the corresponding execut
supported by the PELLPACK execute tool are described in Table 7.

5.1.3 COMPILATION AND EXECUTION PARAMETERS DETERMINATION

Following the principle of late binding, the user does not select the architecture on which to execute the progr
after loading it into the execution environment. That is, PELLPACK allows the user to completely specify the
problem as well as how to solve it without having to select the specific type of hardware to be used for solv
problem. Selecting the target platform requires the selection of the hardware (e.g., Sun Sparc) as well as th
of the operating system (e.g., SunOS 4.1, Solaris 2.5). The user also selects the communication library to b
run-time. After this information is specified, the execute tool determines the possible machines that can be
compilation and execution based on the local configuration. If these machines need to be accessed with a
user name and/or login name, those must be specified as well. Finally, the compilation and linking steps
formed to produce the executable file(s).

TABLE 7. Parallel execution models

Execution

model
DISC(1) LSS(1) Control programs and their execution tasks

Hosted P P Host program: Reads in decomposition file and sends appropriate data
to each of the node programs. Receives local solution data and gene
ates global solution.
Node program: Each node discretizes and solves the linear system on
its subdomain, collaborating with neighboring subdomains. Local
solutions are sent back to the host.
February 15, 1999 27

ince the
 be avail-
 object/
 output

t files is
 PELL-
hese
 each of
 on the

e, noth-
porarily

ropriately

 not be
me other
llows the
on is
eters.

g

g

(1) DISC = Discretization phase, LSS = Linear System Solver phase.
 S = the code is sequential, P = the code is parallel.

(2) The node program for the Hostless and DPlus models carry out identical tasks. Note, however, that all
numerical code in the Hostless model is parallel. DPlus, on the other hand, uses sequential discretization
code; each node performs a sequential discretization on its partition of the domain. In this way, available
sequential discretization codes may be used for the discretization phase, while parallel codes can still be
used for the more time-consuming linear system solver phase.

5.1.4 FILE AVAILABILITY

For compilation and execution on remote machines, the execute tool addresses the issue of file availability. S
user can choose to compile and execute the program on different machines, these files might not necessarily
able on the target machines. The files considered here include the PELLPACK source file, any generated
binary files, the files specified inside the PELLPACK program (such as mesh and decomposition files), and the
file. These files are handled differently by the execute tool. The location of the source and generated objec
known to the environment since these files are generated during the compilation phase. The location of the
PACK program specification files (i.e., file system paths), are specified within the PELLPACK program file. T
files are needed during the execution and post-processing phases. We identify three different possibilities for
these files: i) the file is available on the execution machine with the same pathname, ii) the file is only available
current machine, and iii) the file is available on the remote machine with a different path name. In the first cas
ing special need be done to gain access to the input file. For the second case, a copy of the input file is tem
generated on the remote machine. In the last case, the execute tool must map the path of the input files app
so that the correct name is used on each machine.

5.1.5 COMPILATION AND EXECUTION CONFIGURATION

Unlike the sequential case, the process for compiling a Fortran file into binary form for the parallel case may
straight forward. In certain cases, cross compilers can be used that are available on certain machines. In so
cases the compilers require certain environment variables to be set before running them. The execute tool a
local site specialist to configure this information at the time of PELLPACK installation, so that this informati
known to the environment at run time and is available for user selection of platform and communication param

The information needed to configure the execute tool for a user’s site consists of:

Hostless(2) P P Node program: Each node reads its own decomposition file. It dis-
cretizes and solves the linear system on its subdomain, collaboratin
with neighboring subdomains. It generates a local solution file.
Post-processing program: Collects local solutions and generates a glo-
bal solution.

MPlus S P Discretization program: Generates linear system on the entire domain.
MPlus environment: Partitions linear system using decomposition file
and global linear system.
Node program: Each node reads its local linear system file. It solves
the linear system on its subdomain, collaborating with neighboring
subdomains. It generates a local solution file.
Post-processing program: Collects local solutions and generates a glo-
bal solution.

DPlus(2) S P Node program: Each node reads its own decomposition file. It dis-
cretizes and solves the linear system on its subdomain, collaboratin
with neighboring subdomains. It generates a local solution file.
Post-processing program: Collects local solutions and generates a glo-
bal solution.
February 15, 1999 28

 list of
needed
itectures

h a con-
ased on
ries cur-
s pre-

ntroduced
ple, if a
e con-
n. The
y taken
• information about the hardware platforms and communication packages available at this site, including the
machines available to the user, the availability of compilers and cross-compilers, the environment settings
to compile a program on a specific architecture, and the process of executing on the selected parallel arch

• information about the availability of the foreign solver libraries that are available at the site.

This information is specified at installation time and loaded in at runtime, so that the end-user is presented wit
venient and knowledgeable graphical interface that automatically determines the site-specific configuration b
the target platform selected by the user. The diagram in Figure 14 lists the platforms and communication libra
rently supported by the PELLPACK system. Figure 15 shows how the platform configuration information i
sented to the user during PELLPACK execution in a convenient and easy-to-use format.

FIGURE 14. Available platforms and communication libraries

5.1.6 EXECUTION STATE

Since users may wish to re-start the execution process at any point in the execution sequence, a state file is i
to maintain state data about the actions that have been performed on PELLPACK source files. For exam
source file is compiled for the Intel Paragon using the MPICH communication library, a record in the state fil
tains this information along with the names of the generated object/binary files and other pertinent informatio
user may enter the execute tool at a later time with this state file, which identifies that compilation has alread
place.

FIGURE 15. Executing a parallel hostless program on a network of 2 Sun4-Sos4 machines

Sun4 - SunOS

nCube 2
● VERTEX
● MPICH
● PICL

iPSC 860
● MPICH
● PICL

workstation network
● LAM MPI
● MPICH
● CHIMP MPI
● PVM

Paragon
● MPICH
● PICL
● Intel/NX

● PARMACS
● NX
● PARMACS

Sun4 - Solaris

● hostless, MPlus, DPlus models
● hosted, hostless, MPlus, DPlus models

sequential execution
parallel execution
February 15, 1999 29

onfigu-
pported

tations
eeded to
ses this
in user
erfor-

easured
eristics
istics and

ed to be
ge and
ence it is
an be
 and then

ELL-
he raw

se. The
cteristic
best solu-

etwork
ned, then
mance of
the given
5.2 ARCHITECTURE

The PELLPACK execute tool consists of a Tcl driver, a Tcl/Tk graphical user interface, and the site specific c
ration database. Upon invocation, the execute tool loads all local configuration required to perform the su
operations. Figure 16 depicts the software components of this tool.

FIGURE 16. The software architecture of the execute tool

6. THE PELLPACK E XPERT SYSTEM SUPPORT

Given the large number of solution frameworks available in PELLPACK and the number of possible implemen
of a framework segment, it is clear that most users will not be able to select the most efficient set of options n
best solve the problem at hand. The PYTHIA knowledge based system component of PELLPACK addres
algorithm selection problem by automatically selecting a solution scheme to use to solve a given problem with
specified performance objectives [25]. The PYTHIA system is not a part of PELLPACK, but it operates on p
mance data produced by PELLPACK.

The approach that PYTHIA takes to solve this problem is to select the best solution scheme based on the m
performance of various solvers on “similar” problems. Problem similarity is measured by comparing charact
of the problem at hand with the characteristics of problems that have been solved before. Problem character
performance information about the effectiveness of various solution schemes on these problems are assum
available from the PYTHIA knowledge base. Clearly, for better performance it is important to have a very lar
growing database that continues to accumulate knowledge about the PDE problems that are being solved. H
important to develop techniques for efficiently locating “similar” problems so that the algorithm selection c
done quickly. This is achieved by grouping sets of problems into classes based on some set of characteristics
restricting the search to problems belonging to similar classes of problems.

The PYTHIA system utilizes the ELLPACK Performance Evaluation System [4] (as modified to support the P
PACK solvers) to generate the performance data that provides initial information to the knowledge bases. T
performance information is automatically transformed into rules and facts and stored in the knowledge ba
information in the knowledge base includes individual problem characteristic vectors, problem class chara
vectors, and problem and class performance rules. These are used by the inferencing logic to determine the
tion scheme and parameters for a given problem.

PYTHIA inferencing logic includes traditional case-based and clustering-type techniques as well as neural n
techniques to help determine the class(es) to which a problem belongs to. Once a problem’s class is determi
the problem is compared against all the exemplars of that class to determine the best match. Then, the perfor
various solution methods on that problem is used as the basis upon which to select the solution scheme for
problem.

U s e r I n t e r f a c e

E x e c u t e T o o l K e r n e l

Solver

Interface

Compilation
& Execution

Comm.
Library

S i t e S p e c i f i c C o n f i g u r a t i o n

C o m m u n i c a t i o n I n t e r f a c e

// E L L P A C K
P S E

E X E C U T E T O O L

Resource
DatabaseInterface

Library
Scripts
February 15, 1999 30

ne is the
formance
olution

al pur-
LPACK
ch was

orithms.
le can

 decom-
el solu-
r several
cted by
they can
generated
o pro-
PACK)

aluating
ritten

variable
 Fortran
cessor
g of the

nt PDE
 output
rs, mesh

 archi-
and data
segment,
ow these
-operate
ked with
After the solution method is selected, its parameters must be determined. The basic parameter to determi
number of degrees of freedom that should be present in the discretized PDE to achieve the user specified per
objectives. PYTHIA balances between conflicting user constraints to give the best possible choice for the s
algorithm and its parameters.

7. THE PELLPACK D EVELOPMENT ENVIRONMENT

The following two scenarios show how the PELLPACK development environment can be used for education
poses. It is important to note that both scenarios are possible without the slightest modification of the PEL
system itself. Instead, we rely on the power and flexibility inherent in the design of the open architecture whi
described earlier.

A graduate class in parallel programming is assigned to write the code for several domain decomposition alg
After generating their decomposition, the student must write the data to a file in the PELLPACK format. This fi
immediately be brought into PELLPACK’s graphical environment by inserting its filename into a decomposition
segment, thus allowing the decomposition editor to load and display the new decomposition. Moreover, these
position files can even be used to execute a PELLPACK problem in parallel, using any of the available parall
tion schemes. The class executes the program on all available parallel platforms, and collects timing data fo
different decompositions by varying the number of subdomains generated by their algorithms. The data colle
the students describes the performance of their decompositions for different numbers of subdomains, so
compute and graph the speed-up. They can also compare the performance of their decompositions to those
by the algorithms already available within PELLPACK. This use of the development environment requires n
gramming on the part of the students other than writing the decomposition to a file in the pre-defined (PELL
format.

A class in numerical methods is to write a collocation discretizer. Testing the correctness of the code and ev
its efficiency for a test suite of PDE equations is done within the PELLPACK environment. The discretizer is w
using the PELLPACK data structures for the input and output arrays and variables. Workspace and other
space allocation is defined through PELLPACK language constructs. The discretization code is inserted as a
segment immediately before the solution segment of the problem definition. PELLPACK’s language pro
embeds this code in the resulting program at the appropriate location, and the execute tool handles the linkin
additional user specified compiled objects. Students can very easily test their discretizers on many differe
problems, using PELLPACK’s test suite. The performance of the discretizer is captured as timing data which is
at each execution. The development environment has been used in this way for testing linear system solve
generators, and many other kinds of user-written sequential and parallel code.

The components of PELLPACK that allow it to function as a development environment are the following: open
tecture, standard interfaces for the PDE problem and solution process specifications, published file formats
structures for all input and output, an extensible database defining the solver modules, the Fortran language
the language processing tools, and the configurable facilities of the execute tool. The table below describes h
components work together to allow developers to add their own PDE solver components and have them inter
seemlessly with the existing components. Development tasks that require PELLPACK source code are mar
(*).

TABLE 8. PELLPACK development tasks

Development task Description of integration process
Components of the PELLPACK
development environment used

Use off-line code to
generate mesh, decom-
position, etc.

use PELLPACK file format to save data and
insert filename in appropriate language seg-
ment.

published input file formats, language
processing tools
February 15, 1999 31

e done
time sys-
se. This
 prob-
e mod-

d by the
uctures.
LPACK

via the
allow
as guided
security
 one user

cess the
ss to files
users’s

ional on
 user’s
tly pro-
re set up,
 on the
ecution
ments to
Adding a permanent module to PELLPACK requires modification of the module data base. This can only b
when source code for the language processor is available, since the changes must be compiled into the run
tem. To add a permanent module to PELLPACK, a developer must put the module definition into the data ba
information includes: (1) the “type” of module (identified by the language segment where it will appear in the
lem definition), (2) the name of the module, the list of module parameters, and their default values which can b
ified by the user, (3) the Fortran call to the top-level routine of the module, (4) the list of data structures neede
new code, and (5) the memory requirements for existing PELLPACK data structures and any new data str
After the modified language processor is installed, the new module is available as a standard part of the PEL
system.

8. WEB PELLPACK

Web PELLPACK [52] is an instance of the PELLPACK system that has been made available for public use
World Wide Web at the URL http://pellpack.cs.purdue.edu/. The goal of the Web PELLPACK service is to
remote users to access and use the PELLPACK system in a safe, secure and effective manner. The design w
by the following principles: 1) outside users should not have direct access to server machine(s) for obvious
reasons, 2) control access to the software for accountability purposes, and 3) users must have privacy; i.e.,
should not be able to freely browse other users’ files.

To satisfy these constraints, an account-oriented model where users “log in” to their “account” and then ac
software was developed. These “accounts” are created within the data space of a custom web server. Acce
within such an account is controlled using standard web security constraints. To maintain security from
“breaking in” to the server machines, several levels of Unix security are used.

To run Web PELLPACK (as a demonstration or otherwise), users need to have the X window system operat
their machines. In order for the machine providing the Web PELLPACK service to display X windows on the
display, users must instruct their own machine to permit this action. The command for doing so is convenien
vided to the user in a set up page in both demonstration and actual runs. Once the appropriate permissions a
the demonstration is started by pressing the “Run” button. The demonstration PELLPACK system then runs
web service machine and displays its windows on the user’s display. The web browser is blocked until the ex
is complete. Once the operation is complete, the user is presented with a page that allows them to send com
the PELLPACK developers.

Write new code for dis-
cretizer or linear system
solver

define routines using PELLPACK data
structures for input/output, insert call to
top-level routine in Fortran segment, com-
pile routines on target platforms

standard interfaces for PDE solution
process specifications, Fortran lan-
guage segment, language processing
tools, configurable execution facilities

Test existing code for
discretization or linear
system solver

write interface routines transforming exist-
ing data structures to PELLPACK data
structures, insert call to conversion routines
and call to top-level solver routine in For-
tran segment, compile routines on target
platforms

standard interfaces for PDE solution
process specifications, Fortran lan-
guage segment, language processing
tools, configurable execution facilities

Integrate permanent
module code into
PELLPACK (*)

define interface routines using PELLPACK
standard interfaces, add module definition
to extensible module data base, add perma-
nent new library to Execution configuration

standard interfaces for PDE solution
process specifications, extensible mod-
ule data base, configurable Execution
facilities

Integrate visualizer,
mesh generator, geome-
try decomposer or other
new tool to PELLPACK
GUI (*)

write routine to convert PELLPACK format
data structure or file to new tool format.
Add following items to graphical environ-
ment: button to invoke tool, callback to call
converter, call to start up tool

published file formats and data struc-
tures for all input and output
February 15, 1999 32

 (Web)
vide the
 them-
 account
ng these
creating a
re that

directory
ams and
upport
[26]

s in the
ries, that
 way and
re main-

he fol-
N.P.
, E.N.
, A.L.

R. Rice,
hang,

02536,
ce Ad-

 Army
T&T

lent

rential

entific
For normal operation, the user must first request access to use the Web PELLPACK service by filling out a
form and submitting it to the service administrators. Processing the request requires the administrator to pro
user with an initial login identifier and an initial password which the user may use to create an account for
selves. Then, this login is added to the WWW server access control file that controls who has access to the
creation page. Once users receive the initial login and password, they visit the account creation page usi
tokens and sets up an account for themselves. The account creation request is processed automatically by
“home” directory for the user within the WWW server’s data space and by creating an access control file the
restricts access only to this user.

Once the account has been set up, users may log in any time and use the PELLPACK system. The home
works like a normal home directory; i.e., users may use it as a persistent working area and may save progr
results there. Files may be off-loaded from this directory using a web browser, but we currently do not s
uploading files to this directory. File uploading will be supported later using the FILE input type in HTML3
forms.

The primary concern of anyone providing any Internet-wide service is that of security. The security concern
Web PELLPACK service include ensuring that users do not get access to files outside of the service bounda
they have restricted access outside of their home directory, that they cannot compromise the system in any
that they cannot access and compromise the local network in any way. Details of how all these constraints a
tained are included in [52].

9. ACKNOWLEDGMENTS

Many people have contributed to the design and implementation of PELLPACK in a period of about 6 years. T
lowing is an incomplete list of the contributors to PELLPACK (in alphabetical order): A.C. Catlin, Y. Chen,
Chrisochoides, C.C. Chui, C.L. Crabill, M.G. Gaitzatzes, S.G. Gaitatzes, P.N. Galani, H. Gu, A. Hadjidimos
Houstis, N.E. Houstis, B. Jackson, A. Joshi, H.C. Karanthanasis, S.B. Kim, S. Kim, T. Ku, Y.L. Lai, D. Maharry
Ng, W.L, Ng, S. Markus, J.R. McCombs, A. Ocken, K. Pantazopoulos, P.N. Papachiou, N. Ramakrishnan, J.
M.K. Samartzis, M.L. Shyu, C.H. Song, E.A. Vavalis, V. Verykios, R.L. Walker, S. Weerawarana, P. Wu, S. Z
and J.L. Zhen.

 This project was partially funded by the National Science Foundation (CCR-8704826, CDA-9123502, CCR-92
ASC-9404859, CDA-9422038, CCR-8819501, CCR-8922537, CCR-9311486), National Aeronautics and Spa
ministration (NGT-50708), Air Force Office of Scientific Research (AFOSR-88-0243, F49620-92-J-0069), the
Research Office (DAAH04-94-G-0010, DAAH04-G-0010), ESPRIT grants 2702, 6643, and support from the A
Foundation, INTEL Corporation, FIRST Info Inc, and the Purdue Research Foundation.

10. REFERENCES

[1] Baldwin, B. and Lomax, H. 1978. Thin-layer approximation and algebraic model for separated turbu
flows. AIAA-78-257.

[2] Baldwin, K. 1990. Patran Plus User Manual, Release 2.5, Vols I and II. PDA Engineering, PATRAN Division.

[3] Bijan, M. 1978. Fluid Dynamics Computation with NSC2KE, A User Guide, Release 1.0. No RT-0164, Mai
1994, Institut National de Recherche en Informatique et en Automatique 257.

[4] Boisvert, R. F., Houstis, E. N., and Rice, J. R. 1979. A system for performance evaluation of partial diffe
equations software. IEEE Trans. Software Engineering. SE-5, 4, 418-425

[5] Boisvert, R. F., Howe, S. E., and Kahaner, D. K. 1985. GAMS -A framework for the management of sci
software. ACM Trans. Math. Softw. 11, 313 -355.

[6] Brugger, E. S., Leibee, A., and Long, J. W. 1994. MeshTV User’s Manual. Lawrence Livermore National Lab-
oratory.
February 15, 1999 33

nts for

. 1991.
ski, et

d bal-

nments

ndings

 Guide

-

ren-

 paral-

., Vava-
viron-

nt for
[7] Chrisochoides, N. P., Houstis, E. N., and Rice, J. R. 1994. Mapping algorithms and software environme
data parallel pde iterative solvers. Journal of Distributed and Parallel Computing, 21, 75-95.

[8] Chrisochoides, N.P., Houstis, C.E., Kortesis, S.K., Houstis, E. N., Papachiou, P.N., and Rice, J. R
Domain Decomposer: A software tool for mapping PDE computations to parallel machines. R. Glowin
al. (Eds.). Domain Decomposition Methods for Partial Diferential Equations IV, 341-357. SIAM Publications.

[9] Chrisochoides, N.P., Houstis, C.E., Kortesis, S.K., Houstis, E.N., and Rice, J. R. 1989. Automatic loa
anced partitioning strategies for PDE computations. E.N. Houstis and D. Gannon, editors, Proceedings of
International Conference on Supercomputing, 99-107. ACM Press.

[10] Cooper, G.K., Jones, R.R., Power, G.D., Sirbaugh, J. R., Smith, C.F., and Towne, C. E. 1994. A User’s Guide to
NPARC, Version 2.0. NASA Lewis Research Center and Arnold Engineering Development Center.

[11] Denton, J. D. 1982. An improved time marching method for turbo-machinery flow calculation. ASME 82-GT-
239.

[12] Energy Science & Technology Software Center. 1995. The Maxima system. Oak Ridge, TN.

[13] Gallopoulos, E., Houstis, E.N., and Rice, J. R. 1994. Computer as thinker/doer: Problem solving enviro
for computational science. IEEE Comp. Sci. Engr., 1, 11–23

[14] Gallopoulos, E., Houstis, E.N., and Rice, J. R. 1995. Workshop on problem-solving environments: Fi
and reommendations. Computing Surveys, 27, 277-279.

[15] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. 1993. PVM 3 User’s
and Reference Manual. Technical Report TM-12187. Oak Ridge National Laboratory.

[16] Gropp, W., Lusk, E., and Skjellum, A. 1994. Using MPI: Portable Parallel Programming with the Message
Passing Interface. MIT Press.

[17] Gross, L., Roll, C., and Schoenauer, W. 1993. VECFEM for mixed finite elements. Technical Report Interner
Bericht Nr. 50/9. Rechenzentrum der Universitat Karlsruhe.

[18] Heath, M. T. and Finger, J. E. 1991. Visualizing the performance of parallel programs. IEEE Software, 8, 29-
39.

[19] Hindmarsh, A.C. 1983. Odepack, A systematized collection of ODE solvers. Scientific Computing. R.S.
Stepleman, et al. (Eds). 55-64. North-Holland, Amsterdam.

[20] Houstis, E. N., Mitchell, W. F., Rice, J. R. 1983. Collocation software for second order elliptic partial diffe
tial equations. CSD-TR 466, Department of Computer Science, Purdue University.

[21] Houstis, .E. N., Papatheodorou, T. S., and Rice, J. R. 1990. Parallel ELLPACK: An expert system for the
lel processing of partial differential equations. Intelligent Mathematical Software Systems. 63-73. North-Hol-
land, Amsterdam.

[22] Houstis, E. N., Rice, J. R., Chrisochoides, N. P., Karathanasis, H. C., Papachiou, P. N., Samartzis, M. K
lis, E. A. , Wang, K. Y., and Weerawarana, S. 1990. Ellpack: A numerical simulation programming en
ment for parallel MIMD machines. In D. Marinescu and R. Frost (Eds.). International Conference on
Supercomputing, 96-107. ACM Press.

[23] Houstis, E. N., and Rice, J. R. 1992. Parallel Ellpack: A development and problem solving environme
high performance computing machines. In P. W. Gaffney and E. N. Houstis (Eds.). Programming Environments
for High-Level Scientific Problem Solving, 229-241. North-Holland.
February 15, 1999 34

pathe-
n-

stem to

pub/

s.

mance.

 large

ial dif-

Maha-
lvers,

lems.

rential

e set.

1993.
.)

s.
mance

s.)
[24] Houstis, E.N., Kim, S.B., Markus, S., Wu, .P., Houstis, N.E., Catlin,, A.C., Weerawarana, S., and Pa
odorou, T.S. 1995. Parallel ELLPACK PDE solvers. Second Annual Intel SuperComputer User’s Group Co
ference.Also: CSD-TR 95-042. Department of Computer Science, Purdue University

[25] Houstis, E.N., Weerawarana, S., Joshi, A., and Rice, J. R. to appear. PYTHIA: A knowledge based sy
select scientific algorithms. ACM Trans. Math. Software.

[26] HyperText Markup Language (HTML). 1996. Working and Background Materials, http://www.w3.org/
WWW/MarkUp/.

[27] Joe, B. 1991. GEOMPACK-A software package for the generation of meshes using geometric algorithmAdv.
Eng. Software, 13, 325-331

[28] Kim, S. B. 1993. Parallel Numerical Methods for Partial Differential Equations. Ph.D. Thesis. CSD-TR-94-
000. Department of Computer Science, Purdue University.

[29] Kim, S. B., Houstis, E. N., and Rice, J. R. 1994. Parallel stationary iterative methods and their perfor
Marinescu, D. and Frost, R. (Eds.), INTEL Supercomputer Users Group Conference.

[30] Kinkaid, D., Respess, J., and Grimes, J. 1982. Algorithm 586: Itpack 2c: A Fortran package for solving
linear systems by adaptive accelerated iterative methods. ACM Trans. Math. Software., 8, 302-322.

[31] Madsen, N.K. and Sincovec, R.F. 1979. Algorithm 540: PDECOL, general collocation software for part
ferential equations, ACM Trans. Math. Software, 5, 326-351.

[32] Markus, S., Kim, S. B., Pantazopoulos, K., Ocken, A. L., Houstis, E. M., Wu, P., Weerawarana, S., and
rry D. 1996. , Performance evaluation of MPI implementations and MPI based Parallel ELLPACK so
Proc. 2nd MPI Developer’s Conference. 162-169. IEEE Computer Society Press.

[33] Markus, S. and Houstis, E.N. 1996. Parallel Reuse Methodologies for Elliptic Boundary Value Prob
CSD-TR 96-056. Department of Computer Science, Purdue University.

[34] Melgaard, D. K. and Sincovec, R. F. 1981. General software for two-dimensional nonlinear partial diffe
equations. ACM Trans. Math.Software, 7, 106-125.

[35] Mitchell, W. F. 1991. Adaptive refinement for arbitrary finite element spaces with hierarchical bases. J. Compu-
tational and Applied Math., 36, 65-78.

[36] Mitchell, S.A. and Vavasis, S.A. 1992. Quality mesh generation in three dimensions. Proc. ACM Computa-
tional Geometry Conference, 212-221. ACM Press.

[37] Mitchell, S.A. and Vavasis, S.A. to appear. An aspect ratio bound for triangulating a mesh cut by an affin

[38] Reed, D. A., Aydt, R.A., Noe, R., Phillip, J., Roth, C., Shields, K. A., Schwartz, B., and Tavera, L.F.
Scalable performance analysis: The Pablo performance analysis environment. Anthony Skjellum (Ed Pro-
ceedings of the Scalable Parallel Libraries Conference, 104-113. IEEE Computer Society.

[39] Reed D.A. 1994. Experimental performance analysis of parallel systems: techniques and open problemPro-
ceedings of the 7th International Conference on Modelling Techniques and Tools for Computer Perfor
Evaluation, 25-51. IFIP.

[40] Rice, J. R. and Boisvert R. F. 1985. Solving Elliptic Problems using ELLPACK. Springer-Verlag.

[41] Rice, J.R. 1989. Libraries, software parts and problem solving systems. In Cai, Fosdick and Huang (EdSym-
posium on Scientific Software, 191-203. Tsinghua Univ.Press.
February 15, 1999 35

n

nes: an

 pro-

arallel

PACK:

elling

with
[42] Schmauder, M., Weiss, R., and Schoenauer, W. 1992. The CADSOL program package. Technical Report
Interner Bericht Nr. 46/9., Rechenzentrum der Universitat Karlsruhe.

[43] Schoenauer, W., Schnepf, E., and Mueller, H. 1985. The FIDISOL program package. Technical Report Interner
Bericht Nr. 27/85. Rechenzentrum der Universitat Karlsruhe.

[44] Scientific Computing Associates, Inc. 1995. PCGPACK2: A library of Fortran 77 subroutines for the solutio
of large sparse linear systems.

[45] Shadid, J.N. and Tuminaro, R.S. 1992. Coarse iterative algorithm software for large scale MIMD machi
initial discussion and implementation. Concurrency:Practice and Experience, 4, 481-497.

[46] SHAPES Geometric Computing System. 1992. Geometry Library Reference Manual (C Edition). XoX Corpo-
ration.

[47] Sincovec, R. F. and Madsen, N. K. 1975. Software for nonlinear partial differential equations. ACM Trans.
Math. Software, 1, 232-260.

[48] Walker, R. 1996. The performance of a parallel time-stepping methodology in the Parallel (//) ELLPACK
gramming environment. Proceedings of the 1996 Simulation Multiconference. 206-213.

[49] Weerawarana, S. and Wang, P. S. 1992. A Portable code generator for Cray Fortran. Trans. Math. Software, 18,
241-255.

[50] Weerawarana, S., Houstis, E.N., Catlin, A.C. and Rice J.R. 1995. PELLPACK: A system for simulating partial
differential equations. C.E. deSilva and M.H.Hanzu (Eds). Modeling and Simulation. 122-126. IASTED-
ACTA Press Anaheim, Ca.

[51] Weerawarana, S., Houstis, E.N., and Rice, J.R. 1992. An interactive symbolic-numeric interface to p
ELLPACK for building general PDE solvers. Donald, Kapur and Mundy (Eds.) Symbolic and Numerical Com-
putation for Artificial Intellligence, 303–321. Academic Press.

[52] Weerawarana, S., Houstis, E.N., Rice, J. R., Gaitatzes, M.G., Markus, S., and Joshi, A. 1996. Web PELL
A Networked Computing Service on the World Wide Web. CSD-TR-95-011. Department of Computer Sci-
ence, Purdue University.

[53] Womble, D.E. 1990. A time-stepping algorithm for parallel computers. SIAM J. Sci. Stat Comput, 11, 824-837.

[54] Wu, P. and Houstis, E. N. 1994. Parallel mesh generation and decomposition. CSD-TR-93-075. Department of
Computer Science, Purdue University.

[55] Wu, P. and Houstis, E.N. 1993. An interactive X-windows based user interface for the XoX solid mod
library. CSD-TR-93-015, CAPO Report CAPO-93-08. Department of Computer Science, Purdue University.

[56] XYZ Scientific Applications, Inc. 1993. TrueGrid Manual.

[57] Zhang, S. 1995. Molecular-mixing measurements and turbulent-structure visualizations in a round jet
tabs. Ph.D. Thesis. School of Aeronautics and Astronautics. Purdue University.
February 15, 1999 36

	PELLPACK: A Problem Solving Environment for PDE Based Applications on Multicomputer Platforms
	E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin, P. Papachiou, K.-Y. Wang and M. Gaitatzes
	1. Introduction
	FIGURE 1. A user’s view of the PELLPACK system depicting the tools and libraries supported. The d...

	2. Domain of Applicability
	2.1 PDE Software Libraries
	TABLE 1. PDE systems integrated in PELLPACK, their applicability, and major characteristics

	2.2 Frameworks for PELLPACK PDE Solvers
	2.2.1 Elliptic and Parabolic PDE Solution Frameworks
	FRAMEWORK 1. Module based linear elliptic solution
	FIGURE 2. An instance of PELLPACK user interface for an elliptic framework

	FRAMEWORK 2. Nonlinear sequential elliptic PDE solution
	FRAMEWORK 3. Parabolic sequential PDE solution

	2.2.2 MPlus (Matrix Partitioning) Steady-State Solution Framework
	FRAMEWORK 4. Parallel matrix solution

	2.2.3 DPlus (Domain Partitioning) Steady-State Solution Framework
	FRAMEWORK 5. Parallel stationary PDE solution

	2.3 Frameworks for “Foreign” PDE Systems
	2.3.1 VECFEM Framework
	FIGURE 3. An instance of the PELLPACK interface for the VECFEM structural analysis framework
	FRAMEWORK 6. VECFEM

	2.3.2 FIDISOL Framework
	FIGURE 4. An instance of the PELLPACK interface for the FIDISOL framework
	FRAMEWORK 7. FIDISOL

	2.3.3 CADSOL Framework
	FIGURE 5. An instance of the PELLPACK interface for the CADSOL framework
	FRAMEWORK 8. CADSOL

	2.3.4 PDECOL Framework
	FRAMEWORK 9. PDECOL
	FIGURE 6. An instance of the PELLPACK interface for the PDECOL framework

	2.4 Templates for “Foreign” PDE Systems
	2.4.1 NPARC3-D Template
	TEMPLATE 1. NPARC3-D

	2.4.2 ITGFS Template
	TEMPLATE 2. ITGFS
	FIGURE 7. PDE Problem Specification
	FIGURE 8. PDE Solution Specification
	FIGURE 9. Execution Environment
	FIGURE 10. Post-processing Environment

	2.4.3 NSC2KE Template
	TEMPLATE 3. NSC2KE

	3. Software Architecture
	3.1 The Programming View
	FIGURE 11. Three level programming view of PELLPACK
	TABLE 2. PELLPACK Subsystems

	3.2 The Subsystem View
	FIGURE 12. The subsystem (vertical) view and the software layered (horizontal) view of PELLPACK

	3.3 The Software layered View
	TABLE 3. PELLPACK software layers, implementation languages, and lines of code
	3.3.1 Programming Environment (Graphical User Interface)
	3.3.2 Very High Level Language Interface
	3.3.3 Procedural Language (FORTRAN) Interface

	3.4 PELLPACK Infrastructure

	4. The PELLPACK Programming Environment
	4.1 Very High Level PDE Language
	4.2 PDE Object Based Graphical User Interface
	TABLE 4. The PDE object based editors in PELLPACK
	4.2.1 PDE Framework Specification Editor
	FIGURE 13. An instance of the PELLPACK session editor

	4.2.2 Domain and Boundary Conditions Editors
	4.2.3 Grid Generation Editors
	4.2.4 Mesh Generation Editor
	TABLE 5. PELLPACK supported mesh generators and their applicability

	4.2.5 Domain Decomposition Editor
	4.2.6 Algorithm and Output Specification Editors

	4.3 Post-Processing Tools
	TABLE 6. Output tool applications and recognized input

	5. Execution Environment
	5.1 ExecuteTool Functionality
	5.1.1 Framework and Execution Model Determination
	5.1.2 Parallel Execution Models
	5.1.3 Compilation And Execution Parameters Determination
	TABLE 7. Parallel execution models

	5.1.4 File Availability
	5.1.5 Compilation and Execution Configuration
	FIGURE 14. Available platforms and communication libraries

	5.1.6 Execution State
	FIGURE 15. Executing a parallel hostless program on a network of 2 Sun4-Sos4 machines

	5.2 Architecture
	FIGURE 16. The software architecture of the execute tool

	6. The PELLPACK Expert System Support
	7. The PELLPACK Development Environment
	TABLE 8. PELLPACK development tasks

	8. Web PELLPACK
	9. Acknowledgments
	10. References
	[1] Baldwin, B. and Lomax, H. 1978. Thin-layer approximation and algebraic model for separated tu...
	[2] Baldwin, K. 1990. Patran Plus User Manual, Release 2.5, Vols I and II. PDA Engineering, PATRA...
	[3] Bijan, M. 1978. Fluid Dynamics Computation with NSC2KE, A User Guide, Release 1.0. No RT-0164...
	[4] Boisvert, R. F., Houstis, E. N., and Rice, J. R. 1979. A system for performance evaluation of...
	[5] Boisvert, R. F., Howe, S. E., and Kahaner, D. K. 1985. GAMS -A framework for the management o...
	[6] Brugger, E. S., Leibee, A., and Long, J. W. 1994. MeshTV User’s Manual. Lawrence Livermore Na...
	[7] Chrisochoides, N. P., Houstis, E. N., and Rice, J. R. 1994. Mapping algorithms and software e...
	[8] Chrisochoides, N.P., Houstis, C.E., Kortesis, S.K., Houstis, E. N., Papachiou, P.N., and Rice...
	[9] Chrisochoides, N.P., Houstis, C.E., Kortesis, S.K., Houstis, E.N., and Rice, J. R. 1989. Auto...
	[10] Cooper, G.K., Jones, R.R., Power, G.D., Sirbaugh, J. R., Smith, C.F., and Towne, C. E. 1994....
	[11] Denton, J. D. 1982. An improved time marching method for turbo-machinery flow calculation. A...
	[12] Energy Science & Technology Software Center. 1995. The Maxima system. Oak Ridge, TN.
	[13] Gallopoulos, E., Houstis, E.N., and Rice, J. R. 1994. Computer as thinker/doer: Problem solv...
	[14] Gallopoulos, E., Houstis, E.N., and Rice, J. R. 1995. Workshop on problem-solving environmen...
	[15] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. 1993. PVM 3 ...
	[16] Gropp, W., Lusk, E., and Skjellum, A. 1994. Using MPI: Portable Parallel Programming with th...
	[17] Gross, L., Roll, C., and Schoenauer, W. 1993. VECFEM for mixed finite elements. Technical Re...
	[18] Heath, M. T. and Finger, J. E. 1991. Visualizing the performance of parallel programs. IEEE ...
	[19] Hindmarsh, A.C. 1983. Odepack, A systematized collection of ODE solvers. Scientific Computin...
	[20] Houstis, E. N., Mitchell, W. F., Rice, J. R. 1983. Collocation software for second order ell...
	[21] Houstis, .E. N., Papatheodorou, T. S., and Rice, J. R. 1990. Parallel ELLPACK: An expert sys...
	[22] Houstis, E. N., Rice, J. R., Chrisochoides, N. P., Karathanasis, H. C., Papachiou, P. N., Sa...
	[23] Houstis, E. N., and Rice, J. R. 1992. Parallel Ellpack: A development and problem solving en...
	[24] Houstis, E.N., Kim, S.B., Markus, S., Wu, .P., Houstis, N.E., Catlin,, A.C., Weerawarana, S....
	[25] Houstis, E.N., Weerawarana, S., Joshi, A., and Rice, J. R. to appear. PYTHIA: A knowledge ba...
	[26] HyperText Markup Language (HTML). 1996. Working and Background Materials, http://www.w3.org/...
	[27] Joe, B. 1991. GEOMPACK-A software package for the generation of meshes using geometric algor...
	[28] Kim, S. B. 1993. Parallel Numerical Methods for Partial Differential Equations. Ph.D. Thesis...
	[29] Kim, S. B., Houstis, E. N., and Rice, J. R. 1994. Parallel stationary iterative methods and ...
	[30] Kinkaid, D., Respess, J., and Grimes, J. 1982. Algorithm 586: Itpack 2c: A Fortran package f...
	[31] Madsen, N.K. and Sincovec, R.F. 1979. Algorithm 540: PDECOL, general collocation software fo...
	[32] Markus, S., Kim, S. B., Pantazopoulos, K., Ocken, A. L., Houstis, E. M., Wu, P., Weerawarana...
	[33] Markus, S. and Houstis, E.N. 1996. Parallel Reuse Methodologies for Elliptic Boundary Value ...
	[34] Melgaard, D. K. and Sincovec, R. F. 1981. General software for two-dimensional nonlinear par...
	[35] Mitchell, W. F. 1991. Adaptive refinement for arbitrary finite element spaces with hierarchi...
	[36] Mitchell, S.A. and Vavasis, S.A. 1992. Quality mesh generation in three dimensions. Proc. AC...
	[37] Mitchell, S.A. and Vavasis, S.A. to appear. An aspect ratio bound for triangulating a mesh c...
	[38] Reed, D. A., Aydt, R.A., Noe, R., Phillip, J., Roth, C., Shields, K. A., Schwartz, B., and T...
	[39] Reed D.A. 1994. Experimental performance analysis of parallel systems: techniques and open p...
	[40] Rice, J. R. and Boisvert R. F. 1985. Solving Elliptic Problems using ELLPACK. Springer-Verlag.
	[41] Rice, J.R. 1989. Libraries, software parts and problem solving systems. In Cai, Fosdick and ...
	[42] Schmauder, M., Weiss, R., and Schoenauer, W. 1992. The CADSOL program package. Technical Rep...
	[43] Schoenauer, W., Schnepf, E., and Mueller, H. 1985. The FIDISOL program package. Technical Re...
	[44] Scientific Computing Associates, Inc. 1995. PCGPACK2: A library of Fortran 77 subroutines fo...
	[45] Shadid, J.N. and Tuminaro, R.S. 1992. Coarse iterative algorithm software for large scale MI...
	[46] SHAPES Geometric Computing System. 1992. Geometry Library Reference Manual (C Edition). XoX ...
	[47] Sincovec, R. F. and Madsen, N. K. 1975. Software for nonlinear partial differential equation...
	[48] Walker, R. 1996. The performance of a parallel time-stepping methodology in the Parallel (//...
	[49] Weerawarana, S. and Wang, P. S. 1992. A Portable code generator for Cray Fortran. Trans. Mat...
	[50] Weerawarana, S., Houstis, E.N., Catlin, A.C. and Rice J.R. 1995. PELLPACK: A system for simu...
	[51] Weerawarana, S., Houstis, E.N., and Rice, J.R. 1992. An interactive symbolic-numeric interfa...
	[52] Weerawarana, S., Houstis, E.N., Rice, J. R., Gaitatzes, M.G., Markus, S., and Joshi, A. 1996...
	[53] Womble, D.E. 1990. A time-stepping algorithm for parallel computers. SIAM J. Sci. Stat Compu...
	[54] Wu, P. and Houstis, E. N. 1994. Parallel mesh generation and decomposition. CSD-TR-93-075. D...
	[55] Wu, P. and Houstis, E.N. 1993. An interactive X-windows based user interface for the XoX sol...
	[56] XYZ Scientific Applications, Inc. 1993. TrueGrid Manual.
	[57] Zhang, S. 1995. Molecular-mixing measurements and turbulent-structure visualizations in a ro...

