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Abstract

The primary goal of this research was to develop a method for solving Maxwell’s equa-
tions on unstructured three dimensional grids that is provably stable, energy conserving,
and charge conserving. In this dissertation a method, called the Discrete Time Vector
Finite Element Method (DTVFEM) is derived, analyzed, and validated. The DTVFEM

uses covariant vector finite elements as a basis for the electric field and contravariant vec-
tor finite elements as a basis for the magnetic flux density. These elements are complimen-
tary in the sense that the covariant elements have tangential continuity across interfaces
whereas the contravariant elements have normal continuity across interfaces. The Galer-
kin approximation is used to convert Ampere’s and Faraday’s law to a coupled system of

ordinary differential equations. The leapfrog method is used to advance the fields in time.

Like most finite element methods the DTVFEM requires that a linear system be solved at
every time step. A significant part of this dissertation addresses the solution of the large,
sparse, unstructured matrices that arise in the DTVFEM. The DTVFEM was implemented
in software and installed on a variety of computers, including two massively parallel
supercomputers. Several computational experiments were performed to determine the

accuracy and efficiency of the method.
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1.0 Introduction and Survey

Electromagnetic field theory is concerned with the study of charges, at rest and in motion,
that produce currents and electromagnetic fields. The ancient Greeks studied magnetism
and optics as two unrelated physical phenomena. Later, in the nineteenth century, the basic
laws of electricity and magnetism were formulated through experiments conducted by
Faraday, Ampere, Gauss, Lenz, Coulomb, Volta, and others. These basic laws of electric-
ity and magnetism were combined into a consistent set of coupled linear partial differen-
tial equations (PDE’s) by Maxwell in 1873. These equations, referred to as Maxwell’s
equations, completely describe the time evolution of macroscopic electromagnetic fields.
These equations were later verified experimentally by Hertz. Einstein and his special the-
ory of relativity provided further evidence that Maxwell's equations are a correct model of

physical reality.

Modern day physicists still research the origin of the electromagnetic field and the interac-
tion of fields with matter, however it is primarily electrical engineers who are concerned
with the solution of Maxwell's equations. Generation and control of electromagnetic fields
is of paramount importance in our society. Multifarious systems such as radio and televi-
sion, telescopes and microscopes, radar systems and the global positioning system, fiber
optic communication and optical CD-ROM, linear accelerators and plasma processing
reactors, cardiac defibrillators and microwave hyperthermia devices all depend upon elec-
tromagnetic fields. It is extremely difficult and expensive, if not impossible, to design a
modern electromagnetic system solely through trial-end-error experimentation in the labo-

ratory. Thus electrical engineers have long sought out solutions to Maxwells equations.



But the solution of Maxwell's equations is not entirely within the domain of electrical
engineers, for electromagnetic fields are central to many naturally occurring phenomena.
For example geophysicists study the nature of the earth’s magnetic field and its interaction
with the solar wind. Astrophysicists study very large scale electromagnetic fields which
are not only responsible for the beauty of galactic nebula, but may also play a part in the
formation of solar systems such as our own. Perhaps the most intriguing electromagnetic
fields are those that occur naturally within us. The heart, eye, and central nervous system
cannot be fully comprehended without an understanding of electromagnetics. Thus the
ability to solve Maxwells equations is important not only to the advancement of technol-

ogy, but also to the advancement of many scientific disciplines.

Shortly after Maxwell wrote down his famous PDE’s work began on solving the equa-
tions. There are many situations where one can derive an exact, closed form solution to
Maxwell's equations. But many problems of interest do not admit to exact solutions and
one must accept an approximate solution. Approximate solutions come in two flavors;
analytical approximate solutions and numerical approximate solutions. Examples of the
former include geometrical optics and physical optics, which are so called “high fre-
guency” approximations that are valid for asymptotically large frequencies; examples of
the latter include finite difference and finite element methods, which are direct numerical
approximations of the PDE. Direct numerical approximations have become increasingly
important of late, for two reasons: 1) analytical approximate solutions are not accurate
enough for many electromagnetic design tasks, and 2) the advancement of computing
technology has made direct numerical approximations feasible. This dissertation is con-

cerned with the direct numerical solution of Maxwell’s equations.



It is not possible to develop a numerical method that is suitable for every imaginable elec-
tromagnetic problem. It is necessary to classify electromagnetic problems and then
develop methods applicable for all problems within a given class. Electromagnetic prob-
lems can be dichotomized into those that involve free charges and/or conducting fluids
and plasma, and those that do not. This dissertation is concerned with the latter. A further
dichotomization is static problems versus dynamic problems. Dynamic problems involve
the generation, propagation, scattering, and absorption of electromagnetic waves. There
are two distinct approaches for solving dynamic problems, one being to work in the fre-
guency domain, the other to work directly in the time domain. The approach taken in this
dissertation is to work directly in the time domain. It has been argued in the electromag-
netics community that time domain methods are more general in that they are applicable
to non-linear and/or time dependent problems, whereas frequency domain approaches are
not. It has also been argued that time domain approaches are more computationaly effi-
cient for many problems of interest. This author makes no such arguments. Rather, the

time domain approach is taken simply because it is more interesting to the author.

A key parameter in and classification of electromagnetic problemsix/the , the ratio of
the characteristic size of the geometry to the characteristic wavelength. If this ratio is very
much greater than unity the problem is considered a high frequency, or optics, problem.

For example consider the design of a Newtonian telescope, Where is dimension of the

aperture and is the wavelength of visible light. In this da#& is on the ortié? of ,
therefore the design of a Newtonian telescope is most definitely considered an optics prob-

lem. As another example consider the scattering of a 10 GHz radar signal from a large air-



craft. In this cas®/A  is on the orderd , therefore this particular scattering problem
is within the high frequency regime. The design of a fiber optic waveguide, on the other
hand, is not considered a high frequency problem bedaxae is on the order of unity.
As a rule of thumb high frequency problems are analyzed using approximate analytical
methods such physical optics and physical theory of diffraction, and optics problems are
analyzed using geometrical optics and geometrical theory of diffraction. This dissertation
is not concerned with high frequency and/or optics design problems for two reasons: 1)
the above mentioned approximate analytical methods are very effective for this class of
problems, and 2) direct numerical approximations become prohibitively expensive as

D/A becomes large.

At the other end of the regime are static and quasi-static problems. Static problems are of
course those in which the sources are constant in time and the goal is to solve for the con-
stant field configuration. A classic example is the calculation of the capacitance of a
metallic structure. In this cag®/A  is zero. A quasi-static problem is one Diére is
non-zero but quite small. Examples of quasi-static problems include Rayleigh scattering

of light by dust particles and the shielding/grounding problems associated with 60 Hz
power. It can be shown that it is a usually a good approximation to solve a quasi-static
field problem by first solving the approximate static field problem and multiplying this
solution bycos(wt) to obtain the true solution. This dissertation is concerned with elec-
tromagnetic design and analysis problems that fall between the quasi-static and high fre-

guency regimes.



Many electromagnetic problems involve propagation of waves in a vacuum, while others
involve material media. The variety of electric and magnetic properties of media is too
vast to summarize here. Electromagnetic problems addressed in this dissertation will be
restricted to a class of materials, referred to as simple media, that can be described by ten-
sor permittivity, permeability, and (electric and magnetic) conductivity. These material
properties are functions of position only, i.e. non-linear and/or dispersive media will not
be considered. This raises the question, how does one describe an extremely inhomoge-
neous volume with complicated boundaries between regions in a way that can be easily
and efficiently understood by a digital computer? The approach taken in this dissertation is
to discretize the volume into an unstructured grid consisting of polyhedral cells, each cell
being small enough such that the material properties assume a simple form (constant, lin-
ear, etc.) within each cell. This approach is compatible with commercially available com-

puter aided design (CAD) packages.

FIGURE 1. Structured versus Unstructured Grids.

Orthogonal Non-Orthogonal Non-Orthogonal
Structured Structured No Structure

In the early days of computational electromagnetics it was common to develop a new
computer program for every type of geometry encountered; for example cylindrical coor-

dinates would be used for analyzing the fields within a metallic cylinder, and a body-of-



revolution program would be developed to calculate scattering from a body of revolution.
Such approaches may be efficient in terms of computer resources, but they place severe
restrictions on what an engineer can accurately design and analyze. The unstructured grid
approach, on the other hand, places few limits on geometry. The unstructured grid
approach does introduce added complexity, and in fact much of the current research in
computational electromagnetics is focused on dealing with this complexity. The term
unstructured is used in this dissertation to mean not necessarily structured, whereas struc-
tured means that there is a one-to-one mapping of cells, nodes, faces, and edges onto a
Cartesian grid. Thus structured grids are considered to be a subset of unstructured grids.
This is illustrated in Figure 1 for two-dimensional quadrilateral grids. For practical rea-
sons the grids examined in this dissertation will be limited to hexahedral (eight node) or
tetrahedral (four node) cells, rather than arbitrary polyhedral cells. According to this defi-

nition a triangular grid, or a grid with both triangles and quadrilaterals, are unstructured.

To summarize, this dissertation is concerned with the direct numerical solution of the time
dependent Maxwell equations in charge free regions. The volume of interest may be inho-
mogeneous, consisting of several dielectric, magnetic, and metallic regions of arbitrary
geometry. The material properties are assumed to be linear and non-dispersive. The vol-
ume may also contain several independent voltage and current sources. Example electro-
magnetic problems within this class include the design of waveguides and antennas,
scattering of electromagnetic waves from automobiles and aircraft, and the penetration

and absorption of electromagnetic waves by dielectric objects.



1.1 Survey of common grid-based numerical schemes

The most popular grid-based numerical scheme for solving the time-dependent Maxwell
equations is the Finite Difference Time Domain method [1]-[4]. Usually this method is
implemented using dual Cartesian grids, with the electric field components known on the
primary grid and the magnetic field components known on the dual grid, with the curl
operator approximated by the 2nd order central difference formula. The electric field is
updated at whole time steps, the magnetic field at half time steps, by a 2nd order central
difference in time (leapfrog). An alternative method combines the two curl operators and
solves the vector wave equation for either the electric or magnetic field on a single grid.
Both approaches yield a conditionally stable and consistent method for solving Maxwell's
equations in the time domain. The disadvantage of these finite difference methods is that
they are only defined for Cartesian grids, and it has been shown that approximating curved
boundaries by a “stair step” approximation can give poor results [4][5]. Nevertheless the
FDTD is extremely efficient and it is often used as a benchmark to which new methods are

compared.

There have been several attempts to generalize the FDTD method to unstructured grids,
most notably the modified finite volume (MFV) and discrete surface integral (DSI) meth-
ods [6]-[9]. In these methods Maxwell's equations are cast in integral form, then the sub-
sequent volume and/or surface integrals are approximated by standard low-order
integration rules. The time integration is the similar to that used in the FDTD method. In
fact most of these methods reduce to the FDTD method when orthogonal grids are used.

However these methods are not provably stable, and weak instabilities leading to non-



physical solution growth have been observed for non-orthogonal grids [10]. The instabil-
ity is caused by the non-symmetric discretization of the curl-curl operator. Dissipative
time integration schemes may be employed to counteract this non-physical solution

growth, but this results in a violation of conservation of energy and charge [11].

There is another class of finite volume methods for solving Maxwell’s equations that are
different than the above methods in that they do not reduce to the FDTD method when
implemented on Cartesian grids. In these methods Maxwell’s curl equations are cast in so-
called conservative form, resulting in a PDE that resembles the Euler equation of fluid
dynamics [12]-[14]. Then the classic methods of computational fluid dynamics such as
Lax-Wendroff or Jameson-style Runge Kutta are used to solve these equations. Typically
these methods are implemented on a structured, but non-orthogonal, hexahedral grid. It
has been shown that these methods are stable and consistent, thus very good accuracy can
be achieved as the grid is refined. These methods rely upon dissipative time integration for
stability, thus they do not conserve energy. In addition they neglect the divergence proper-
ties of the fields. It is somewhat disconcerting that these methods allow for divergent mag-
netic fields, i.e. magnetic monopoles, which is in direct violation of Maxwell’s equations.
Nevertheless these methods are very popular for the radar cross section (RCS) prediction
problem. Apparently neither energy conservation nor charge conservation is essential for

accurate RCS calculations.

The Finite Element Method (FEM) was developed to solve partial differential equations
on unstructured grids from the onset. The original PDE is cast into an equivalent varia-

tional, Ritz-Galerkin, or Total Least Squares form. A basis function expansion is



employed for the unknown variables, and the coefficients of the expansion are solved for.
Any derivatives or integrals that are required are computed exactly, or within to some
numerical tolerance. Typically curved boundaries are approximated as piecewise linear,
and an unstructured mesh is used within each region. The classic FEM using nodal ele-
ments has been quite successful in solving static electromagnetic problems where the con-
tinuous electrostatic potential can be employed [15]-[17]. However this approach has been
unsuccessful for solving for the vector electric or magnetic fields directly. There are two
problems with nodal elements: 1) they force continuity of the fields across material inter-
faces, even when there is supposed to be a discontinuity of the fields, and 2) they permit
“spurious modes”, or nonphysical solutions, which do not disappear as the grid is refined,
resulting in a non-converging method. While the subject of spurious modes has been
extensively investigated in the context of frequency domain electromagnetics [18]-[22], it
is also a problem with recently developed time-domain methods [23]-[27]. The problem is

not with the FEM per se, but rather with the choice of elements.

Several researchers have studied the FEM in conjunction the theory of differential forms,
the conclusion being that different PDE’s may require different finite elements in order to
achieve convergence. In fact a set of coupled PDE’s may require the simultaneous use of
several different finite elements, this is referred to as a mixed FEM. Recently developed
vector elements, also known as edge elements, Whitney 1-forms, or H(curl) elements
[28]-[32], have been used to solve Maxwell’s equations for the electric fields directly.
These elements enforce tangential continuity of the fields but allow for jump discontinuity
in the normal component of the fields. Use of these elements also eliminates spurious,

divergent solutions of Maxwell’'s equations that were common with nodal element formu-



10

lations. Vector finite element methods have been successfully used in the frequency
domain to analyze resonant cavities, compute waveguide modes, and perform scattering
calculations [31],[33]-[35]. Vector finite elements have also been proposed to solve Max-
well’s equations directly in the time domain [37]-[40]. Numerical dispersion analysis,
which indicates how accurately an electromagnetic wave propagates on a given grid, indi-
cates that vector finite element methods can be more accurate than competing FDTD and

FVTD methods [41]-[43].

1.2 Discrete Time Vector Finite Element Method

While some engineers and scientists are satisfied with the above mentioned methods this
author feels that there is room for improvement. The primary goal of this research was to
develop a method for solving time-dependent Maxwell's equations on unstructured three
dimensional grids that is provably stable, energy conserving, and charge conserving. The

following is a list of features that such a method would have:

valid for unstructured grids

» allows for tensor permittivity, permeability, and conductivity

» correctly models field continuities/discontinuities

» reduces to FDTD for Cartesian grids

» conditionally stable

 energy conserving

» charge preserving
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* 2nd order accurate

In this dissertation a method, called the Discrete Time Vector Finite Element Method
(DTVFEM) is derived, analyzed, and validated. This method has all of the features listed
above. Thus the DTVFEM has a combination of attributes not shared by other grid-based,
time-domain methods for solving Maxwell’'s equation. The DTFEM uses covariant vector
finite elements as a basis for the electric field and contravariant vector finite elements as a
basis for the magnetic flux density. These elements are complementary in the sense that
the covariant elements have tangential continuity across interfaces whereas the contravar-
iant elements have normal continuity across interfaces. The Galerkin approximation is
used to convert Ampere’s and Faraday’s law to a coupled system of ordinary differential

equations (ODE). The leapfrog method is used to advance the fields in time.

The DTVFEM described in this dissertation is different than other time domain vector
finite element methods in several respects. The variational form of Maxwell’s equations
used in this dissertation, described in Section 3.3, is different than that used in [36]-[39].
This dissertation essentially begins with the variational form of Maxwell’'s equations pre-
sented in the conclusion of [28]. This form was chosen because it leads to a symmetric
discretization. The method proposed in [40] is a special case of the DTVFEM. It should be
noted that the use of vector finite elements is not a panacea. While variational crimes such
as point-matching, collocation, or mass lumping are attractive from a computational point
of view, these approximations may lead to spurious, non-divergence free solutions even if
vector finite elements are used. The DTVFEM does not employ point-matching or collo-

cation. Spurious solutions and divergence are discussed in Section 4.1 and Section 5.3,
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respectively. Another issue, which is unique to time domain methods, is numerical stabil-

ity. Stability of the DTVFEM is discussed in Section 5.1.

The DTVFEM, as implemented in this dissertation, requires that a sparse linear system be
solved at every time step. This is a disadvantage compared to FDTD and FVTD methods.
Some researchers define any method that requires a linear system to be solved as an
implicit method, while methods that do not require linear system solutions as explicit.

That definition is not used in this dissertation. In Section 5.0 it is shown that the DTVFEM

is really an explicit method that looks like an implicit method. The second part of this dis-
sertation addresses the solution of the large, sparse, unstructured matrices that arise in the
DTVFEM. The computational effort required to solve the system depends upon how dis-
torted the grid is. For Cartesian grids mass lumping can be used, in which case the
DTVFEM reduces to the classic FDTD method. For non-Cartesian grids iterative methods
are used to solve the system. It is shown that the number of iterations required to achieve a
given accuracy is a constant independent of the size of the problem, thus the DTVFEM is

competitive with “explicit” FDTD and FVTD methods.

The method was implemented in software and hosted on variety of computer systems,
including two parallel supercomputers. The third part of this dissertation describes the par-
allel implementation and the resulting parallel performance. The DTVFEM is validated by
comparing computed solutions to analytical solutions for a simple resonant cavity,
waveguide, and antenna. While the software developed during this research effort has not
undergone rigorous software quality assurance testing and it is far from user friendly, it is

nevertheless a valuable by-product of this research effort.
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It is important to distinguish the difference between the method and the software. For
example different computer programmers can implement the DTVFEM differently, with
different constraints on the form of the input and output files, different data structures used
to store the matrices, different methods for parallel implementation, etc. One implementa-
tion of the DTVFEM can require more computer time or more computer memory than
another. As another example, different programmers may choose to deal with radiation
boundary conditions (discussed in Section 8.0) differently. The software developed during

this research effort will be referred to as VFEM3D.
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2.0 Maxwell's Equations

2.1 Partial Differential Equations

Maxwell's equations consist of two curl equations and two divergence equations. There is
a great variety of ways to express Maxwell's equations, in this dissertation rational MKS
units will be used. The literature on Maxwell's equations is vast, with examples of easily
readable textbooks including [45] and [46], and more advanced textbooks exemplified by

[47]-[50]. The equations are

0
OxE = —aB—oMF]—M, 1)
_ 0
DXF]—m[5+oEE+3, )
0D = 0, 3)
B = 0. (4)

Equation (1) is a generalization of Faraday’s law to include magnetic current dénsity
and magnetic conductivity,, , while (2) is the Maxwell-Ampere law. Note that in (3) the
charge density term is zero. The electric and magnetic conductivities are assumed to be

symmetric positive definite tensors, which are functions of position only. Two constitutive

relations are required to close Maxwell’s equations. For this study the dielectric permittiv-
ity €, the magnetic permeabiliy are also positive definite tensors, which are functions

of position only,



15

D =¢E, B=pH. (5)

In practice it is seldom necessary to solve for both electric and magnetic fields and both
electric and magnetic flux densities. It is possible to use the constitutive relations to elimi-
nate one or more of the variables, and it is possible to combine the two first-order curl
equations to obtain a single second-order PDE. Of course for a well posed problem appro-
priate initial conditions must be specified, as well as the independent current sources and

boundary conditions. For clarity in the following, two PDE’s are defined:

PDE |
u_l%B = _utOxE—plowp B-p M in Q, (6)
eJp = Oxp ' B-o.BE-JinQ, @)
ot E
OeeE = 0in Q, 8
B =0inQ, ©)
AXE = E, onT, (10)
E(t=0) = E.,B(t=0) = B;. (11)
PDE I

2
0 O -1 0o -1 _
FE+DcyE+u oMsDaE+u om0 E = |

inQ, (12)

—Oxp T OXB — g topmd — T OxM —%3

€
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AxE = E,.onT, (13)

Oe€E = 0, (14)
- Op i _ 0
E(t=0) = Eic,aE(t—O) = ﬁEic' (15)

In both PDE’sQ s the total volume of interest, which is finite, Bnd  is the boundary of
the volume, not necessarily simply connected. The subscrgenotes boundary condi-

tion. The only boundary condition investigated will be specification of the tangential com-
ponent of the electric field. The subscigptenotes initial condition. Partial differential
equations of the form of PDE | and PDE Il are called initial boundary value problems

(IBVP).

FIGURE 2. lllustration of generic inhomogeneous volume.

M

It is appropriate to determine the conditions under which the above IBVP’s are well posed.
An IBVP is well posed if: 1) the solution exists, 2) the solution is unique, and 3) the solu-

tion depends continuously upon the data. The Cauchy-Kowalewsky theorem [51] states
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that solutions exist for analytic PDE’s with analytic initial data. PDE’s | and Il above obvi-
ously qualify, since they are linear constant coefficient PDE’s. However this theorem does
not address boundary conditions. The existence and uniqueness of solutions to Maxwell’s
equations in particular is discussed in [47] where it is proved that it is necessary to provide
the tangential component of the electric or magnetic field on the boundary (or tangential
component of electric field on part of the boundary and tangential component of magnetic
field on the remaining part). If neither field is specified on the boundary then the solution
is not unique, if both are specified on the boundary then the solution may not exist. For the
specific problems addressed in this dissertation there is a constraint on the independent

current sources, namely

[¢d = 0 andd*M = 0. (16)

Note that if the current sources are divergence free, then (8) and (9) will automatically be
satisfied for all time if the initial data satisfy (8) and (9). In other words the initial diver-
gence is preserved. The third requirement for being well posed is obviously satisfied since

the equations are linear, constant coefficient PDE'’s.

As mentioned in the introduction the character of the fields in the vicinity of material dis-
continuity is important. It is well known that fields and flux densities have different conti-
nuity properties across material interfaces [45][46]. For completeness these properties are

reviewed below.

Consider a material interface separating region 1 from region 2 as illustrated in Figure 3.

A contourC surrounding ared  is defined with tangent to the contoui and normal to
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the area. The material parameters are finite and no independent sources are present. Appli-

cation of Stokes theorem to (1) yields

@lQ,

‘IE. tdl = = (B ﬁdA+J'0MF]- AdA. 17)
A

A

As 0z - 0 the areaA goes to zero, thus the right hand side goes to zero. This implies that
(El_EZ) "f. = 0, (18)

the tangential components of the electric field are continuous across a material interface. A

similar argument applied to (2) yields
(ﬁl—ﬁz) ’f = O, (19)

the tangential components of the magnetic field are also continuous. On the other hand the
tangential components of the electric and magnetic flux densities are not continuous

across a material discontinuity.

Many electromagnetic design and analysis problems involve metals with electric conduc-

tivities greater thar 0° S/m, in which case it is practical to approximate the conductivity
as infinite, i.e. a Perfect Electrical Conductor (PEC). In this case application of Stokes the-

orem to (2) yields
(A;—H,) «t = I, (20)

Wherejs is an infinitely thin surface current density. Inside a PEC both the electric field

and the magnetic field are zero, thus (18) requires that the tangential component of the
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electric field be zero, and (20) requires that the tangential component of the magnetic field
be equal to the induced surface current density. In practice the induced surface current

density is not known a priori, in fact this is why boundary condition (10) is used.

FIGURE 3. Geometry for boundary conditions on tangential components of fields.

L ) ¢ , ri‘gion 1
s

region 2

oz

To analyze the properties of the normal components of the fields a cylindrical tin can

shaped volume is defined as shown in Figure 4. The surface area of the tin can is decom-

posed intoA; and\, , the area of the sides and end caps, respectively. No net charge

exists within the tin can. Application of the divergence theorem to (8) yields

feE- fdA = 0. 1)
A

As 0z - O the areaA; goes to zero, and (21) reduces to
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thus the normal component of the electric field is discontinuous. Repeating this procedure

on (9) gives

AA, + Hu, Ay — R, = 0, (23)

the normal component of the magnetic field is discontinuous. On the other hand the nor-
mal components of the electric and magnetic flux densities are continuous. If region 2 is a

PEC then (22) is modified to
A, e« €,E; = g, (24)

whereqg is the induced electric surface charge on the conductor. This surface charge is on

I and not inQ . This surface charge density, like the surface current density, is not known

a priori, it is not considered a source.

FIGURE 4. Geometry for boundary conditions on hormal components.

region 1

]

X region 2

The electromagnetic fields described by Maxwell’s equations satisfy conservation of

energy. This is often referred to as Poynting’s theorem. By simply manipulating Max-
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well’s equations and using the vector idenfity(ax b) = be ([Oxa) —ae* (Oxb) itis

easy to show that

Iu_lEx Be Adr +Z[u_1B° MdQ +3[E- JdQ +

(25)
Z[u"loMB- BdQ +Z[OEE. BdQ +£u‘13- 840 +£aE- JBdo = 0.

The first term is the net power flow leaving the volulhe  through sufface . The second
and third terms represent the power supplied to the volume by the magnetic and electric
current sources, respectively. The fourth and fifth terms represented the power absorbed
by the medium, i.e. the rate of conversion of electromagnetic energy into thermal energy.
The sixth and seventh terms represent the time rate of change of stored magnetic and elec-

tric energy, respectively.
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3.0 Variational Formulation of Maxwell’s Equations

3.1 Some definitions from functional analysis

Before stating the variational form of PDE | and PDE Il it is necessary to review some

definitions used in functional analysis.

A spaceV is a non-empty set of elemants, w, ... . In general, the elements may be real

numbers, complex numbers, vectors, matrices, functions of one or more variables, etc.

The space of real numbers will be denoted?y , the space of three vedRors by

A polynomial in the quantitiex,, X,, ..., X, is an expression involving a finite sum of

n

k1l k2 kn

terms of the formax; x, ...x.," whera is some scalar 8pk,, ..., K are non-nega-

tive integers. The degrde  of a polynomial is the maximum valke ok, + ... +k_

that appears in the polynomial. For example the polynoitak + y+ z+ xyz is of

degreek = 3 .

A polynomial spacd® is complete to order if it contains all polynomials of degree

<k. Such a space is denoted®By . For example the polynomial space
agt X+ ay+a;z+a,xyz, wherea,, ...,a, are arbitrary scalars, contains polynomi-

als of degree 3 but is only complete to order 1.
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A functionf is continuous at a poirt  if for every sequexnce  whose limitis , the

sequencé (x,) convergesftx)

A multi-index a is a n-tuple of non-negative integers . The length of is given by

n
lal = z a;. (26)
i=1
The multi-index notation for the partial derivatives of a functigr,, ..., x) is denoted
by
o
=9 (27)
al an
0X; ~...0X,
A functionf has continuity of ordde if all partial derivativBsf , 6og laj<k , are

continuous. The space of continuous functions of dkder on some d@main is denoted

by C*(Q) .

The Lebesgue spaces are defined byQ) = {f: |l o< o} where

- OrpiPaed””
Il Dz[Ifl Qg (28)
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The spaceL2 (Q) isthe space of all functionbn that are square-integrable, which is
often referred to as the space of functions with finite energy. For vector functions

bR . R the corresponding space is deno@ﬁ (Q) 53

A functionf O L" (Q) is said to have a weak derivative, denoteﬁ)@tflf , If there exists

a functiong O Lt (Q) such that
z[g(de = (-1) az[fDG(de OpO{¢:e0C",@=0o0nT} . (29)

If such ag exists, thewaf =g

A space is linear if it is characterized by the following properties: 1) addition of elements
follow the rules of ordinary addition, i.e. forallvd Vu+v0O V |, and there exists a null
elementO 0V suchthd&i+v =v foraddV ,and2)multiplication between elements
v of spaceV and scalacs of fidild follow the rules of ordinary multiplication, i.e. for

all vDV andcOF the produatv isiN . In this dissertation the term linear will imply

the field of real numbers.

Elementsf,, f,, ..., f, ofalinear spase are linearly dependent if there exists numbers

n

¢, UF, not all equal to zero, such that

> ¢fi = 0. (30)
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The elements are linearly independent if (30) implies,a# O

Every setS which contains a given element is called a neighborhood of . A Subset

is open if and only if it contains with every element  also a neighborbigod of that ele-

ment. A subse® is closed if and only if all cluster points belor® to , where an efement
is called a cluster point of a sét when every neighborhobéd of contains at least one ele-

mentg O S which is different thah . The complementary set of a closed ¥et of is an

open set.

A spaceV is a metric space if for any two elements(] V there is a real number
p=p(u\V, called the distance, with P)(uy, v) = 0 ifand onlwif= v , and 2)

p(uVv)<p(uw +p(v,w forallu,v, wl V.

A sequence of elements f,, ...  of a metric space, denotéd by , is a Cauchy sequence
if for everye >0 there exists an integer N such that,iin> N theh, ) <e A
subsetS of a metric spate is complete if there is a limit elefies to each Cauchy

sequencd,  witlp (f,f) - 0

A bilinear formb(.,.) on alinear spadé is a mappingV xV - R such that each of
the mapsy - b(vw anev - b(v, W) isalinear form ® . Itis symmetric if
b(v,w) = b(w, V) forallv, w V. An inner product, denoted lfy.) , is a symmetric
bilinear form on a linear spad¢ that satisfiegvly) >0 Ov IV , and 2)

(vww) =0=v=0.
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The standard inner product for real scalar functions vand is

(u,v) = iude, (32)

and the corresponding inner product for real vector functions is

(4,%) = Z[a-mQ. (32)

The Sobolev inner product for functioos v , an (Q) IS given by

(uv), = m,, U D, V@ (33)

A linear spacé/ together with an inner product defined on it is called an inner-product
space and is denoted l§y, (.,.)) . Two elemeants \and of an inner-product space are

orthogonal if (u, v) = 0 .The associated normed inner-product space is denoted by

(V, .l where the induced norm|fig = 4/(.,.) . A normed inner-product space is a met-

ric space.

A Sobolev space is defined \%\%k (Q)

(f:fO0LY(Q), Ifl,, <o} where

P

o le/p

||f||Wk = E ; |DW u| i is the Sobolev norm. Sobolev spaces are important in the
p O<laf <k

context of piecewise polynomial spaces. For example the “hat function” defined by

f(x) =1-|x,Q = [-1, 1] ,isinthe spaclwz1
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A bilinear form is bounded (or continuous) on a normed inner-product space if there exists

ac, <o suchthatb (v, w)|<c|vllwl foral, wOV . A bilinear form is coercive on

subspacd) OV if there existca>0  such thd, u)| 2 02||u||2 fouall U

A Hilbert space is a complete, normed, inner-product space. A standard Hilbert space is

the space of square integrable functions

H(Q) = {uORJ Y <oo;(v,w) = Z[vwdQ} , (34)

whereQ is the volume of interest. The corresponding Hilbert space for vector functions is

(H(Q)°® = {20 R0 <oo;() = i[v- wdQ} . (35)

It can be shown that the Sobolev spaces with 2 are Hilbert spaces, and these are

denoted byH"(Q) = W,*(Q)

The following properties of Hilbert spaces are proved in [52]:

Property 1. If in a Hilbert space the inner prodgeiv) = 0 fouall H , hen 0
Property 2. If (u,v) = (w,v) foralvOH ,them = w .

Property 3. Letv be an arbitrary elementbf , andJet be a subspbce of . Thereisa
unique elementt J U closestto v; can be decomposed uniguely + g such that

ulJ U andgU . The element is called the projectiorvof bn
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Property 4. Any continuous linear functional on a Hilbert sgpdce  can be uniquely rep-

resented ak (v) = (u,v) forsomellH . Thisisthe Riesz Representation Theorem.

3.2 Review of variational and Galerkin formulations

Many of the laws of physics can be written in either differential form, integral form, or

variational form. This can best be illustrated by example. Consider the problem of solving
for the electrostatic potential due to a given charge distribution. Assume that the potential
is zero on the boundary. In differential form this problem is described by Poisson’s equa-

tion
2p=piNQ,e=0o0nNr. (36)

This equation specifies how the electrostatic potential must behave at every point in space.

Applying the divergence theorem to (36) yields

[0+ AdA = Qg (37)
S

where the integral is over any arbitrary surface Qg is the total charge enclosed by

that surface. This is an equally valid integral form of the same physics problem, but rather
than specifying how the potential behaves at every point, it describes how the integral of

the potential behaves over an arbitrary area. The variational form of this same problem is

to find @ that minimizes the quadratic functional

1
(@) = ZEEQD(P' Dcp+p<p%d0- (38)
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This functional is in fact the total electrostatic energy of the system, and there is one and
only one@ that minimizes this functional. The fact that the electrostatic potential is such
that the total electrostatic energy is minimized is a consequence of the fundamental princi-

ple of variational calculus. By differentiating (38) and setting this derivative to zero it is

obvious that the minimum is given by tlpe  that satisfies (36).

In practice, neither (36), (37), nor (38) can be solved exactly and numerical methods are

employed. Defining a grid on the volume and expanding (36) in a truncated Taylor series

about each node in the grid yields a system of equafiéis b where thexector rep-

resents the values ¢f  at the nodes And represents the vapues of  at the nodes. This is
an example of a finite difference method. The finite volume approach begins by dividing

the entire volume into sub-volumes, and then enforcing (37) on each sub-volume. This

also results in a linear systeik = D, butin this Gase represents the net flux through a

particular cell face, ant represents the net charge within each volume. TheAnatrix
arising from a finite volume approximation is in general different from that arising from a

finite difference approximation.

The variational form of the above electrostatic problem is typically solved by the Ritz
method. First it is necessary to determine the admissable'¥pace . For this particular prob-

lem the admissable space is

V = {vOH(Q),v=00nr}, (39)
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and the variational problem is then to fipdl V that minimizg) . In the Ritz method

a finite dimension spa&é = {vp,V, V5 ..., v} OV isdefined and the Ritz approxima-

tion is the functioru 0 V that minimize(u) . The functions are a basié of , the

maximum number of linearly independent functions that §pan . Specifically let

n
u= Z XV, (40)
i=1
then the functional is
0 n oog”n o g-n (1]
I (x) = £E§Elzlxi Dvigo EzlxiDviE+ pgzlxivi%bm. (41)
I = | = | =
or more concisely
T
I (x) = %x Ax+ X'b. (42)

The minimum is found by differentiating with respect toxhe  and setting the derivatives

to zero; this yields a linear systetx = b . The vedtor is the vector of coefficients of

the basis function expansion. The ma#ix has the form

Aij = g[DVi. vadQ, (43)

and the vectob is the projection of the charge demsity  on the §/pace . The quadratic

functional can be written as
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I (v) =a(v,Vv) =2(f,v), (44)

wherea (v, V) is a symmetric, bounded, coercive bilinear form. It is often called the
energy inner product. Since the basis functions are linearly independent, theAnatrix is

positive definite, thus the solution exists and is unique. The Ritz approxinmation is the
projection of@ onto the subspaf/e with respect to the energy inner product. Equiva-
lently the errorp—u is orthogonal ¢ with respect to the energy inner product. As the

dimension ofV increases, the error eneady— u, @— u) must necessarily decrease,

thus the approximation converges to the exact solution in the energy inner product sense.

The Galerkin method is similar to the above Ritz method although it is more general. The
Galerkin procedure begins with the variational form of the PDE. Each sidegf = p

is multiplied by a test functiom and integrated over the entire domain, yielding

_(DZ(R V) = (p! V) . (45)
If @ satisfies Poisson’s equation than (45) is obviously satisfied. The variational form of
Poisson’s equation is then to fipd] S that satisfies

—(0%@,v) = (p,v) forallvOV, (46)

whereS is the solution space avid is referred to as the test space. Whether this uniquely

defines the solutiop depends critically upon the choice of solution and test spaces. The

Galerkin method is the obvious discretization of the variational form. In general it
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involves a subspacé of the test space and subéoace of the solution space. Then the

Galerkin approximation is the functian[] S that satisfies

—(02,v) = (p,v) forallvO V. (47)

Note that the Galerkin method is more general than the Ritz method in that the former is
applicable to non self-adjoint PDE’s. The Ritz method finds the minimum of positive defi-

nite functional, whereas the Galerkin method finds a stationary point of a not necessarily

positive definite functional. One popular Galerkin method is tSlet be a collection of

twice differentiable functions, such as Chebyshev polynomials or Gaussian wavelets, and

to letV be a collection of delta functions. This is called the collocation, or “point match-
ing” method. An advantage of the collocation approach is that it does not require any inner
products to be evaluated; a disadvantage is that the resulting linear system is neither sym-
metric nor positive definite. Alternatively, one could use the same subspace for both
expansion and testing. If the subspace is smooth enough, i.e. of subspace of (39), then
integration by parts can be employed to yield a symmetric problem, in fact in this case the

Galerkin approximation is equivalent to the Ritz approximation.

3.3 Variational formulation of Maxwell's equations

In this section the variational forms of PDE | and PDE Il are derived. First it is necessary
to define some Hilbert spaces, and their natural norms, that are important in the context of

Maxwell’s equations:
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H(grad) = {u:u0L(Q):0ul (L(Q))%} , (48)

Hy(grad) = {u:uOH(grad);u=0onrl}, (49)
Il gragy = ClUl? +10ul5, (50)

H(div) = {0:00 (L(Q))>0-00L(Q)} | (51)
Hy(div) = {o:a0H(div);aenh =0onl} , (52)
ol gy = 017 +10w01%5 ", 3
H(curl) = {&:a0 (L(Q))%:0xa0 (L(Q)% (54)
Ho(curl) = {a:a0H((curl);hixa=0o0nl}, (55)
ol oy = Cl6I? + 10x012E (56)

The spacesi (div) ank,(div) are the solution and test spaces, respectively, for the

magnetic flux densitﬁ . The argument tiRaf] H (div) is similar to the discussion in
Section 2.1 where it was shown that the normal compondsit of  is continuous, whereas
the tangential component 8f  is not necessarily continuous. Likewise the spaces

H (curl) andH,(curl) are the solution and test spaces, respectively, for the electric

field E. The argument th& 0 H (curl) is similar to the discussion in Section 2.1 where
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it was shown that the tangential componenEof s continuous, whereas the normal com-
ponent ofE is not necessarily continuous. The tangential and normal continuity of vector
functions is illustrated in Figure 5, whe(é&, n, y) is a local Cartesian coordinate system

defined at the poimt . Theé direction is in the direction of the vector furictiory, 2 ,

then andy directions are in the plane normaj {x, v, 29 . The statement that
0 (% y, 2 has tangential continuity means tiggtx, y, 2 is a continuous functign of
andy atthe poinp , whereas the statementdltat y, 2 has normal continuity implies

thatg (x y, 2 Iis a continuous function &f

FIGURE 5. Tangential and normal continuity of vector functions.

Given the spaces defined above, the variational form of PDE | is then:

PDE |, variational form

find BO H(div) andE O H (curl) that satisfy
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%(u_lBBEB = — (W DxERD - (W oup BRI - (u'M,BD, (57)

O BB = (O xETL'B) - (0B B - O BT 58)
for all BHO H, (div) andEHO H, (curl) .

Note that the vector identityie (ax b) = be (Oxa) —ae* (Oxb) is employed to

derive (58), i.e.

ngu_lB- Blho = Zl;DxED- L BdQ + Z[D-%EDX uBHQ, (59)

and the divergence theorem is used to show the that the last term is zero, i.e.

2[D- EEDx u_lBEplQ = IEEDxu‘leg- Adr = 0, (60)

due to the definition of the test fieltH

One interpretation of the above variational form is that the solution fields Band  satisfy

Poynting’s theorem for every test fid aBd . This form of Maxwell's equations is a

generalization of that proposed in [28] to include magnetic conductivity and magnetic cur-
rent. Other variational forms have been proposed for Maxwell’s equations tHat use

instead ofB , or use different test spaces [36]-[39].

The variational form of PDE Il is:
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PDE Il variational form

find E O H(curl) that satisfies

2
:?(SE,EEB + %(EpE + u_loms%p:,EEB + (om0 EED =

(61)

Wt oxE,0xE0) - (o) B0 - (oM ED) _% Q. &5,
for all EHO H, (curl) .
This time Green'’s first vector theorem is used, i.e.

z[Dxp‘lme- Blho = J;u_lﬂxE' nxefho +1fu_l(ED>< OxB) « Adl,  (62)

and again the last term is zero due to the definition of the tesBfitld . The above varia-
tional form of the vector Helmholtz equation is a generalization of that used in [40] to

include electric and magnetic conductivity.
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4.0 Finite Elements

In order to approximately solve the above variational formulations of Maxwell’s equations
via the Galerkin method it is necessary to construct finite dimensional subspaces. As dis-
cussed in the introduction, the approach taken in this research effort is to use subspaces
that are collections of finite elements. Following [28], a finite element is defined by the

following:
Definition A finite elementi B A ) consists of:
K, a polyhedral domain;
P, a space of polynomials defined kn  of dimendion ;

A, asetD of linear functionals defined Bn  called the degrees of freedom.

Definition A finite element is said to be unisolvent if

OvOPa,(v) = 000, 0AOV =0. (63)

In other words, the degrees of freedom determine a basis for the duaPspace . The basis

functions (also called shape functiosp,, W, ..., Yy} are a basiBfor dualto
a; (ij) = 6”'- (64)

Therefore, an arbitrary polynomial] P can be written as

D
v = Z a, (V). (65)

i=1



38

Given a functiorf in the domain of all te , the local interpolant is defined by

D
=S (O (66)

i=1

This is a local approximation o  within the polyhedfal . Two finite eleméatB (A, , )

and 02 P A ) are affine (or isoparametric) equivalent if there exists an invertible affine (or

isoparametric) mapping (X) = BX+ b such that

~

DK = F(K),

~

2)P = FP,

3)A(H) = A(FO()
whereFO is defined bg0(f) = f[F

Consider a grid  which is a collection of polyhedrétis  such thag; 1) K, = {} if
i#j,and 2) OK; = Q . Afinite elemenK P, A; ) which is equivalent to some refer-

ence elemeni(, P, A, ) is defined for evéty . The approximatién to over the entire

volume is called the global interpolant and is defined by

ITf|Ki = IKif forall K, OT, (67)
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i.e. it is the simple sum of the local interpolants over all the polyhedral volumes. The inter-

polant has continuity ordey  Iff [ c? foramc™ m= g . Of key importance is the

error of this approximation.

Let h, = diameter ofK; andh = max h, be a measure of the size of the polyhedral

regions. Consider a sequence of grids parameterizéd by h -A6 the grid is said to be
refined. The grid is said to be refined uniformly idas 0O if all angles in the grid have
some lower boun@,>0 and some upper bofnek 1t . An important theorem of

approximation theory [53][54] states that if the polynomial sgace is complete to order

k—1 and the interpolant is continuous to order and the grid is refined uniformly, then

=14, .= Cshk_slflwk for s< q. (68)
p

p
4.1 Boundary conditions, spurious modes, and inclusion relations

Vector functions inrH (curl) have tangential continuity, but it is not necessary that they
have normal continuity. As mentioned in Section 2.1 the normal component of the electric

field across a material discontinuity is discontinuous. Thus, a finite dimensional subspace

wW'OH (curl) should force tangential continuity of basis functions but allow for normal

discontinuity. Conversely, vector functionskh(div) have normal continuity, but it is

not necessary that they have tangential continuity. This is consistent with the properties of
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magnetic flux density. Thus a finite dimensional subsEgdﬁ H (div) should force nor-

mal continuity of basis functions but allow for tangential discontinuity.

In the event that the volume of interest is homogenous, then both the electric field and
magnetic flux density are continuous. But as mentioned in Section 1.1 the use of continu-
ous nodal finite elements for vector field problems can lead to spurious modes, or non-

physical numerical solutions. Consider the vector Helmholtz equation

DX&DXE = KB, (69)

wherek = w./ue is the wave number. This is an eigenvalue problem,k\%/ith being the

eigenvalue andE  the eigenvector. This equation is the frequency domain version of (12)
for the special case of zero conductivity and no independent current source terms. When
(69) was first solved using the finite element method [55] spurious modes were seen, and
it was speculated that these modes were caused by solving (69) alone without explicitly
enforcing the solenoidal nature of the field. Several attempts to correct the situation by
forcing the field to be solenoidal using so called penalty methods [57][58]. These methods
introduced a penalty term proportional to the divergence of the field in to the functional to

be minimized. These methods reduce, but do not eliminate, spurious modes. It is now

known [53] that ifvh is the set of continuous nodal finite elements, (defined in

Section 4.2.1 below) defined on a arbitrary tetrahedral grid then

(vovV' :0w=0} = {0}, (70)
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i.e. it is not possible to exactly represent a divergence free field on an arbitrary grid using
nodal finite elements. This is intimately related to the problem of “locking” in the finite
element solution of elasticity problems [59]-[61]. Many elastic materials of interest are
incompressible (or nearly so) and this is equivalent to saying that the resulting displace-
ment should be divergence free. When one forces the divergence free condition on the dis-

placement, the result is invariably no displacement, i.e. the beam is “locked”.

In [19] it is shown that spurious finite element solutions to (69) are caused by an improper

choice of finite elements. Taking the divergence of (69) yields
2
k“OeeE = 0, (71)

thus either the eigenvalué is zero or the eigenvditer ¢E is divergence free. Thus
(69) itself imposes that non-static fields be divergence free, no additional equation or pen-

alty term is required. Static solutions of (69) are not required to be divergence free. Asso-

ciated with these static solutions is a scalar potegtial  satisfying

E = —Oe, (72)

these static solutions form the null space of the curl operator [Sixide = O . The prob-
lem with nodal finite elements is that there is, in general, no scalar fuqetion  that satisfies
(72), thus the eigenvalue2 cannot be zero. The nodal finite elements provide a poor

approximation to the null space of the curl operator. Thus the spurious modes are in fact

static solutions to (69), which of course should not be present.
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The solution to the spurious mode problem is not to force the fields to be divergence free,

. h : .
but rather to choose a vector finite element sfce  that includes gradients of scalar
potentials. Let = {u:ulJ H(curl);0xu=0} be the space of irrotational functions,

and letP,f be the projection of some function ohto . Also define

M:{VZVDW]DH(CUH);DXV:O}. (73)
Then if
PvO W' for allv [ Wh (74)
then
EOMOOIDO, (75)

and then (71) can be satisfied. Static fields will have eigenvalue zero, and non-static fields

will be divergence free. Equations (74) and (75) are called inclusion conditions.

The Hilbert spaces discussed in section Section 3.3 satisfy the following inclusion rela-

tions:
If 0 H (grad) thenOe O H (curl), (76)
If EO H(curl) thenOxE O H(div) 7)

If BOH(div) thenO-BOH(Q), (78)
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Finite elements that satisfy the proper continuity conditions across interfaces are said to be

compatible [19] (or conforming [28]) with their Hilbert spaces. The proposition is that if
o . h h h _
finite dimension subspac& O H (grad) W OH (curl) F,OH(div) ,and

S'OH (Q) satisfy the same inclusion conditions (76)-(78) as their infinite dimensional
counterparts, then spurious modes will be eliminated. The first such function spaces were
developed in [56] long before the advent of computers, and then rediscovered by the finite
element community in the 1980’s [19],[28]-[30]. One advantage of finite element methods
is that a wide variety of grids can be employed, and high order basis functions can be used
to give very accurate results on a relatively course grid. In VFEM3D only tetrahedral and
hexahedral grids are used, and only linear basis functions are employed. In the next sec-
tion the linear tetrahedral elements and bilinear hexahedral used in VFEM3D are pre-

sented.
4.2 Tetrahedral finite elements

For the elements developed in this section the doiain is a tetrahedron consisting of 4

nodes labeled 1, 2, 3 4 , as illustrated in Figure 6. There are 6 edges and 4 faces num-

bered according to Table 1.
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FIGURE 6. lllustration of an arbitrary tetrahedron.

4

TABLE 1. Node, edge, and face numbering scheme for tetrahedral elements.

edge face
1 1-2 1-2-3
2 1-3 1-2-4
3 1-4 1-3-4
4 2-3 2-3-4
5 2-4
6 3-4

4.2.1 Nodal elements

The linear nodal finite elements use the space of polynofials  of the form

P=P, = {uiu= gy+ax+ay+ayzfora OR}, (79)

which has dimensiob = 4

nodes, i.e.

. The four degrees of freedom give the value of at the

A= {a(u)=@usd),i=1..,4, (80)
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whered, = 0(x—x)d(y—y)0(z—2z) and(x,y; z) arethe coordinates of node .

On the reference element defined by the four nd@e®, 0) (1,0, 0 (0,1, 0

(0,0, 1) the nodal basis fa?  determined by (64) is

P, = 1-x-y-2z,

¢ =X,
0. =y (81)
3_ ’
9, =z,

The basis functions above are called local basis functions since they are only defined

within the given tetrahedron. Consider a tetrahedral grid consistiNg of  tetrah&gdrons
andN_ nodes, and a linear nodal finite elem&nt®, A, , ) associated with every tetrahe-

dron. The global basis functions are defined to be equal to the local basis fu@ctions

insideK and to be zero outsidekf . The collection of all the global basis functions is
called the nodal finite element spac'b : A@Vh is determined uniquely by the value
of f attheN_ nodes, therefore the dimension/bf Nis . Within a given tetrahedron the

value off is determined solely by the value at the four nodes. The value of on an arbi-
trary face is determined by the values at the three nodes that define the face, likewise the

value on an arbitrary edge is determined by the value at the two endpoint$. Thus is a

continuous function. The gradientf is constant within each tetrahedron, but it is not

. L h
continuous across two adjoining tetrahedrons. However éveiy does possess a weak
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derivative. For this finite element spadce= 2 and 0 , and the rate of convergence is

second order,

2
|f—|Tf|WOsCh |f|W2. (82)

2

4.2.2 Edge elements

The linear edge element is defined by the polynomial space

O ou, du. du. O
= 3'_|: i= ' +_1=0izi0 =
P = Lulb (P o 0,i=1,2 3’6xj+6xi 0i#jQ
(83)
{o=(ag+a,y+a,z 0, +—0,X+0,z 0 +-0a,Xx+-0,y),0a, OR},
and the degrees of freedom
a, (v) = J’(v- t)ds, (84)

CH

wherea, is any of the six edges and  is the unit tangent vectoralong . On the refer-
ence tetrahedron defined above the sfpace is spanned by the six basis functions
= (1-y-zxX),

WA
W, = (y,1-x-2Y),
Wy = (zz21-x-y),

(85)
W4 = (—y' X 0) y
W5 = (-z 0,x),
W = (0,-2Y),
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The basis functions are constructed by forcing (64) to hold. It is common in practice to use
the above finite element as a reference element, and apply a linear transformation to gen-
erate the elements for other tetrahedra. In order to remain affine equivalent the basis func-

tions must transform covariantly,

X = Bx+b,
W= (8) W,

(86)

Vector functions that transform this way are referred to as covariant or polar vectors. The
basis functions above are called local basis functions since they are only defined within

the given tetrahedron.
Consider a tetrahedral grid consisting\yf ~ tetrahedkgns  Nand edges, and a linear

edge finite element; P; A, ) defined on every tetrahedron. The global basis functions

are defined to be equal to the local basis functins  inside  and to be zero outside of

K. The collection of all the global basis functions is called the edge finite element space

W, Any f [ W" is determined uniquely by the valuefof alongfthe edges, therefore

the dimension of\" iN, . Within a given tetrahedron the valde of is determined solely

by the value along the six edges. By construction the tangential compotient of is a con-

tinuous function across faces. The curf of is constant with each tetrahedron, and is dis-

continuous across faces. The rate of convergence is first order,

1
|f_|Tf|H(curI) <Ch |f|H1. (87)
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4.2.3 Face elements

The linear face element is defined by the polynomial space

F={(P)°+Py1} =

(88)
{o= (ap+agx 0, +azy,a,+0a,2),0, 0R},
and the degrees of freedom are the flux through each face
a, (v) = )[(v- n)dA, (89)

whereA, is any of the four faces and is the unit normal vectéy to . On the reference

tetrahedron defined above the spkce is spanned by the four basis functions

F, = (2% 2y,—-2+22),

F, = (2x,—2+ 2y, 22),

Fs = (-2+2x 2y,27),
F, = (2% 2y,22).

(90)

These basis functions are constructed by forcing (64) to hold. It is common in practice to
use the above elements as reference elements, and apply a linear transformation to gener-
ate the elements for other tetrahedra. In order to remain affine equivalent the elements

must transform contravariantly,

X = BX+D,

~ (91)
F = BF.
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Vector functions that transform this way are referred to as contravariant or axial vectors.
The basis functions above are called local basis functions since they are only defined

within the given tetrahedron.

Consider a tetrahedral grid consisting\yf  tetrahedrons\and faces, and a linear face

finite element defined on every tetrahedron. The global basis functions are defined to be

equal to the local basis functio's  inside and to be zero outskie of . The collection
of all the global basis functions is called the face element ﬁ)hace f. Ekﬁ{/' is deter-
mined uniquely by the value 6f at tig faces, thus the dimensigh ofN; is . Within

a given tetrahedron the valuefof is determined solely by the value at the four faces. By

construction, the normal componentfof is continuous across faces. The divergeénce of

is constant with each tetrahedron. The rate of convergence for these elements is first order,

1
|f—|Tf|H(diV) <Ch |f|H1. (92)

4.2.4 \olume elements

The lowest order finite element for the volume element is trivial, it is simply a constant

scalar within each tetrahedron. Let the collection of all such basis functions on a tetrahe-

dral grid be denoted b$h . These functions have no continuity at all, and the rate of con-

vergence is first order,

1
|f_|Tf|W20SCh |f|W1. (93)

2
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The tetrahedral node, edge, face, and volume elements defined above are conforming on

their infinite dimensional Hilbert spaces, and they satisfy the inclusion relations

If @0 V" thenOpO W', (94)
If E0W thenOxE O F", (95)
f BOF thend-BO S (96)

It is interesting to note that the dimension of these finite element spaces satisfies Euler’s

equation

N,—N,+N;—N, = X, 97)
wherey is the Euler characteristic of the dom@in . The edge and face elements for a tet-

rahedron are shown in Figure 8 and Figure 9. The Mathematica script used to generate

these figures in included in Section 11.1.

4.3 Hexahedral finite elements

For the elements developed in this section the doikain is a hexahedron consisting of 8

nodes labeled 1,2, 3 4 5 6 7 8 , asillustrated in Figure 7. There are 12 edges and 6

faces numbered according to Table 2.
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FIGURE 7. lllustration of an arbitrary hexahedron.

5

TABLE 2. Node, edge, and face numbering scheme for hexahedrons.

edge face
1 1-2 1-4-8-5
2 4-3 2-6-7-3
3 5-6 1-5-6-2
4 8-7 4-8-3-7
5 1-4 1-2-3-4
6 5-8 5-6-7-8
7 2-3
8 6-7
9 1-5
10 2-6
11 4-8
12 3-7

4.3.1 Nodal elements

First, define the ponnomia@,l m n in three variablesy, 2 the maximum degree of

which are respectively, i® m W n i . For bilinear nodal elements the polynomial

spaceP s,

Ql, 11= gt aX+ay+az+aXy+gxz+gyz+axyz (98)

which has dimensio® = 8 . The eight degrees of freedom give the values of at the

nodes, i.e.
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A= {a(u=@usd),i=1..,8}, (99)

whered, = 0(x—X)d(y—y)0(z-2z) and(x,y; z) arethe coordinates of node .
On the reference hexahedron defined by the eight n@@leé® 0) (1,0,0 (1, 1,0 ,

(0,1,0,(0,01,(1,00D,(1,1, 1, (0,1, 1) , the nodal basis f& determined

by (99) is

¢ = (1-x) (1-y) (1-2),
¢, = x(1-y) (1-2),
¢; = xy(1-2),
¢ = (1-x)y(1-2),
¢ = (1-x) (1-y)z
@ = x(1-y)z

(100)

The basis functions above are called local basis functions since they are only defined

within the given tetrahedron. Consider a hexahedral grid consistig of ~ hexahkdrons
andN, nodes, and a linear nodal finite elem&ntR, A, , ) defined on every hexahedron.

The global basis functions are defined to be equal to the local basis fugetions Kinside

and to be zero outside & . The collection of all the global basis functions is called the
nodal finite element spaaeh . Ayl V" is determined uniquely by the value of at the

N, nodes, therefore the dimension\6f Ns . Within a given hexahedron the value of

V" is determined solely by the value at the eight nodes. The vaile of onan arbitrary
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face is determined by the values at the four nodes that define the face, likewise, the value

on an arbitrary edge is determined by the value at the two endpointsuhrhus is a continu-

ous function. For these elemetts 2 ane 0 , the rate of convergence is second

order,
folf h?|f
| —|T|Hlsc Ifl,. (101)

4.3.2 Edge elements

The edge elements are first defined on the reference element. Thé>space  used for bilin-

ear edge elements is
P={u:uy0d Qo, 1 Uy O Ql, o vus U Ql, 1 o (102)
which has dimensio® = 12 .The degrees of freedom are

a, (v) = I(v- t)ds, (103)

wherea, is any of the twelve edges and  is the unit tangent vectorglong . On the ref-

erence hexahedron defined above, the basB for  defined by (103) is
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W, = (1-y-z+yz0,0),

W, = (y+yz0,0),
Wy = (z+yz0,0),
W, = (yz0,0),

Ws = (0,1-x—z-xz0),
Ws = (0,x—xz0),

(104)
W, = (0,z-xz0),
Wg = (0,xz0),
Wy = (0,0, 1-x—y+Xy),
Wlo = (0, 0, x—xy),
vvl:l. = (01 O! y—XY) )
Wy, = (0,0,xy) .
In order to remain affine equivalent, the elements must transform covariantly,
X = BXx+Db,
- (105)
W= (B) "W

Vector functions that transform this way are referred to as covariant or polar vectors. The
basis functions above are called local basis functions since they are only defined within
the given hexahedron.

Consider a hexahedral grid consisting\pf hexahedkons Nand edges, and a linear
edge finite element{, P; A, ) defined on every hexahedron. The global basis functions

are defined to be equal to the local basis functins  inSide and to be zero outside of

K. The collection of all the global basis functions is called the edge finite element space
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W, Any V' OW' is determined uniquely by the valuedf  at e  edges, therefore the
dimension oP" isN, . Within a given hexahedron the valug'of  is determined solely by

the value at the twelve edges. By construction the tangential componehnt of isa contin-

uous function across faces. The rate of convergence is first order,

1
|f_|Tf|H(curI) <Ch |f|Hl' (106)

4.3.3 Face elements

The face elements are first defined on the reference element. Th@®space used for bilinear

face elements is
2= {00 0Q ¢ U UQp 1 ¢ Us Qg g o} (107)
and the degrees of freedom are the flux through each face

a, (v) = J’(v- n)ds, (108)

wheref, is any of the six faces and is the unit normal vectrto . On the reference

hexahedron the spaée is spanned by the six basis functions
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F,= (-1+x0,0),
F, = (x0,0),
Fy3 = (0,—-1+y,0),
Fs=(0,0),
Fs = (0,0,—1+2),
Fs = (0,0,2) .

(109)

In order to remain affine equivalent, the elements must transform contravariantly,

X = BX+D,

~ (110)
W = BW

Vector functions that transform this way are referred to as contravariant or axial vectors.
The basis functions above are called local basis functions since they are only defined

within the given tetrahedron.

Consider a hexahedral grid consisting\bf hexahedkons Nand faces, and a linear
face finite elementK; P, A, ) defined on every hexahedron. The global basis functions

are defined to be equal to the local basis functlens  in§ide  and to be zero outside of
. . . , h .
K. The collection of all the global basis functions will be denoteﬂrby .v&r@F is

determined uniquely by the valuewt  at tNe faces, therefore the dimensbn of s
N; . Within a given hexahedron the valuedf is determined solely by the value at the six

: h . :
faces. By construction, the normal component of  is continuous across faces. The rate of

convergence for these elements is first order,
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|f— < Chlllel. (111)

ITf| H (div)

4.3.4 Volume elements

The lowest finite element for the volume element is trivial, it is simply a constant scalar

within each hexahedron. Let the space of all such elements on a hexahedral grid be

denoted bySh . These elements have no continuity at all, and the rate of convergence is

first order,
1
|f—|Tf|H0s Chlff,. (112)

The hexahedral node, edge, face, and volume elements defined above are conforming on

their infinite dimensional Hilbert spaces, and they satisfy the inclusion relations:

If @0 V" thenOpO W', (113)
f EO0W thenOxE O F", (114)
If BOF thenOBO S (115)

It is interesting to note that the dimension of these finite element spaces satisfies Euler’s

equation

N,—N_+N.—N, = X, (116)
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wherey is the Euler characteristic of the dom@in . The edge elements for a hexahedron
are shown in Figure 10 through Figure 12, the face elements are shown in Figure 13. The

Mathematica script used to generate these figures is included in Section 11.2.



FIGURE 8.

Linear covariant elements (edge elements) defined on a tetrahedron.
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FIGURE 9. Linear contravariant elements (face elements) defined on a tetrahedron.
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FIGURE 10. Linear covariant (edge elements) defined on a hexahedral (part 1).
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FIGURE 11. Linear covariant (edge elements) defined on a hexahedron (part 2).

W5 W6

62



FIGURE 12. Linear covariant (edge elements) defined on a hexahedron (part 3).
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FIGURE 13. Linear contravariant (face elements) defined on a hexahedron.
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4.4 Differential forms

In this dissertation, the laws of physics are expressed using classical vector calculus.
There is an alternative method for expressing the same laws, namely differential forms.
Differential forms have been used extensively in theoretical physics but have only
recently been adopted by the engineering community. The language of differential forms
allow the laws of physics to be expressed independent of any particular coordinate system.
A classic textbook on differential forms is [62], and a more modern view is presented
in[63]. The primary source for the above vector finite elements [28] uses differential forms
extensively. An interesting connection between the above vector finite elements and dif-

ferential forms will be examined in this section. Much of the following is from [64].

A differential form is an expression upon which integration operates. Forms of geegree

or p-forms, are expressions that occupin -fold integrals over domains. For example the

work done on a unit charge by the electric field is given by

W = I E dx + Eydy + E,dz, (117)
Y

where the quantity under the line integral is the one-flerm . The total current flowing

through a surface is given by

| = 1[ (J,dydz+ Jydzdx+ J dxdy) , (118)

where the quantity under the surface integral is the two-fbrm . The total charge in a vol-

ume is given by
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Q= ;l: gdxdydz, (119)

where the quantity under the volume integral is the three-form . Scalar functions of posi-

tion, such as the electrostatic potenttal , are considered zero-forms. They integrate over

a domain of dimension zero, i.e. a point.

® = 1ECD. (120)

Mathematicians have developed an algebra and a calculus for differential forms, often
referred to as exterior algebra and exterior calculus, respectively. This is a generalization

of the traditional vector algebra and vector calculus. The gradient, divergence, and curl of
vector calculus are replaced by a single differential opedator , called the exterior deriva-
tive. Likewise the dot product and cross product are replaced by a single exterior product.
The term exterior is used because the derivativepof a -form ismot a -form, it lies out-
side (hence exterior) of the spacegpof -forms. Likewise the product gftwo -forms is not

ap -form.

Maxwell's equations written using differential forms are:

3 = dH-J, (121)
B _ -
3 - dE—-M, (122)

dD = p, (123)
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dB = 0, (124)

where the electric flux densiy , the magnetic flux derBity  are two-forms, the current

densities] and/! are two-forms, the electric field and magneticHield are one-forms,
and the charge densify is a three-form. For simplicity the conductivity is assumed to be
zero. The operatatt  is unambiguous since there is only one way to differergiate a -

form; the derivative of @ -formis ép+1) -form. The constitutive relations are
D = ¢E B = pH, (125)

wheree andu are not simple scalars, but rather operators that convert a two-form to a
one-form. These operators define the metric of the space in which (121)-(124) are defined.

Thus the “measure” of the electric ficld  and magnetic field is
EcE, (126)
HuH, (127)

where the product is unambiguous, since the producpofa -forma@nda -formisa
(p+ q) -form. Thus [126] and [127] represent the electric and magnetic energy densities,

which are three-forms. Multiplying [121] by and [122]Hy vyields

d (EH) + 39 (EE + HuH) +EJ+ HM = 0, (128)
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which is Poynting’s theorem of energy conservation. The prdghict is a two-form

which represents the power flow, the three-foEeds NI represent power density

supplied by the sources.

In three dimensional space there are four differential forms: zero-forms, one-forms, two-
forms, and three-forms. These forms can be associated with the Hilbert spaces defined in
Section 3.3 and the finite elements defined in Section 4.2 and Section 4.3 above. The con-
nection between differential forms, Hilbert spaces, electromagnetic variables, and finite
elements is shown in Table 3. The proposition is that by expressing a PDE using the lan-
guage of differential forms it becomes obvious which type of finite elements should be

used to approximate the variables.

TABLE 3. Connection between forms, electromagnetics, and finite elements.

zeroform | one from | two form three form
integral point line surface volume
derivative grad curl divergence none
continuity total tangential| normal none
Hilbert space H(grad) H(curl) H(div) L2
electromagnetics potential fields fluxes, currents charge density
finite element V (nodal)| W (edge) F (face) S (volume)

4.5 Galerkin formulation of Maxwell's equations

The vector finite elemenf® amd  developed above are used as basis functions for the

electric field and the magnetic flux density, respectively.V[Zet be the basis function

associated with edge amg  be the basis function associated with face , then the elec-

tric field given by
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Ne
E = Xf%wu (129)
i=1

and the magnetic flux density is given by

N
B= Y bF. (130)

i=1

According to the definition oW in Section 4.2.2 and Section 4.3.2, the degrees of free-

dome, have units of volts and can be interpreted as the voltage along edge of the grid.

Likewise according the definition &  in Section 4.2.3 and Section 4.3.3 the degrees of

freedomb, have units of webers and can be interpreted as the magnetic flux through face

i . The independent current sources are also expanded in terms of basis functions

Ny

J= SR (131)
i=1
N

M = S mF;. (132)

i=1

The test spaceld, (curl)  art} (div) consist of all edge and face elements for edges

and faces not on the bounddry . Now, using these solution and test spaces, the Galerkin

form of PDE | and PDE Il become systems of ordinary differential equations.

PDE |, Galerkin form
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ob _

Ga = —Ke—-Pb-LIm, (133)
e T .
Ca = K b-Se-Qj, (134)

where the matrices are given by

L -1 L
G; = ! Fi,FiD

Kjj = Eﬁ_leW-, Iii%

| -1 [l
Pij = [ OmH IeJ"IiiD’

Gy = (€W, W), (135)
KTy = o oxw, By

Sj = (oW, W),

Qij = (Iij'wi)-

Of key importance is the fact that (133) involves  while (134) involes , therefore the
discrete equations have the same hyberbolicity as the original PDE’s [67]. This property is
not shared with some other proposed methods that use different variational forms of Max-
well’s equations. This property will allow stable, non-dissipative time integration. The
matricesC ands are symmetric positive definite, they have units of farads and inverse
henries and can be interpreted as the capacitance and reciprocal inductance of the grid,
respectively. The matric§ amd  have units of siemens and siemens meter-cubed per
square henry and can be interpreted as the electric and magnetic conductivity of the grid.

While (133) and (134) may look unusual at first, they do in fact have an interesting physi-
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cal interpretation. Multiplying (133) by = ' and defining electric curiemt Gb :

(133) and (134) become analogous to the classic telegraphists equations

oi 0

La = —&e—Rl, (136)
de _ 0.
Ca = &I -Se, (137)

for the current and voltage on a one-dimensional transmission line. The solution to these

equations is of course a propagating wave with exponential decay.

PDE Il, Galerkin form

2
ae+_|_ae

e e vl T a_J
CF a+Ue— Ae-Vj—K'm Qat’ (138)

where the matrices are given by

(] -1 il
Ty = OPOe+H OM?'%WPWiD
-1 U
oW, Wi
-1 U
A OxW;, OxWi 5
-1
Vij = (p olej,Wi).

-

(139)

|
1

Although (138) looks complicated at first, it is really just a wave equation, with dissipa-
tion, for the voltagee due to electric and magnetic soyrces mand . Note that (138) can
be derived either from the variational form of PDE Il directly, or it can be derived by sim-

ply eliminating the variablé® from (133) and (134). It can be shown that
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T
A= K LK, (140)

whereA is obviously symmetric positive definite, preserving the hyperbolicity of the

original PDE.

In VFEM3D the matrices in (135) and (139) are evaluated using an exact closed form
expression for tetrahedral volumes and Gaussian quadrature for hexahedral volumes. The

Gaussian quadrature was constrained to use not more than ten points in each dimension.
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5.0 Time Integration

Using vector finite elements, the variational form of Maxwell’s equations are converted to
finite dimensional systems of ODE’s. These ODE'’s are integrated in time using standard
second order accurate finite difference formulas. For PDE I, time is discretized such that
the electric degrees of freedom will be known at whole time steps, the magnetic degrees of
freedom will be known at the half time steps, as illustrated in Figure 14. This is often

referred to as a leapfrog method.

FIGURE 14. Staggered time scheme for electric and magnetic degrees of freedom.

At
-
n-1 n n+1 n+2
—K—0—K—"0— K —0—HK> time
n-1/2 n+1/2 n+3/2
-

At

The second order accurate finite difference formula for the first derivative is

n+1/2 n-(1/2)
X —X

Cox' _ 20
Ope0 = X + O[At [, (141)

and the dissipative terms are handled implicitly using the second order accurate finite dif-

ference formula for the average

n+1/2 n-(1/2)
n X + X

X' = > romaty (142)

Using these formulas in (133) and (134) gives the DTVFEM for PDE |,

PDE I, discrete time
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(G+AtP/2)b" Y% = _Atke"+ (G-AtP/2) b

(C+ats/2) et = Atk Y%+ (C—AtS/2) € — AtQ]

n—l/Z_AtGmn

. 143
n+1/2 ( )

For PDE II, time is discretized such that the electric degrees of freedom are known at
whole time steps. The second order accurate finite difference formula for the second deriv-
ative is

12 [T n+1 n n-1
PXg - X =2X +x T oEnH (144)
Dt At

Using the above finite difference formulas for the second and first derivative (138) gives

the DTVFEM for PDE II,

PDE ll, discrete time

n+1

(C+atT/2)e" "t = ce'-at? (A+ U)e"— (C-AtT/2)e" ' =

APV} + KT + Q%”E o

The above finite difference equations (FDE) are consistent. As the timétstep

approaches zero the FDE’s reduce to the original ODE’s. But consistency does not tell the
whole story. A discrete time integration method is convergent if the solution to the discrete

eqguations converge to the solution of the original ODE's as the time step approaches zero.
It is well known that for a time stepping method to be convergent the method must be both

consistent and stable. A qualitative definition of stability from [68] is
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A finite difference approximation of an ODE is stable if it produces a bounded solution
when the exact solution is bounded, and it is unstable if it produces an unbounded solu-

tion when the exact solution is bounded.

Note that this definition is appropriate only for equations for which the exact solution is
known to be bounded. However this definition is fine for the problems addressed in this

dissertation. A more quantitative definition of stability is developed in the next section.

5.1 Stability

In Section 2.1, two different PDE’s were presented. These problems were named PDE |
and PDE II. PDE | is a coupled system of first order PDE’s for both the electric field and
the magnetic flux density, whereas, PDE Il is a second order PDE for the electric field
alone. In Section 3.3, the variational form of these problems was presented, and the dis-
crete time version of these two problems was presented above. Both problems give identi-
cal values of the electric field, the only difference between the two problems is that the
first one uses the magnetic flux density as an intermediate variable, while the second prob-
lem does not. Thus the coupled first order system (143) will have the exact same stability
as the single second order equation (145). It is easier to prove stability of (145), however
stability of the system (143) will be derived because it leads to an important conservation

of energy result.

The most difficult equations to integrate are those that do not have any physical loss mech-
anism. In a region of space in which there is no electric or magnetic conductivity, a wave

will simply propagate unattenuated, and numerical errors may build up in such a way that
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the method is unstable. Alternatively, in a region of space in which there exists electric or
magnetic conductivity a wave will be attenuated exponentially as it propagates. Any

numerical errors will also be attenuated exponentially. For this reason, the stability condi-
tion will be derived by assuming no electric or magnetic conductivity. In this case the dis-

crete equations become

n

1 T
"t = atck b

bn+1/2 - —A'[G_lKen+b

n+1/2 n
+e

, 146
n-1/2 (146)

where the source terms have also been neglected. These equations can be expressed in

matrix form as

0 4. T 1.0 1 T
" _ |g-atfcik gTkpatcTK || € 14
n+1/2 _ n-1/2 '
b ~AtGT'K L
or more generically as
n+1 _ n
X = QX . (148)

The matrixQ in (148) is called the amplification matrix of the method. The general condi-

tion for stability is that

IQl<1, (149)

where|| | denotes the two norm. Note that some texts [67] use the stability condition

Q<1+ 0O(At), (150)
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which allows for growth of the solution. However for the DTVFEM (149) is the appropri-

ate condition, as is discussed in Section 5.%.(Q) is the spectral radius of , the rela-

tion

X (Q) =Q (151)

is known to hold. Thus,

X(Q) =<1 (152)

is a necessary condition for stability. This is referred to as the von Neumann condition. A

tedious but straightforward calculation shows that the eigenvalu@s of  are given by

_Ntid4-
A= > , (153)
~ _ T _
whereA = 2—At2Z and, is an eigenvalue of the ma(ﬁle G 1K . Equivaleqtly,

andx satisfy the generalized eigenvalue problem
Cx = IK'G KX. (154)

The matrixC is symmetric positive definite and the makhG K IS symmetric posi-

tive semi-definite. Thug§ >0 and the eigenvaldes of the amplification n@trix  will

have unit magnitude if and only if

A —— (155)

Jmax({)
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This is the necessary stability condition. Note that the von Neumann condition is not in
general sufficient to prove stability, but in this case the amplification m@trix  is similar,
via a complex similarity transformation, to a diagonal matrix, therefore if (155) is satisfied
the method is stable. The stability condition (155) can be interpreted as the statement that
the sampling frequency must be less than one-half the highest resonant frequency of the

grid.

In Section 1.1 it was mentioned that some finite difference and finite volume methods are
unstable when implemented on unstructured grids. The opénatax Is self-adjoint
(with the boundary condition x E = 0 ), however some finite difference and finite vol-
ume methods do not result in a symmetric discrete approximatioe o< . If the matrix
representing the discrete approximatior tg[1x is not symmetric the eigengalues

may be complex, in which cagg(Q) >1 forafiy  and the method is unconditionally

unstable. However this is not a problem for the DTVFEM since the mihe 'K :

which is the discrete approximation the<[1x operator, is symmetric for any grid.

5.2 Conservation of Energy

It is shown above that the eigenvalues of the amplification matrix have unit magnitude as
long as the stability condition (155) is satisfied. If the eigenvalues had magnitude less than
unity, the method would still be stable, but the solution would decay with time. This is
often referred to as numerical dissipation since there is no physical loss mechanism, i.e.

there is no electric or magnetic conductivity to absorb the fields. A method for which the
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eigenvalues of the amplification matrix are all of unit magnitude is called non-dissipative,
or neutrally stable. In Section 1.1, it was mentioned that some finite volume methods do
not conserve energy. This is because they employ dissipative time integration methods; in
fact they require dissipative time integration in order to be stable. In this section it is
shown that because the DTVFEM is non-dissipative, a variational form of Poynting’s the-

orem of energy conservation is satisfied.

From Section 2.1, Poynting’s theorem is

Ip_lE x Be Adr +z[u‘1|§- MdQ +1[E. JdQ +

(156)
-1 -1 0 0 _
g[“ oyB BdQ+£0EE EdQ+Z[p B EBdQ +£5E aEdQ =0.
The first term can be written as
Iu‘l(E xB) o Adlr = Z[u_lB- OxBdQ — y{lé- OxBdQ . (157)

Using the degrees of freedaen b, , and the matrices defined in (135) and (139), Poynt-

ing’s theorem can be written as

b'Ke—eK'b+b Gm+ eTQj +b'Pb+e Se+ bTG%) +e' g—te =0. (158)

The combined first two terms represent the power flowing into the domain, which depends

upon the boundary condition. Assume tBat is zero on the boundary, thus there is not net

power flow into the domain. The termeGm aﬂnT@j represent the power put into the
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domain by the independent magnetic and electric current sources, respectively. The terms
b'Pb andeTSe represent the power dissipated due to magnetic and electric conductivity,

respectively. The last two ternts G%) aeTctlg—te

represent the time rate of change of
stored magnetic and electric energy. Again consider the case where electric and magnetic

conductivity is zero. Poynting’s theorem reduces to

bTG@ + eTcae _

5 5= 0 (159)

the total energy in the domain is a constant. Using the result that the eigenvalues of the

amplification matrix all have unit magnitude, it can be shown that

E]en+1DT n+1+Ebn+1/2ETGbn+1/2+EenDT n Ebn—l/zgrebn—l/Z’

] Ce nCe + (160)

is a constant for all time. Thus the DTVFEM conserves energy in a time-average sense.

This relation is valid for any grid and for any stable time step.

5.3 Conservation of Charge

5.3.1 Magnetic charge

Recall (129) and (130), which define the electric field and the magnetic flux density in

terms of the edge and face vector finite elements,

N, N,
E=SeW B= Y bF. (161)

i=1 i=1
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Again, consider the case of an electromagnetic wave propagating in a source free, zero

conductivity region. Magnetic charge will be conserved if

Opn _
O aB =0, (162)
or alternatively
0 - _
IEB hdlr = 0, (163)

for every tetrahedral or hexahedral volume in the grid. In terms of the degrees of freedom,

this can be expressed as

" 3b,
S =0 (164)

since the degrees of freeddin  are precisely the net magnetic flux through face . Define

the subspace
" = (oo Dea=0} . (165)

. - h .
An important property of the vector finite element spaﬂS@s Fand is that the operator

. L h .
[Ox is surjective fronﬂ\’/h onthO . This means that the curl of any edge element can be

written as a linear combination of face elements with a net magnetic flux of zero. This is

illustrated in Figure 15. The electric field inside a tetrahedron is given by
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6
E = z eW, (166)

i=1

and the time rate of change of the magnetic flux density is given by

6
%B =3 eOxW; = e, (F,—F,) +e,(F,—F,) +
=1 (167)
&3 (F3—Fy) +e,(Fy—Fy) +e5(Fy—F,) +e5(Fy—Fy) =

Fl(ez—el—e4) +F2(e1+e5—e3) +F3(e3—e2—e6) +F4(e4+e6—e5) )

It is obvious that for any electric field the magnetic degrees of freedom sum to zero, thus
(162) - (164) are satisfied exactly. Magnetic divergence is preserved. If the initial magnetic
charge in each polyhedral region is zero it will remain zero for all time. An analogous

argument holds for the hexahedral elements as well.

FIGURE 15. The curl of an arbitrary edge element is divergence free.

4

b2

The variational form of Faradays law in a source free, zero conductivity region is given by

%(p‘ls,eﬁﬁ = wloxeR8. (168)
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This can be interpreted as a projectioriof onto the sPaced (div) . The above
analysis simply shows that this projection is exact when using edge elements for the elec-

tric field and face elements for the magnetic flux density.

5.3.2 Electric charge

The electric field is assumed to be a linear combination of edge elements. Since these ele-
ments do not have normal continuity across cell faces, the electric field is not divergence
free in the classical differential sense. Rather the field is divergence free only in the varia-
tional sense. This is required to allow for discontinuity of normal components across

material interfaces. The variational form is

Z[(p(E]-aE) dQ = _z[EE. OepdQ +I¢8E' pdr (169)

where@ is a continuous piecewise linear function. Since the field is not required to be

divergence free on the external boundary we can chpesd® [ on , thus the last term in
(169) is zero. Using a similar argument to that used in Section 5.3.1 above, the require-

ment for charge conservation is

0o B 0ol =

D(ﬁe , D(pD =0, (170)
and the variational form of Amperes law in a source free, zero conductivity region is

%(se,eq = @ xeduB). a7y
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. : : h . .
As discussed in Section 4.1 the sp&¢e includes . Since (171) must hold for all

EDO @, it must hold fortl = O . Therefore
0 E _ s —1B _
5iEELO) = (UxUou 'B) = 0, (172)

and divergence is preserved for all time in the variational sense. Again, this is a conse-
guence of the inclusion relations discussed in Section 4.1, and charge is not conserved

when other basis functions, such as nodal basis functions, are used for the electric field.

5.4 Numerical Dispersion

Consider PDE Il in an infinite, source free, zero conductivity region. In this case PDE I

becomes

2
sizlé = _Oxp OxE, (173)
ot

which is simply the vector wave equationplf and are constant scalars, the general

solution to (173) is a plane wave of the form
B = Eoel (k* x—wt) ’ (174)

wherew is the radian frequendy, is the wave vector,Eywd is a constant vector perpen-

dicular tok that determines the polarization of the wave. The plane wave is a solution to

the vector wave equation only if the dispersion relation

W’ = K (175)

holds, wherec = 1/ (Jpe) is the speed of light ane: | is the wave number. The

phase velocity of the wave is defined as
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(176)

~IE

which equals the speed of light

In many medigu and are not constant, thus the phase velocity is not constant. If the

phase velocity depends upan  (or equivaleritly, ) then the medium is said to be disper-
sive. A narrow pulse propagating in such a medium will spread out, or disperse, because

each Fourier component of the propagates at a different velocity. If the phase velocity

depends upoﬁ the medium is said to be anisotropic. In an anisotropic medium plane

waves propagate at different velocities in different directions.

The DTVFEM, like other grid based methods for solving Maxwell’s equations, exhibits
numerical dispersion and numerical anisotropy due to the finite grid and finite time sam-
pling. The numerical anisotropy for frequency domain vector finite element methods has
been derived for a variety of two dimensional triangular grids [41]-[43], and for two
dimensional Cartesian grids [44]. In this section the numerical dispersion relation for a
plane wave propagating on an infinite, uniform, distorted, three dimensional hexahedral
grid will be derived. The main result of this analysis is that regardless of the distortion, the

numerical dispersion relation is second order accurate,

W’ = cACHL+Of(kah) 2H+ 00 (wat) 2, 177)

as the grid is refined and the time step is reduced the numerical phase velocity approaches
the speed of light . The analysis will be performed using the Galerkin form of PDE Il for

simplicity, although the results are applicable to the Galerkin form of PDE | as well.

The Galerkin form of (173) is
C— = -Ae, (178)

where the electric degrees of freedom are given by
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e = I E . tdl (179)
8

with T the unit tangent vector to edge ,andthe mati@es Aand are defined by (139).

The grid is assumed to be composed of identical hexahedral cells, which may be distorted.

For this analysis the distortion is such that edgese, - are parallel, @dgeg - are
parallel, and edges, e;, are parallel. This is illustrated in Figure 16. Since the solution

to (178) is assumed to be a plane wave, the vector has only three independent compo-

nents, denoted @ Y, ,add .Edges e,- are related by

e, = X
N O
I * &, — At
eZ:XeEF 2 .
-0 (180)
Ik » A — A
83=Xe% 3 0
O

IFK » A, — At
e4:Xe%? 4 0

whered, is the vector from the midpoint of edgge  to the midpoint of edge . Egges

- g are related by

e =

€ = Ycale.Eﬁ_mAtD

o, - vdant o
e = YéH?-EB—me

whered, is the vector from the midpoint of edgge  to the midpoint of edge . Eglges

- e, are related by
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€ = Z
Itk A, - wAtH
e

k- B, - wntd (182)
e

€o=2
e11:Z

. 0
Ik« A, - wAtH
e, = Ze 1

whered, is the vector from the midpoint of edge  to the midpoint of edge

FIGURE 16. Edge numbering for numerical dispersion analysis
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The time derivative in (173) is approximated by the second order central difference for-
mula (144), therefore

2
Eﬁ ei%h ein+1_2ein_|_ein 1 We,
O—0= 5 = —. W= 2(cos((wAt) —1)) . (183)
[(ot™ [ At At

Combining (183) with (178) and (180)-(182) yields a homogeneous system of equations

XD
(WF+nG) Bvg = 0, (184)
HyJu
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2At

for X, Y,andZ .In (1840 = ¢ —; isagiven constant. The 3 by 3 matiices Gand
Ah

are functions of the wave vectbr and the matriées Aand , respectively. The matrices

F andG are complicated and are not shown here. Instead a Mathematica script that gen-

erates these matrices is provided in Section 11.3.
The numerical dispersion relation is given by

det(WF+nG) = 0. (185)

This is a complicated non-linear relationship between the wave Jector and the radian

frequencyw . There are three roots; one is zero which does not represent anything physi-
cal, and the other two correspond to the two distinct polarizations. The roots can be

expanded in a Taylor series abdét = 0 |, the resultis
F = KX+ 00g(ah) g (186)

The OH(AX) ZH term depends upon the distortion of the grid and ﬁpon . For the special

case of a uniform Cartesian grid, wkh= aX+by+cz , the Taylor expansion is
F=KE +5 (kAh) + L Haan)*+ (bah)* + (cah) B+ O%Ahs% (187)
O 360D |

but in general the expression is much more complicated. The Taylor sdfies of expanded

aboutAt = 0 is
2D
1——(0)At) 360((L)At) +OD(mAt) % (188)

The general numerical dispersion relation is then
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N

) 1+ 00 (kah) g

=C
0, 1 2 O g}

(189)

xm|8

which is consistent with the physical dispersion relation (175). The numerator is the aniso-
tropic part of the numerical dispersion relation, the denominator is the isotropic part. A

Mathematica script that performs the series expansion is provided in Section 11.4.

Given matricesC andé , it is possible to pick a valuk& of and solve numerically for the

value ofw that satisfies (185). Then the numerical phase velocity is then given by (176).

This process is performed for several different grids below.

5.4.1 Numerical dispersion for two-dimensional shear distortion.

Consider a unit square that is sheared inxthe direction by an afhount , as illustrated in

Figure 17. The valu® = 0° corresponds to no distortion, i.e. a Cartesian grid. Let
k = k(Xcos(@) + ¥sin(9)) (190)

be the wave vector as a function of the polar apgle . Given a vakue of , itis possible to
compute the numerical phase velocity as a function of polar gngle . In the computational
experiments below = 1 Ah =1 ,amit = 1/3 . Figure 18 through Figure 21 are
polar plots of the phase velocity error for shear anglés f0° 6 =,15° 6 =,30° ,
and® = 45° | respectively. Each figure shows the velocity errok fer 21/ 5 ,

k = 2110, k = 2115, andk = 21/20 . The Mathematica script that was used to

generate these velocity error curves is provided in Section 11.5.

The phase velocity error is definedvasc . The phase velocity error was always positive
for these grids, indicating that the numerical phase velocity is slightly greater than . Itis
interesting to note that the numerical phase velocity for the classic FDTD method is
always less than [3][4]. This difference is analogous with a result from continuum

mechanics, where the resonant frequencies of a simply supported beam are over-estimated



90

by a consistent mass matrix finite element method, and under estimated by a lumped mass

matrix finite element method [65].

FIGURE 17. Definition of shear angle for distorted quadrilateral.

FIGURE 18. Phase velocity error for@ = 0° quadrilateral grid. The curves correspond to
k = 21/5,k = 2/ 10,k = 21/15,and k = 211/ 20 respectively. The larger error
corresponds to largerk .
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FIGURE 19. Phase velocity error for@ = 15° quadrilateral grid. The curves correspond to
k = 215,k = 2/ 10,k = 21/15,and k = 21/ 20 respectively. The larger error
corresponds to largerk .
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FIGURE 20. Phase velocity error for@ = 30° quadrilateral grid. The curves correspond to
k = 215,k = 2/ 10,k = 21/15,and k = 21/ 20 respectively. The larger error
corresponds to largerk .

0.1
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FIGURE 21. Phase velocity error for@ = 45° quadrilateral grid. The curves correspond to
k = 215,k = 2/ 10,k = 21/15,and k = 21/ 20 respectively. The larger error
corresponds to largerk .

The phase velocity error shown in Figure 18 is comparable to the phase error shown in
[44] for a frequency domain implementation of a vector finite element method on a uni-
form Cartesian grid. The results shown in Figure 19 through Figure 21 are new, they indi-
cate that as the grid is distorted the method becomes more anisotropic (greater variation of

velocity with direction). The maximum velocity, minimum velocity, and anisotropy ratio

are tabulated below as a functionkof  for each of the four grid distortions.

TABLE 4. Phase velocity and anisotropy ratio versuk fo@ = 0° quadrilateral grid.

k max V min V ratio
om/5 | 1.07538 | 1.04137 | 1.03266

21/ 10 1.01845 1.0101 1.00824

om/15 | 1.00816 | 1.00448 | 1.00366

o1/20 | 100458 | 1.00252 | 1.00266




TABLE 5. Phase velocity and anisotropy ratio versuk fof = 15°

k max V min V ratio

215 1.0817 1.02764 1.05325
21710 1.01979 1.0067 1.01301

21/ 15 1.00874 1.00297 1.00575

21/ 20 1.0049 1.00107 1.00323
TABLE 6. Phase velocity and anisotropy ratio versuk
k max V min V ratio

2175 1.115 1.01845 1.0953

21/ 10 1.02708 1.00458 1.0224

21/ 15 1.01189 1.00203 1.00984

21/ 20 1.00666 1.00114 1.00551
TABLE 7. Phase velocity and anisotropy ratio versuk
Kk max V min V ratio

21/5 1.22 1.0131 1.203

21/ 10 1.05 1.0032 1.047

21/ 15 1.022 1.0014 1.0208

21/ 20 1.012 1.0008 1.0116

fo@ = 30°

fob = 45°
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quadrilateral grid.

quadrilateral grid.

quadrilateral grid.

It is possible to determine the rate of convergence of the numerical dispersion relation for

distorted quadrilateral grids by applying a least-square fit to the above data. The logarithm

of the error versus the logarithm lof

is shown in Figure 22 for each of the four grids,

along with a least-square linear fit. The least-square fit is applied to the maximum velocity

error. For each grid the slope of the linear fit is approximately 2 (from 2.02 to 2.09), indi-

cating second order convergence.
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FIGURE 22. Least-square fit of phase velocity error indicating second order accuracy for distorted
quadrilateral grids with shear 8 = 0°,08 = 15°,0 = 30°,and0® = 45°, respectively. The
larger error corresponds to the larger shear angle.

Log Error

Log k

5.4.2 Numerical dispersion for three-dimensional shear distortion.

The same process described above for two-dimensional quadrilateral grids was applied to

three-dimensional hexahedral grids. A unit cube was sheared by an @nount x in the

direction and by the same amo@nt inthe direction. The hlae0° corresponds to
no distortion, i.e. a Cartesian grid. A sheaBof 45° is illustrated in Figure 23 below.
Let

k = k(xcos(@) sin(®) + ¥sin () sin (®) +zcos(P)) (191)

be the wave vector as a function of the spherical amgles ®and . Given a Vialue of ,itis
possible to compute the numerical phase velocity as a function of the sphericalpangles

and® . In the computational experiments below 1 Ah,= 1 ,aAndé 1/3
Figure 24 through Figure 27 show surfaces of the phase velocity error for shear angles of

0 =0°,0 =15°,0 = 30°,andb = 45° , respectively. Each figure shows the velocity
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error fork = 21/5 , where the velocity error is definedvasc . The shape of the veloc-

ity error surface remains the samekas is decreased, thus it is not necessary to display dif-
ferent surfaces. Note that the scale is different for each plot. The Mathematica script that

was used to generate these velocity error surfaces is provided in Section 11.6.

FIGURE 23. lllustration of a cube distorted in theX andz directions by an amounf = 45° .
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FIGURE 24. Phase velocity error for@ = 0° hexahedral grid. The surface corresponds to
k = 21/5. The length of the axes are 0.15.

FIGURE 25. Phase velocity error for@ = 15° hexahedral grid. The curves correspond to
k = 2TU/5. The length of the axes are 0.25.
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FIGURE 26. Phase velocity error for@ = 30° hexahedral grid. The surface corresponds to
k = 21/5. The length of the axes are 0.35.

FIGURE 27. Phase velocity error for@ = 45° hexahedral grid. The surface corresponds to
k = 2TU/5. The length of the axes are 0.35.
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The maximum velocity, minimum velocity, and anisotropy ratio are tabulated below as a

function ofk for each of the four grid distortions. The results are similar to the quadrilat-

eral results above, as the grid becomes more distorted the numerical dispersion relation

becomes more anisotropic.

TABLE 8. Phase velocity and anisotropy ratio versuk

k max V min V ratio

21/5 1.07538 1.03002 1.04404

21/ 10 1.01845 1.00736 1.01101

21/ 15 1.00816 1.00326 1.00488

21/ 20 1.00458 1.00183 1.00274
TABLE 9. Phase velocity and anisotropy ratio versuk
k max V min V ratio

2175 1.08797 1.01709 1.06969

211/ 10 1.02113 1.00423 1.01682

21/ 15 1.00931 1.00188 1.00742

211/ 20 1.00522 1.00106 1.00416
TABLE 10. Phase velocity and anisotropy ratio versuk
k max V min V ratio

215 1.14536 1.00913 1.135

211/ 10 1.03401 1.00227 1.0316

21/ 15 1.01493 1.00101 1.0139

211/ 20 1.00836 1.0057 1.00779
TABLE 11. Phase velocity and anisotropy ratio versuk
k max V min V ratio

2175 1.35058 1.00333 1.34609

21/ 10 1.08656 1.00083 1.08566

foB = 0° hexahedral grid.

foB = 15° hexahedral grid.
foB = 30° hexahedral grid.
foB = 45° hexahedral grid.
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TABLE 11. Phase velocity and anisotropy ratio versuk fof = 45° hexahedral grid.

k max V min V ratio
or/15 | 1.03845 | 1.00037 | 1.03807
21/ 20 1.02163 1.00021 1.02142

It is possible to determine the rate of convergence of the numerical dispersion relation for

distorted hexahedral grids by applying a least-square fit to the above data. The logarithm

of the error versus the logarithmlof is shown in Figure 28 for each of the four grids,

along with a least-square linear fit. The least-square fit is applied to the maximum velocity

error. For each grid the slope of the linear fit is approximately 2 (from 2.02 to 2.09), indi-

cating second order convergence.

FIGURE 28. Least-square fit of phase velocity error indicating second order accuracy for distorted
hexahedral grids with shear@ = 0° .6 = 15° .0 = 30° ,and® = 45° , respectively. The
larger error corresponds to the larger shear angle.

Log Error

Log k
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6.0 Linear System Solution Methods

The DTVFEM as defined by either (143) for coupled first order equations or (145) for a
single second order equations requires that a large, sparse, unstructured linear system be
solved at every time step. The system will be written genericalfxas y .Cince isa
Gram matrix it is symmetric positive definite. In Section 6.1, this system will be solved for
the special case of an orthogonal Cartesian grid. For this special case it will be shown that
if mass lumping is employed the DTVFEM reduces to the classic FDTD method. In addi-
tion, it will be shown that system can be solved exactl®) {m) operations, using a
direct method. This results in a method that is both very efficient and very accurate. For
general unstructured grids, neither mass lumping or direct methods are employed.
Section 6.2 describes several iterative methods that are used to solve the system in this
case. All of the different methods discussed in this section are implemented in VFEM3D.
This was done for two reasons: 1) it allows one to easily experiment with different meth-

ods, and 2) it gives the user the freedom to choose between speed and accuracy.

6.1 Cartesian grids

In this section (146) will be analyzed in detail for the special case of an orthogonal Carte-
sian grid. The grid is assumed to have a uniform spdtirgl . The electric degrees of
freedom,e , are associated with the edges of the grid, the magnetic degrees of freedom,

are associated with the faces of the grid. The degrees of freedom are illustrated in

Figure 29. Note the similarity to the classic FDTD method which uses two grids, with the
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electric field known on the edges of the primary grid and the magnetic field known on the

edges of the dual grid. The DTVFEM employs only one grid, but two function spaces, the

h . , : ,
Wh or edge space and tfke or face space. The matrices defined in (135) are easily eval-

uated for the special case of a Cartesian grid, and the update equation (146) simplifies to

n+1/2 _ . n+1/2 Ln n [
b, = b, —Atre, +e10 e5 €120 192)
n+1/2 _ . n+1/2 Lon n [
b, = b, —Atreg +e11—e6—e13[|,
for the magnetic degrees of freedom, and
4 n 10n+1 n+1 n+1 n+10 10n+1, n+1 n+1 n+1[
% TP t& *t& *& [Otzgl® te& *& +& [OF
4 on 10 n nl] 10n n[]
9% 95e4+e6+e8+e25+36tp1+e3+e7+eQD+ (193)

n+1/2 n+1/2 n+1/2 n+1/20
AtDbz _bl +b4 —b3

for the electric degrees of freedom, where the numbering scheme is illustrated in

Figure 29 and Figure 30.
6.1.1 Capacitance lumping

To obtain the valu«a{;+ Y in (193) it is necessary to solve a linear system. The mass lump-

ing approximation is to approximate the ma@ix by a diagonal m@trix . There are a

variety of methods of approximation that could be employed, the method used in this dis-

sertation is construc@ via
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(194)
Cij =0 |¢J
where the coefficientej are such that
ZO‘J’WJ' W, = z[E. WdQ, (195)
]

for a constant electric fielB  in the direction of edge . In other words the integral in the

weak form is approximated by a midpoint rule. For a uniform Cartesiarmprird 1 , each

diagonal term of the matri€  is equal to the row-sunCof . This results in the new

update equation
n+l _ n n+1/2 n+1/2 n+1/2 n+1/20]
et t = eluatgh," Y 2p, Y 2, T2 p "2 (196)

which does not require a linear system to be solved. The computational 4dgtHgiN,
floating point operations per time step. Therefore, the methO( g , where is the
number of degrees of freedom. If the grid is parameterized by a grid spacing , then the

. L) 4Ll . . . . . .
method reqU|re§)Dh4D floating point operations to simulate  seconds of physical time.

This includes a factor di for each dimension, and another factor of for the reduction

of the time step required for stability.
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FIGURE 29. Electric degrees of freedom on Cartesian grid.
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FIGURE 30. Magnetic degrees of freedom on Cartesian grid.

|
|
|
L —— — !

The term mass lumping comes from computational continuum mechanics, where the mass
matrix is approximated by a diagonal matrix such that the total mass is the same. This can
be visualized by considering the compression of spring, see Figure 31. The continuous

spring is approximated by a series of point masses connected by zero mass springs. The

first case results in an equation for the displacement of the form
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62
M ?
ot

= KX, (197)

whereM is the mass matrix alkd is the stiffness matrix. The second case results in the

equation

- -1
m 0 0 0
2
0_>2<: 0m 0 0 (198)
o |
00 O0m

Obviously the computer implementation of (198) will be more efficient than (197), since

the former requires the solution of a linear system, while the latter does not. Of course, in
one dimension, the matrid is tri-diagonal and can be solved relatively efficiently. In

three space dimensionld, s, in general, a large, sparse, unstructured matrix. In the math-
ematics literature, mass lumping is referred to as a variational crime, since it makes most
of the classic convergence proofs invalid [54]. Nevertheless it is used quite frequently in
the engineering community, and it some special cases it can be shown to give very reason-

able results [65].

FIGURE 31. lllustration of mass lumping for a a spring.
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Discrete spring
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In the electromagnetic, case the approximation of (193) by (196) should be referred to as
capacitance lumping since the mat@ix is the capacitance matrix. Note that using the
capacitance lumping approximation gives the classic FDTD method, (192) and (196). This
method has been extensively analyzed and it is known to be stable, energy conserving,
charge conserving, and second order accurate approximation to Maxwell’'s equations.
Thus, the DTVFEM should not be considered an alternative to the FDTD method, but

rather as generalization of the FDTD method.

6.1.2 Cholesky decomposition

Consider the systel@x = y whe is the capacitance matrix of a uniform Cartesian

grid. SinceC is symmetric positive definite is has a Cholesky decompo@itiorLTL
wherelL is a lower triangular matrix. For the special case of a Cartesian grid, the
Cholesky decomposition has the exact same sparsity structGre as itself, i.e. there is no

zero-fill in the course of the Cholesky decomposition. Therefore, the calculation of

requires a back-substitution and a forward-substitution,

- (199)

Since the matriXC has at most nine non-zero entries per row, the natrix has on average
9/2 non-zero entries per row, and the solution cost for (199) is approxirBately  floating
point operations for a vectar of length . Thus the total cost for the DTVFEM on a Car-

tesian grid isL3N, + 4N, floating point operations per time step. If the grid is parameter-
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ized by a grid spacing , then the method requllEl;h‘lH floating point operations to

simulateT seconds of physical time, the same as in the FDTD method. While this direct
solution method is less efficient than capacitance lumping, it may result in a more accurate

answer. This is examined in Section 8.0 below.

That there is no zero fill during the course of the Cholesky decomposit©n of can be

seen by carefully examining the inner most loop of the decomposition (see algorithm 4.2.2

in [66])
i = i~ Sk (200)

wherek<j<i . Assume theﬁij = 0 , which means that there is no interaction between

edges ang . There will be zero fill only if there is another édge that interacts with
both edges angd . Numbering the edges sequentially precludes this possibility. Thus, the

Cholesky decomposition has the exact same sparsity structGre of itself. This is illus-

trated on a two dimensional grid in Figure 32.
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FIGURE 32. Grid numbering scheme for Cartesian grid.
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6.2 General unstructured grids

For a general unstructured hexahedral or tetrahedral grid neither capacitance lumping nor
direct solution are effective for solving the linear systém=y . Two general methods
were investigated for solving the system, stationary iteration and preconditioned conjugate
gradient. In the VFEM3D program, a variety of solution methods are implemented, the
user chooses which method he/she wants to use. For some grids, the simple methods are
adequate, for highly distorted grids or problems with wildly varying material properties,

the more sophisticated methods are required.

6.2.1 Stationary iteration

Let the matrixC be decomposed as
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C = M-N, (201)

which is referred to as a splitting. The matkix  is called the preconditioner. The station-

ary iteration is then

Mxk+1 = ka+y. (202)

The method is called stationary because the matkices Nand are indeperident of . A

starting value’  must be supplied to start the iteration. Let the error be defined as

6k = xk—x. (203)
It is clear that the error satisfies the equation

Mt = N&©. (204)

If the error approaches zero as the number of iterations increases, the stationary iteration is

said to converge. The stationary iteration converges if and only if
L1 L
pEM T 'NE< 1, (205)

wherep (A) denotes the spectral radius of matrix . The smaller the spectral radius, the

faster the stationary iterations will converge.

A similar approach to the above stationary iteration is Neumann polynomial approxima-

tion. (201) can be written as

C=M=N=Ma-MNT (206)
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and then the inverse & is

_ _ 1 _
ct=HomINg M (207)

The Neumann approximation is then

cl = H+MINCEMINE + EMOING + oM (208)

Note that the series converges if and only if (205) is satisfied. It is common practice to use
a fixed number of terms in the polynomial approximation. This is equivalent to taking a

fixed number of iterations of (202) with a starting value'of= 0 . The performance of
the stationary iteration and the Neumann polynomial approximation depend upon the

choice of the splitting. Some common splittings are described below. Let

C=L+D+ LT, whereL is a lower triangular matrix abd  is a diagonal matrix.

Jacobi. The Jacobi method udds= D  MIf is a diagonal matrix different than the

diagonal elements &  then it is a Jacobi-like method. For exavhple could equal a
linear combination of terms inrow & , i.e. a mass lumping preconditioner.

Gauss Seidel. The Gauss Seidel methodMsesD + L . The symmetric Gauss Seidel

method, which results in a symmetric Neumann approximation, is given by

M= (D+L)D " (D+L)".
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Successive Overrelaxation. This is a generalization of Gauss Seidel. Thevhatrix  is

given byM = (%)(D +wL) wherew is called the relaxation parameter. The optimal

value ofw depends upon the matx . The symmetric version is given by

1 b,,Oobooob,,
= — =4 - =~ +
M= oo e ttoen Gutho:

Incomplete Cholesky. The matr®  has a Cholesky decompositien LL' . The

: . ~~T ~~T _ .
matrix M is given byM = LL  wheréL is the incomplete Cholesky decomposi-

tion. There are different incomplete Cholesky decompositions, in this dissertation only

ILU(O) factorization, in whichL  has the same sparsity pattel@ as , is used.

An important property of the above stationary methods is that the n@atrix  is not really

inverted, rather the syste@x = y is solved approximately. But the approximation is

such that

>
I
1
|
'_\
=<

(209)

~-1 . : . . _
whereC  is a symmetric matrix. independenyof . Thus the stability analysis in

. L o -1 .. ~_1
Section 5.1 is still valid, with the ter@ bois simply replaceddy . As long as the pre-

conditionerM is symmetric, the DTVFEM is provably stable. It should be noted using a
fixed number of stationary iterations is considered a variational crime [53] in the mathe-
matics community, since the computed solution is no longer a projection of the exact solu-

tion onto the finite element space. However, this approximation is commonly used in
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computational continuum mechanics without serious problems. In Section 8.0, the above

stationary methods will be applied to a variety of problems.

6.2.2 Conjugate gradient

The conjugate gradient method [66] is a non-stationary iterative method for solving
Cx = y. The method is non-stationary in the sense that miscellaneous constants change

from one iteration to the next. This also means that at iteriation , the approximate solution

x* cannot be expressed as shown in (209). Thus if the DTVFEM is to be stable, the conju-
gate gradient must not be applied for a fixed number iterations, but rather applied until the
solution converges to within some numerical tolerance. The conjugate gradient method is
investigated here because it can be much more efficient for certain problems than the
above stationary iterations. The conjugate gradient is well known and it will not be

derived here.

It can be shown that the number of iterations required in order to achieve a given relative

error is proportional ta/X (C) , whene(C) s the condition number of the m@trix

The number of iterations can be reduced by employing a preconditioner to the linear sys-

tem. Rather than solvinGx = y via conjugate gradient, the syMélrﬁ:x = M_ly is

solved, whereM is the preconditioner. If

JXEMea< /X (O) (210)
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then the solution of the pre-conditioned system will require fewer iterations. A good pre-

conditioner is one for whicM =C . However, it is necessary to solve a S)Mia'e(nx K

within the conjugate gradient algorithm, thus it is also important that the preconditioner be

easy to solve. All of the symmetric preconditioners described in Section 6.2.1 can be used
in a pre-conditioned conjugate gradient algorithm. The results for various preconditioners

are reported in Section 8.0.



114

7.0 Parallel Implementation

Parallel computers represent the state-of-the-art in computer technology. These computers
provide the power (speed, precision, memory, data transfer) to solve previously intractable
problems. These computers are becoming common at universities, government laborato-
ries, and in industry. Some algorithms are essentially parallel, and their implementation on
a parallel computer is trivial. Other algorithms are essentially serial, they cannot be imple-
mented on a parallel machine in an efficient manner. In this section, the parallel imple-
mentation of the DTVFEM used in VFEM3D is described. As described in Section 6.0,

the DTVFEM requires that a large, sparse, unstructured linear system be solved at every
time step. This is the crux of the parallel implementation. Several methods were investi-
gated for solving this problem. There are variety of parallel architectures. VFEM3D was
designed to run only on a certain class of machines. It is shown that on these machines the
parallel performance is satisfactory, i.e. the implementation makes good use of the com-
puter for reasonable combinations of problem size and computer size. Before discussing
the parallel implementation, it is necessary to define some terminology used by the paral-

lel computing community. Most of the following is from [70].

7.1 Review of parallel computing

The traditional serial computer consists of a single processor and memory. This computer
is exemplified by the typical personal computer or engineering workstation. These com-
puters execute a single sequence of instructions and operate on a single sequence of data.

They are referred to as Single Instruction Single Data (SISD) computers.
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Parallel computers can be dichotomized according to their control mechanism. A Single
Instruction Multiple Data (SIMD) computer has one control unit that dispatches instruc-
tions to several processing units. The same instruction is executed synchronously by each
processor. Each processor operates on different data. The classic SIMD computer is the
Connection Machine 2. Parallel computers, in which each processor is capable of execut-
ing a different program independent of the other processors, are called Multiple Instruc-
tion Multiple Data (MIMD) computers. Examples of MIMD computers include the Cray-
YMP, Cray T3D, and the Meiko CS2. A network of workstations can also be considered a

MIMD computer.

Parallel computers can also be characterized as to how the memory is organized and
addressed. A shared memory computer provides hardware support for read and write
access by all processor to a shared address space. A MIMD computer with shared memory
is called a multiprocessor, and is exemplified by the Cray-YMP and some high perfor-
mance Silicon Graphics and Sun workstations. In a distributed memory computer, each
processor has its own private memory, which is directly accessible only by that processor.
Processors interact with each other only by passing messages, thus this architecture is
sometimes referred to as a message passing architecture. A MIMD distributed memory

computer is called a multicomputer. Examples include the Cray T3D and the Meiko CS2.

The DTVFEM could be efficiently implemented on any of the above described computers.
However, the VFEM3D program was designed to run either on a typical SISD workstation
or on a message passing multicomputer. There are many different ways to physically con-

nect the processors in a multicomputer, such as ring, mesh, tree, hypercube, etc. The inter-
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connection network determines how data is communicated from one processor to another,
and it is possible to optimize a message passing program for a given interconnection net-
work. However, this was not done in VFEM3D. Rather, VFEM3D was developed for a
model multicomputer in which any given processor can send data to and receive data from
any other processor in equal time. Some multicomputers approach this idealization for
large messages. This approach was taken because 1) the software is easy to develop and
maintain, and 2) the software will have good performance on all architectures, rather than

excellent performance on one machine and poor performance on another.

Given an algorithm such as the DTVFEM and a multicomputer, it is still not obvious how
to develop the software. It is necessary to establish a paradigm for the implementation.
The Single Program Multiple Data paradigm is used in VFEM3D. In this paradigm there

is only one program which is executed an all the processors. No one processor is more
important than any other, they all read input files, write output files, and communicate
with each other. There is no master or host processor to manage the computation. Of
course, the processors operate on different data, and there can be data dependent condi-
tional statements in the program, so the processors may end up executing different state-

ments.

The serial run time of a program is the time elapsed between the beginning and end of its
execution, measured in processor seconds, not wall clock seconds. The parallel run time is
the time elapsed from the moment the parallel computation starts to the moment the last

processor finishes. The ratio of the time taken to solve a problem on a single processor to

the time taken to solve the same problem in parallel pvith  processors is called speedup.
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An ideal parallel computer with  processors can achieve a speegup of . A practical par-

allel system (algorithm and computer) cannot achieve a speegup of due to overhead.
The efficiency of a parallel system is a measure of the fraction of time for which the pro-
cessors are usefully employed. It is defined as the ratio of speedup to the number of pro-
cessors. The ability to maintain efficiency at a fixed value by simultaneously increasing

the size of the problem and the number of processors is called scalability.

All causes of non-optimal efficiency are referred to as overhead. One source of overhead

is the serial component of the algorithm. Amdahl’s law [71] states that if a problem of size

W has a serial component of si®g then the maximum possible spe&tlis

Another source of overhead is interprocessor communication time. For example, consider
an iterative algorithm with a stopping criteria dependent upon the norm of a vector, where
the vector is distributed among all the processors. Each processor must agree upon the
value of the norm, which requires interprocessor communication. Functions such as mini-
mum, maximum, root mean square, etc. that reduce distributed data to a single number are
referred to as global reduction. The cost of global reduction, terms of interprocessor com-
munication time, is hardware dependent. A load imbalance occurs when the work is not
assigned equally among the processors, and one or more processors have to wait for the
rest to catch up. Load balancing is addressed in more detail in section Section 7.2 below.
The final cause of overhead is due to extra computation. The fastest known algorithm for
solving a problem on a serial computer may be difficult or impossible to parallelize, thus a

slower but more parallelizable algorithm must be used.
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7.2 Domain decomposition

The VFEM3D program uses the SPMD paradigm, executing the same program on each
processor in parallel. However, each processor has only part of the data. The data is dis-
tributed among all the processors using a domain decomposition approach. There are dif-
ferent ways of decomposing the data. The data could be decomposed into disjoint sets, or
into overlapping sets. The data could be decomposed in a purely mathematical way, or in a
way that relates to the physics of the problem. The domain decomposition approach used

in VFEM3D is best explained via example.

Consider a two dimensional triangular grid with a dual graph as illustrated in Figure 33.
The grid is denoted with solid lines, the graph with dashed lines. The dual graph connects
the midpoints of the triangular volumes, which are denoted by the circles. In this example
it is assumed that there are two processors. The data is decomposed by cutting the dual
graph in two. This is creates two disjoint groups of volumes, all data associated with the
dark group is associated with processor 0 and all data with the light group is associated

with processor 1.

FIGURE 33. A triangular grid with a dual graph.
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FIGURE 34. Partitioning the dual graph.

The above decomposition is a physical decomposition of the problem, the ddmain is
cut into two disjoint domain®, and, which do not overlap, but do share a boundary.

This is how a person would cut a piece of cake in two. Note that in the DTVFEM the

degrees of freedom are associated with the edges and faces of the grid, thus the degrees of

freedom on the boundary joinirtg,  aaqd reside on both processors. Thus from a data

point of view the decomposition is not disjoint, but slightly overlapping.

Consider thelOx 10 capacitance matfx and the vector of degrees of freedom  which
is of lengthl0 and numbered as shown in Figure 34. The matrix and the vector are

decomposed as shown in Figure 35. The degrees of freegom e, and are shared by

both processors. Note that the workload is slightly unbalanced, pro€essor is responsible
for five degrees of freedom, while proces$or is responsible for seven degrees of free-
dom. However, the amount of communication is small; the processors must agree upon the
value ofe, ande;, which requires that each processor send and receive a message of

length two. Other decompositions would have a different load balance and different com-

munication costs.
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FIGURE 35. Decomposition of the data vectors and matrices.
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The above example illustrates the complexity of domain decomposition for unstructured
grid problems. The goal is to distribute the workload evenly among all the processors

while also minimizing the amount of communication required. VFEM3D allows for com-

pletely arbitrary partitioning, the user supplies a color vector of leNgth . This vector

associates a color with each tetrahedral or hexahedral volume in the grid, where the color
corresponds to a processor number. Determining the optimal color vector for an unstruc-
tured grid is a difficult combinatorial problem and is not part of this research effort. There
are several different methods for generating a good color vector, notably the Recursive

Spectral Bisection (RBS) algorithm [72] and multilevel k-way schemes [73][74].

As an example of the application of the RSB algorithm consi@er 8x 9 grid, and
assume there are eight processors. If the gridi@as10x 10 , an obvious decomposi-
tions is to divide the cube into eightx 5x 5  blocks. However fordhxed x 9 caseitis

not obvious what the optimal decomposition is. The RSB algorithm generated a decompo-

sition with a maximum load of 92, and a minimum of 91. The maximum communication
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vector length was 80, the minimum was 63. The decomposition is shown in Figure 36.
Note that this is for illustration only, a parallel computer would not be used for such a

small problem.

FIGURE 36. Eight processor partitioning of a 9 by 9 by 9 cube.
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7.3 Parallel linear system solution methods

Some of the linear system solution methods described in Section 6.0 are easily paralleliz-
able, others are not. Methods that only require matrix-vector multiplication are easy to
parallelize. The Jacobi fixed point iteration and the Jacobi preconditioned conjugate gradi-
ent were implemented in parallel. These two approaches require nearest neighbor commu-
nication to perform the matrix-vector multiplication and global reduction communication

to compute norms. These two types of communication are common and are detailed in
[70]. Methods that require forward and/or backward substitutions are quite difficult to par-
allelize. While there has been some success in developing parallel backward substitution
for particular matrices, it is an intractable problem for matrices that arise from unstruc-
tured grids. Thus parallel versions of Gauss Seidel, successive over-relaxation, and incom-

plete Cholesky were not developed.

One approach to parallel preconditioning is to use block preconditioners. The degrees of
freedom can be divided into two groups, those that are internal to the sub-ddnains

and those that lie on the domain boundafies . Let the internal variables be derloted by

and the domain boundary variables be denoteB by . The variables are then re-numbered

as

X = , b = , (211)

and the linear systeix = b can be expressed as
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A Agl|x _ | b
T .
Ag Ag| %8 bg

(212)

Note that since the sub-domains are uncoupled, the n#gtrix  is block-diagonal. A suit-

able block preconditioner is then

A 0

M = .
0 diag(Ag)

(213)

This is a variant of the so called block Jacobi preconditioner. Both the fixed point iteration
and the pre-conditioned conjugate gradient require that the linear dylstemr be

solved once per iteration. For the block preconditioner defined by (213), this linear solve

is totally parallel, no communication is required. Each processor solves the system

Ax = b, (214)

where the vectors, argl are inside the dom@jn . Of course, the systems of equa-

tions defined by (214) are still large, sparse, and unstructured, so a direct method is still
impractical. But any of the iterative methods described in section Section 6.2 can be used
to solve (214). This results in nested iterative scheme, the outer iteration is over the entire
grid and requires nearest neighbor communication and global reduction communication,
the inner iteration is local to each processor and requires no communication. A sophisti-

cated inner iteration will reduce the number of outer iterations, thus reducing the amount



124

of communication. Of course, the total run time may not be significantly reduced, this is

very much problem dependent.

To summarize, the following parallel linear system solution methods were incorporated

into VFEM3D.

Outer lteration Methods

Jacobi iteration, block Jacobi iteration, Jacobi pre-conditioned conjugate gradient,

block Jacobi pre-conditioned conjugate gradient.

Inner lteration Methods

Symmetric Gauss Seidel iteration, incomplete Cholesky iteration, Jacobi pre-condi-
tioned conjugate gradient, symmetric Gauss Seidel pre-conditioned conjugate gradient,

incomplete Cholesky pre-conditioned conjugate gradient.
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8.0 Validation

In this section VFEM3D is validated by comparing computed solutions to exact solutions
for several simple electromagnetics problems. There are several reasons for doing this.
The obvious reason is to make sure that there are no bugs in the program, but that is really
a software engineering issue and not a computational issue. The second reason is to deter-
mine the absolute accuracy of the method. It was shown, via numerical dispersion analysis
in Section 5.4, that on a regular hexahedral grids the DTVFEM is at least second order
accurate. A similar proof for an unstructured three-dimensional grid is intractable.There-
fore, in this section, computer experiments are used to determine the accuracy of the
method on unstructured grids for select problems. These results can then be used to esti-

mate the error for problems in which the exact solution is not known.

Naturally, different grids for the same geometry will give rise to different computed solu-
tions. However, an important property of the DTVFEM is that it gives similar results for
any reasonable grid. The issue of grid imprinting is investigate in this section. Grid
imprinting is the phenomena in which the computed solution adopts a structure similar to
the underlying grid. For example, if a uniform grid gives rise to an accurate field solution,
and a distorted grid gives rise to a field solution that exhibits that same distortion, then the
method is said to exhibit grid imprinting. Grid imprinting is an undesirable, but not disas-
trous, phenomena exhibited by many numerical methods. It will be shown via computer

experiments that the DTVFEM does not exhibit grid imprinting.
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Another issue that is investigated via computer experiment is that of radiation (or absorb-
ing) boundary conditions. Many electromagnetic problems, such as antenna design and
radar cross section involve infinite domains. Since an infinite grid is not feasible the infi-
nite domain must somehow be simulated on a finite grid. The goal is to eliminate non-
physical reflections from the artificial truncation of the domain. The subject of radiation
boundary conditions is still a controversial subject, with plenty of opportunities for
research. The method used in VFEM3D is a variant of the so-called Perfectly Matched
Layer (PML) method. The original PML method derived in [75] is applicable only for the
classic Cartesian grid FDTD method, but many variants have been proposed for unstruc-
tured grids [77]-[79]. The general idea is to surround the domain by several layers of
anisotropic conductive media, using both electric and magnetic conductivity. Grading the
layers from low conductivity to high conductivity creates a broadband impedance match,
thus eliminating (or nearly eliminating) front face reflections. As the outgoing wave prop-
agates though the PML it is absorbed by the medium. The PML is not really perfect, a
small amount of energy will be reflected from the boundary. But the reflection is an expo-
nential function of layer thickness and can be made arbitrarily small. Since the DTVFEM
allows for arbitrary tensor material properties VFEM3D is capable of using the PML tech-
nique without modification. In Section 8.3 and Section 8.4 results for specific PML's are

shown.

Finally, the computer CPU time for various problems is tabulated. The CPU time depends
upon the type of grid, the distortion of the grid, and upon the method used to solve the lin-

ear systems. On a parallel machine, the computer CPU time is also a function of the num-
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ber of processors and the particular domain decomposition employed. Parallel speedup

and efficiency results are presented for two different parallel supercomputers.

8.1 Rectangular Cavity

In this section, VFEMS3D is used to compute the resonant frequencies of a rectangular cav-
ity of dimensionsa x bx ¢ . In the frequency domain this electromagnetics problem is

described by the vector Helmholtz equation

Ox20xB + Wl = 0in 0,
H (215)

AXE = 0onrl.

wherew is a resonant frequency of the cavity. (215) is an eigenvalue problemgwhere is

the eigenvalue anB s the corresponding eigenfunction. The different eigenfunctions,
which may be degenerate, are referred to as the cavity modes. The solution to (215) is

straightforward and can be found in most textbooks [46]. The steady state electric field

inside a rectangular cavity can be decomposed into Transverse EIdgfric modes and
Transverse MagnetitM, modes, where a mode is an eigenfunction of (215). The two

modes are independent. The&, mode is given by

E, = %’Amnpcos(ﬁxx) sin (Byy) sin(B,2) ,

E, = _%Amnpsin(Bxx) cos(Byy) sin(B,2) , (216)

E, =0,



where the resonant frequency given by

1 m=01..
2, 02, 2
Wrnp = 2T gnp = ﬁ B+ By, *+B, n=01...
g p=12..
The TM, solution is
_ BB,
EX - wus manOS(B X) SIn(B y) SIn(B Z)
BB,

Ey = 1@2 mnpsm(B X) cos(Byy) sin(B,2),

E, = A, sm(B X) sm(Byy) cos(B,2),

where this time the resonant frequency is

1 m=12..

_ _ 2 2 2 _

wmnp = menp = ;—/u_; Bx+By+BZ n=12...
p=201..

In both cases, the wavenumbers are given by

B, = m/a, By = n/b,and3, = prv/cC .

In the examples belovg = 29m b = 23m , amd= 19m . The lowest

resonant frequencies are shown in Table 12.

TABLE 12. Exact value of resonant frequencies below f = 0.5 Hz.

m = nz0.
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(217)

(218)

(219)

(220)

110 101 011 111 210 201 120

211

0.027746| 0.03146] 0.034134 0.0382#11 0.040763 0.043377 0.046772 0.0

18519
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In the time domain the electric field within the cavity is described by PDE II, (6)-(11). In

this caseo. = 0,, = 0 angl = € = 1 within the cavity. The exact solution is of the

form

TE ™
E= S A\nanmanOS(‘*)mnpt Qg + Y anpEmnpcos(wmnpt +0p0) . (221)

mnp mnp

where the sum is over all the modes, &nd, ¢, and6 depend upon the initial condi-
tions. In this computational experiment the electric field is excited by a pulsed current
source (described below) which is designed to excite all of the cavity modes. Once the

source is turned off the electric field within the cavity obeys (221) for all time.

The rectangular cavity was discretized using five different grids. Grid 1 is a uniform Car-
tesian grid. Grid 2 is a non-uniform Cartesian grid, i.e. the grid spacing is not constant but
the grid is still orthogonal. Grid 3 is a random hexahedral grid that was generated by add-
ing random noise to the nodes of grid 3, thus this grid can be considered structured but it is
non-Cartesian. Grids 1, 2, and 3 are logically 9 cells by 9 cells by 9 cells. Grid 4 is an
unstructured tetrahedral grid. These four grids have the same number of nodes, the same
average node spacing, and the same average edge length. Finally grid 5isa 17 by 17 by 17
uniform Cartesian grid. The Cartesian grids were generated using TrueGrid [80], while the

tetrahedral grid was generated using GEOMPACK [81].
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The resonant frequencies of the rectangular cavity were computed as follows. A cell near
the (0, 0, ) corner of the cavity was randomly selected. A time dependent current

source was put in the cell. The current source as a function of time is described by the sec-
ond derivative of a Gaussian. This current source excites all of the cavity modes. The elec-
tromagnetic fields are updated for 5000 time steps using a step size of 0.5 seconds. Note
thatpy = € = 1 for this calculation, i.e., the velocity of light is unity. An edge within the
cavity was selected at random and the electric field along this edge was written to disk at
every time step. This signal was weighted by a Hamming window and then the signal was
zero-extended to 32768 samples and then Fourier transformed. The magnitude of the Fou-
rier transform is the power spectrum of the signal. The location of the peaks of the power
spectrum should correspond to the resonant frequencies of the cavity. The width of the
peaks is inversely proportional to the total time window. Note that the location of the

peaks in the power spectrum is independent of the location of the current source and the
selected output edge, whereas the amplitude of the peaks does depend upon location of the

source location and the output location.

The computed power spectra for the calculations using grids 1, 2, and 3 are shown in
Figure 41 - Figure 43 below. Note the grids 1, 2, and 3 give very similar results, indicating
that there is no disadvantage to using a non-uniform or non-Cartesian grid. This is not true
of the classic FDTD method. A careful examination of Figure 41 reveals that the first four
frequencies are fairly accurate, while the higher frequencies are less accurate. Since the
grid is 9 by 9 by 9 the lowest four modes, which have a half wavelengthtof ¢ ,or ,are

sampled approximately 20 times per wavelength (10 edges per one-half wavelength)
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whereas the next highest modes are sampled at 10 times per wavelength. Thus it is
expected the lowest four lowest resonant frequencies be more accurate the higher frequen-
cies. The relative error versus mode number is shown in Figure 44 using the computed
resonant frequencies from grid 1. The average error for the first four modes is 0.006139,

the error for the second four modes is 0.02608. This indicates that the error is proportional

to (Ax/A) 2 , Where the wavelengthAss = 21/[3 , since a change in wavelength by a fac-
tor of two reduced the error by a factor of four. This preliminary evidence indicates that

the DTVFEM is second order accurate.

FIGURE 41. Computed versus exact resonant frequencies for grid 1 using ICCG.
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FIGURE 42. Computed versus exact resonant frequencies for grid 2 using ICCG.
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FIGURE 43. Computed versus exact resonant frequencies for grid 3 using ICCG.
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FIGURE 44. Relative error versus mode number using grid 1.

0.03 } ®

0.025 t PY ) ®

0.02 r

error

0.015

0.01¢

0.005 @ ® .

mode

The results for grid 4 are shown in Figure 45. The computed frequencies are much more
accurate for the tetrahedral grid than for the hexahedral grids. This is due in part to the fact
that there are 4401 internal edges for grid 4 and 1728 internal edges for grids 1, 2, and 3.
Thus the tetrahedral grid has approximately 2.5 times more degrees-of-freedom than the
hexahedral grid. More degrees-of-freedom should result in a more accurate answer. Of
course, more degrees-of-freedom imply more computer time. It is interesting to note that
some other methods give less accurate results for tetrahedral grids than they do for Carte-
sian grids of the same problem [11], but this is not the case for the DTVFEM. The average
relative error (eight lowest modes) and computer CPU time are tabulated for all four grids
in Table 13. The incomplete Cholesky pre-conditioned conjugate gradient (ICCG) was
used in each case. As mentioned in Section 6.1.2, the incomplete Cholesky decomposition

is in fact equal to the complete Cholesky decomposition for Cartesian grids, thus grids 1
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and 2 required only a single iteration for each time step, whereas grid 3 required on aver-
age 5 ICCG iterations, and grid 4 required on average 8 ICCG iterations. The CPU time
shown in Table 13 is for VFEM3D running on a Silicon Graphics 8000 workstation (64

bit, 300 MFLOPS, SPECfp92 310). The CPU time is for the time stepping portion of the
methods only, it does not include disk I/0O or computing the matrices. The time required to
compute the matrices and write them to disk is approximately equal to the time required
for 100 time steps. For the above computational experiments the matrix fill time was 1/50

of the total CPU time.

FIGURE 45. Computed resonant frequencies for grid 4 using ICCG.
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TABLE 13. VFEM3D error and CPU time for rectangular resonant cavity using ICCG.

Grid 1 Grid 2 Grid 3 Grid 4 Grid5

# nodes 1000 1000 1000 1000 5832
# edges 1728 1728 1728 4401 10800
ICCGiter. | 1 1 5 8 1
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TABLE 13. VFEM3D error and CPU time for rectangular resonant cavity using ICCG.

Grid 1 Grid 2 Grid 3 Grid 4 Grid5
Error 0.01607 0.017443| 0.016939 0.004613 0.00478
CPU 204.9 204.9 641.4 1439.8 1563.0

In order to directly compare the tetrahedral grid to the uniform Cartesian grid, the grid
spacing was reduced until the error became (approximately) the same for the two grids.
This resulted in a new 17 by 17 by 17 uniform Cartesian grid for the same rectangle. This
is referred to as grid 5, it is not shown because it looks exactly like grid 1 except for more
cells. Grid 5 has 10800 degrees-of-freedom. The time step was reddded t0.45 and
the number of time steps increased to 5555. The total CPU time and average error for the
lowest eight resonant frequencies is shown in the last column of Table 13. These results
indicate that for this particular experiment, a 5832 node uniform Cartesian grid has similar
accuracy and CPU time as a 1000 node tetrahedral grid, although the tetrahedral results

are slightly better.

As mentioned in Section 6.1.1, capacitance lumping can be used on Cartesian grids, in
which case the DTVFEM reduces to the classic FDTD method. Capacitance lumping is
more efficient since it does not require that a linear system be solved at each time step, it
can be considered a zero iteration method. The results for all five grids using capacitance
lumping are shown in Table 14. For the Cartesian grids there is a slight degradation of the
error, but this may be tolerated since the CPU time was reduced significantly. Hence the
popularity of the classic FDTD method for Cartesian grids. However for the non-Cartesian

grids there is a significant degradation of the error. For example on grid 4 the error is
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500% larger when capacitance lumping is employed, which is not acceptable. The com-

puted power spectrum for grid 4 using capacitance lumping is shown in Figure 46.

TABLE 14. VFEM3D error and CPU time for rectangular resonant cavity using capacitance

lumping.
Grid 1 Grid 2 Grid 3 Grid 4 Grid5
# nodes 1000 1000 1000 1000 5832
# edges 1728 1728 1728 4401 10800
Error 0.0252 0.224 0.0388 0.021 0.00644
CPU 111.8 111.8 159.39 217.39 1078.0
FIGURE 46. Computed resonant frequencies for grid 4 using capacitance lumping.
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While capacitance lumping was ineffective on grid 3 and grid 4, the incomplete Cholesky

stationary iteration described in Section 6.2.1 was very effective. Unlike ICCG this itera-

tion is stable regardless of how few iterations are used. The minimum number of iterations

required was determined via trial and error. On grid 3 a single iteration was sufficient,

which resulted in a CPU time 373.9 seconds. This is almost twice as fast as ICCG applied
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to the same problem. For grid 4 only three IC stationary iterations were required to
achieve the same error as ICCG for this grid. This reduced the CPU by almost a factor of
two. The conclusion is that the linear system need not be solved exactly at every time step
in order to get comparable results. Of course the number of stationary IC iterations

required to achieve good results is grid dependent and not known a priori

TABLE 15. VFEM3D number of required IC stationary iterations for various grids.

Grid 1 2 3 4

CPU time 190.7 190.7 373.9 892.5
Error 0.01607 0.017443| 0.01693%9 0.004633
# iterations | 1 1 1 3

8.2 Spherical Cavity

In this section a perfectly conducting spherical cavity is analyzed using VFEM3D and the
computed solutions are compared to the exact analytical solution. The frequency domain

electric field in the cavity is a solution of the vector Helmholtz equation (215). The fields

can be decomposed into independent mddgs  Tamd which can be found in many

textbooks [47]. TheTE, solution is given by

E =0,
_ m 1 =~ m .
Eg = —Amnpngn(Br) P, (cosB) [-Csin(mB) + Dcos(mO) ], (222)
E, = Amnps—lrjn(ﬁr)%Ean(cose) H[Csin(mB) + Dcos(m8) ],
where
8 = ﬁ, n=123.. 023
a p=123..
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andZnID is thepth zero of the spherical Bessel function of ander . The resonant frequen-

cies of theTEr mode are

m=012...,n
n=123... . (224)
p=123..

R
TP 2mad/ue

The resonant frequencies of thé/, mode are given by

m=012...,n
n=123... , (225)
p=123..

f = Z’”p
P 2man/ue
whereZ'np represents thth  zero of the derivative of the spherical Bessel function of

ordern . The exact resonant frequencies for cavity of raalias0.05855n , assuming

MU =1 ande = 1, are shown in Table 16.

TABLE 16. Exact value of resonant frequencies below f = 20 Hz.

T™M11 ™21 TE11 TM31 TE21 T™M41 T™M12 TE31
7.4589 10.5665 12.2132 13.518 15.6654 16.4782 16.6477 18.9p53

In the time domain the electric field within the cavity is described by PDE II, (6)-(11). In

this caseo, = 0,, = 0 anghi = € = 1 within the cavity. The exact solution is of the

form

TE ™
E= %Anplénpcos(wnpt + Q) * nzanpEnp cos(w, t+8,) . (226)



where the sum is over all the modes, &)@, ¢, and0
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depend upon the initial condi-

tions. In this computational experiment the electric field is excited by a pulsed current

source (described below) which is designed to excite all of the cavity modes. Once the

source is turned off the electric field within the cavity obeys (226) for all time.

8.2.1 Hexahedral grid results

The perfectly conducting spherical cavity of radeuss 0.05855n

was modeled using a

sequence of hexahedral grids ranging from a coarse grid with 4 cells per radius to a fine

grid with 12 cells per radius. The grids were generated using TrueGrid [80]. Figure 47 and

Figure 48 are cut away views of the 256 hexahedral and 2048 hexahedral grids, respec-

tively. As in the rectangular cavity case, the electromagnetic fields in the cavity were

excited by a pulsed current source, the pulse having the shape of the second derivative of a

Gaussian. The initial electric and magnetic fields within the cavity were zero. The simula-

tion was run forT = 6.7131% which corresponds to fifty periods of the lowest mode.

The time step and the number of steps was different for each grid due to different stability

requirements. The power spectrum was computed in the same manner as for the rectangu-

lar cavity case. The power spectrum for the 256 hexahedral case and the 2048 hexahedral

case are shown in Figure 49 and Figure 50, respectively.

TABLE 17. Relative error of TM31 resonant frequency versus grid size for hexahedral grid.

h/a 1/4 1/6 1/8 1/10 1/12
#nodes | 321 997 2273 4341 7393

# cells 256 864 2048 4000 6912
#edges | 688 2400 5792 11440 19920
error 0.09846 | 0.03960 | 0.02342] 00158  0.0096
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Naturally the power spectrum corresponding to the higher resolution grid is more accurate
then the power spectrum corresponding the lower resolution grid. It is possible to perform

a least-square fit to the data to determine, experimentally, the order of accuracy of the

method. For this fit, the error was defined to be the difference between thd bkact
frequency and the computdd,, . This error is shown in Table 17 as a function of grid

size, whereh is the average cell size. The logarithm of the error versus the logarithm of

(h/ a) is shown in Figure 55, along with a linear least-square fit. The slope of the line is
2.028, indicating that the method is second order accurate. This agrees with the numerical

dispersion analysis in Section 5.4.

TABLE 18. CPU time for cavity calculation versus grid size for hexahedral grid.

# edges 688 2400 5792 11440 19920
At .0035 .002 .0015 .001 .001

# steps 1918 3356 4475 6713 6713
#ICCG iter.| 7.8 7.8 7.8 7.8 7.8
CPU sec. 107 731 3255 11962 22490

The CPU time for the hexahedral calculations is shown in Table 19. The CPU time is for
the time stepping part of the calculation only. For the above experiments the matrix fill

time is approximately 1/50 of the total CPU time. The CPU time is for VFEM3D running

on a Silicon Graphics 8000 workstation. The computer time increase for two reasons; the
number of degrees of freedom increases and the number of time steps increases. Note that
the number of ICCG iterations does not increase as the grid is refined. The calculations

required 7.8 ICCG iterations on average. The stopping criteria for the ICCG was

—9
Irl/lbll <10 ~, (227)
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where|r|| is the Euclidean norm of the residual jid is the Euclidean norm of the right
hand side. Therefore the computational cost per time step proportional to the number of

degrees of freedom.

The number of ICCG iterations does not increase as the grid is refined because the condi-
tion number of the capacitance matrix remains constant. For a uniform Cartesian grid it
can be shown that the condition number of the capacitance matrix is 9, independent of
how large the matrix is. The capacitance matrix is a Gram matrix, and if the condition
number of a Gram matrix remains constant as the number of basis functions increases the
basis functions are said to be uniformly linearly independent. This is true for the linear
nodal finite elements [54] and it appears to be true for linear vector finite elements as well.
The condition number of the capacitance matrix does however depend upon variations in
dielectric constant, and the condition number of a highly distorted grid will be larger than
that of a regular grid. The conditioning of the capacitance matrix as a function of grid dis-
tortion has been analyzed for two dimensional grids [43], but a similar analysis for three

dimensional grids is probably intractable.

Additional experiments using the stationary iteration described in Section 6.2.1 were per-
formed. For these experiments the preconditider  was constructed by the capacitance
lumping method. The results obtained using a single iteration, which corresponds to sim-
ple capacitance lumping, were quite poor. The error was, on average, 500% larger than
that obtained with ICCG. The number of stationary iterations was varied until the error in
the computed solution was comparable to that obtained when using ICCG. It was experi-

mentally determined that four iterations were sufficient for all of the hexahedral grids.
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This is equivalent to a four-term Jacobi-like polynomial approximation for the inverse of
the Capacitance matrix. For these experiments, using the four-term polynomial approxi-

mation reduced the CPU time by more than a factor of two, as shown in Table 19.

TABLE 19. CPU time for cavity calculation versus grid size for hexahedral grid using four-term
polynomial approximation for approximately inverting the capacitance matrix.

# edges

688

2400

5792

11440

19920

CPU sec.

50

318

1256

4975

9670

FIGURE 47. Internal view of 256 hexahedral grid of sphere.
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FIGURE 50. Computed power spectrum for 2048 hexahedral sphere.
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8.2.2 Tetrahedral grid results

The same procedure described above was performed on a sequence of tetrahedral grids.
The tetrahedral grids were constructed using GEOMPACK [81] with the exact same node
locations as in the above hexahedral grids. The error versus grid spacing is shown in
Table 17. The results indicate that for a given number of nodes the tetrahedral grid is more
accurate than the corresponding hexahedral grid. The logarithm of the error versus the log-
arithm of (h/a) is shown in Figure 55, along with a linear least-square fit. The slope of
the line is 2.17, indicating that the method is second order accurate. The CPU time for the
tetrahedral grid is shown in Table 19. The data shows that for the same number of nodes
the CPU time for a tetrahedral grid is approximately 3 times greater. There are several rea-

sons for the increase in CPU time. The main reason is that the tetrahedral grid has more
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edges, and hence more degrees of freedom, than the corresponding hexahedral grid.
Another reason is that the time step was reduced by about 30%, which required 30% more
time steps to simulate the same amount of physical time. Finally, for this particular exper-
iment, the ICCG required approximately three more iterations to meet the same conver-
gence criteria (227).

TABLE 20. Relative error of TM31 resonant frequency versus grid size for tetrahedral grid.

(h / a) 1/4 1/6 1/8 1/10 1/12
# nodes 321 997 2273 4341 7393
# cells 1536 5162 12248 23907 41040
# edges 1952 6374 14904 28847 49296
error 0.04951 0.017408| 0.01138 0.0066d 0.0042K6

TABLE 21. CPU time for cavity calculation versus grid size for tetrahedral grid.

# edges 688 2400 5792 11440 19920
At .00225 .0015 .0010 .00085 .00080
# steps 2983 4475 6712 7897 8390
#ICCG iter.| 10.1 10.1 10.1 10.1 10.1
CPU sec. 349 2172 11216 29153 58237

Additional experiments using the stationary iteration described in Section 6.2.1 were per-
formed. For these experiments the preconditidier  was the incomplete Cholesky
decomposition, rather than the lumped-capacitance matrix. The number of stationary iter-
ations was varied until the error in the computed solution was comparable to that obtained
when using ICCG. It was experimentally determined that four iterations were sufficient
for all of the tetrahedral grids. For these experiments the CPU time was reduced by more

than a factor of two, as shown in Table 19.

TABLE 22. CPU time for cavity calculation versus grid size for tetrahedral grid using incomplete
Cholesky stationary iteration.

# edges 688 2400 5792 11440 19920
CPU sec. 174 1130 5508 14119 24597
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FIGURE 55. Log error versus Log h indicating second order accuracy.
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8.3 Rectangular Waveguide

In this section, VFEM3D is used to compute the electromagnetic fields in a rectangular
waveguide. The exact solution is well known and can be found in many textbooks [46].
The computed solution is compared to the exact solution for different grids. This problem
is different from the resonant cavity problems above because the waveguide is infinite in
one dimension, thus a PML is employed to simulate an infinite guide. A time varying

boundary condition is used at the other end of the wave guide to launch the wave.

As in the rectangular cavity problem in Section 8.1 the exact solution can be expressed as
a linear combination of modes. Unlike the resonant cavity examples above, in which the

excitation was specifically chosen to excite all the modes, in this problem the excitation is

chosen to excite only a single mode. Let the rectangular waveguide havawidth X in the
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direction, height inth§ direction, and be infinite in the direction. The lowest mode

is the TE,, which is given by

E, =0,
Ey = Asin(Tx/ @) sin(wt-.2), (228)
E, =0,

B, .
H, = —@Asm(nx/a) sin (wt-B,2),

H, =0, (229)

H

z

2
= A(Tz/o—a) cos(mx/ @) cos(wt—f,2),

where the wave number is

B, = szus— (T[/a)z. (230)

Note that ifw’ < wi = l—%%—’gg , the wave number is imaginary, then (228) describes dif-

fusion rather than propagation of the electromagnetic field. Assuming thai, the

electromagnetic field propagates down the guide with a velocity and wavelength given by

v, = 2
z Bz,
(231)
LA
A, = 2—.
z BZ
The waveguide to be analyzed has a cross seatenlm b Hhyl/2m . The infinite

waveguide is approximated by a finite length waveguide of ld0gth . The waveguide is
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modeled using a sequence of grids in order to determine the accuracy of the method. The
coarsestgrid hds = a/6 ,thefinestlmas a/14 ,wlere isthe average cell size. All
of the grids have a chevron pattern to them. This pattern does not represent anything phys-
ical; the purpose is to demonstrate that the DTVFEM is stable for distorted grids. Several
finite volume methods have been shown to be unconditionally unstable for this particular

grid [10]. Two of the grids are illustrated in Figure 56 and Figure 57.

FIGURE 56. Rectangular waveguide model using 1080 chevron cells.
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FIGURE 57. Rectangular waveguide model using 2560 chevron cells.
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A TE,, wave is launched by forcing the boundary condition

E, =0,
O 00Ot R . (232)
Ey = Dl—expD—E,—z—_—rgmsm(m(/a) sin (wt) ,

at the left endZ = 0 ) of the waveguide, whese= 5.523599  dnd 0.5 . The fre-
quency of excitation is above the cutoff frequency oftkg, mode, but below the cutoff
of the next highest mode. The initial electric and magnetic fields in the guide are zero. The
simulation was run for 20 seconds. This is enough time for the wavefront to propagate

approximately 20 meters, which is twice the length of the finite guide. The wave will be

attenuated by the PML at the right end of the waveguide, thus the simulation will reach a

dynamic steady state condition that resembleS thg mode of an infinite waveguide.



154

In this simulation, a five layer PML was used to absorb the outgoing wave. Each layer is

defined by the tensor material proper{ies, o, 0, .Inevery lpyer eand are simply
identity matrices. The conductivity matrices are eqagl= o, = 0 , Where isa

diagonal matrix witho,, = o, = 0 and,, = 1 . The valuesaf, used are tabu-

yy

lated in Table 23.

TABLE 23. Perfectly Matched Layer parameters used for truncated waveguide.

layer 1 layer 2 layer 3 layer 4 layer 5
o 1.8 7.2 16.2 28.8 45

The simulation was run for 20 seconds, the number of time steps dependinjtupon
which of course is different for each grid. Unlike the spherical cavity problem where only
the electric field was calculated using PDE I, for the waveguide problem both the electric
and magnetic fields were computed using PDE I. The time step, number of steps, ICCG
iterations, and CPU time are shown in Table 24. The CPU time increases for two reasons;
the number of degrees of freedom increases, and the number of time steps increases. Note,

however, that the number of ICCG iterations is independent of the grid spacing, hence the
method require® (n)  operations per time step. The same stopping criteria was the same

as for the spherical cavity, i.e., equation (227).

TABLE 24. CPU time for chevron waveguide calculations.

(h/a) | e 1/8 1/10 1/12 1/14
# cells 1080 2560 5000 8640 13720
#edges | 4425 9756 18215 30522 47397
At 0.016666 | 0.0125 0.01 0.00833%  0.007142
# steps 1272 1696 2120 2544 2068
ICCG iter. | 5.7 5.7 5.7 5.7 5.7

CPU sec. | 352 1719 5163 12267 23161
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The computed electric and magnetic fields in the waveguide are compared to the exact
solution. There are several measures by which the computed solution can be compared to

the exact solution. The first measure is the standard norm, given by

(233)

L, error = /\/i (Eexact_ Ecomputea ¢ (Eexact_ Ecomputea dQ.

The computed and exact vector electric field is evaluated at the center of every hexahedral

cell. The difference is the error field. The norm of the error field is then divided by the

L, norm of the exact field, where thg  norm is approximated using the midpoint rule.

This is shown in (234) below, where the sum is over all the hexahedral cells (excluding

PML cells) in the grid.

r = Jy (Eexact_ Ecomputea * (Eexact_ Ecomputea.
A/Z Eexact' Eexact

relative L2 erro

(234)

Thel, norm defined by (234) is tabulated in Table 25 as a function of grid spacing. The

logarithm of the error versus the logarithm (df/ a) is shown in Figure 58 along with a
linear least-square fit. The slope of the line is 1.15, indicating that the method is first order

accurate.

TABLE 25. Error versus grid spacing for chevron waveguide.

(h/a) |16 1/8 1/10 1/12 1/14
# cells 1080 2560 5000 8640 13720
L, error | 0-3365 0.2265 0.1738 0.1436 0.1273
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FIGURE 58. Log error versus Log h indicating first order accuracy.
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In Section 8.2 analysis of the computed resonant frequencies of a spherical cavity indi-
cated that the DTVFEM is second order accurate. This agrees with the analytical numeri-
cal dispersion analysis of the method, Section 5.4 and [43]. However, the above results
indicate first order accuracy. This is not a discrepancy, it is simply that different measures
can lead to different accuracies. While the classic FDTD method [1]-[4] and related finite

volume methods [6]-[9] are often considered to be second order accurate, they are only

first order accurate according to thg ~ norm. This can be explained as follows.

Numerical dispersion is a measure of how the numerical phase velocity, i.e., the velocity
of a wave on a finite grid, compares to the exact phase velocity. A second order accurate
numerical dispersion relation means that the numerical phase velocity agrees with the

exact phase velocity to second order in the Taylor series sense. Consider a simple two-
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dimensional Cartesian grid with a known electric field boundary condition on the left hand
side atx = 0 . This is illustrated in Figure 59. An electromagnetic wave induced by the
boundary condition propagates to the right. Since the DTVFEM is energy conserving, i.e.,
non-dissipative, the wave will propagate in the with constant amplitude, but with a
slightly incorrect velocity due to numerical dispersion. Thus the value of the computed

electric field at some point = x,  will not agree with the exact electric fiekd=atx,

due to the phase difference. This difference between the computed electric field and the

exact electric field at = x, is second order. Thus in this sense the DTVFEM, along with

the classic FDTD and other finite volume variants, are second order accurate.

However theL, norm is a very different measure of the error. Consider a single cell with
the electric field known along the edges of the cell as shown in Figure 6Q,The  erroris

defined by (233) where the integral is over the square cellkThe component of the elec-

tric field is known at two differengy  positions, tfie component of the electric field is
known at two differenk  positions. Let the exact electric field be denoté&d by  and the

approximate electric field be denoted %y . The only possible forn of s
E = X(Exy+ (EX,—Ex))y) +§(Eyy+ (Ey; —Eyg)X) , (235)

i.e., thex component(& is linearyn but constant in , likewiség/the componént of
is linear inx and constantin . SinEe s an arbitrary vector function, arid the compo-

nent ofE is independent of and the componerffof is constagnt in , the approxima-
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tion is only first order accurate within the cell. This is true for the DTVFEM method as

well as the classic FDTD method the finite volume variants. All of this analysis is equally
valid for three dimensional grids. It should be noted that first drger  accuracy is ade-
guate form most applications, and if not, higher order finite elements can be developed.
The fact that higher order elements can be developed is an important advantage of finite
element methods in general. Higher order vector finite elements have been used in the fre-
guency domain to solve the vector Helmholtz equation [82]. While use of these elements
does give a faster rate of convergence as the grid is refined, the computation cost rises dra-
matically. It is not clear which element gives optimal price/performance. It is interesting to

note that while it is possible to develop “higher order” FDTD methods using high order

finite difference schemes, the computed results are still only first order accuraté jn the

sense. Higher order finite difference schemes give rise to a higher order dispersion rela-

tion, but the only way to increase the rate of convergence inthe  sense is to increase the

number of degrees of freedom per cell.
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FIGURE 59. Wave propagating to the right on a 2D grid.

FIGURE 60. Electric field within a single cell.
Ex1

ExO

There are several other measures of error that are applicable for this specific waveguide

problem. For example, it is possible to compare the computed impedance to the exact

impedance, where the impedance for Titg mode is defined as

Z = E/H,. (236)

The exact impedance & = wu/B, , whichis a constant in the guide. Since the com-

puted fields are “noisy”, the computed impedance is defined to be the average impedance
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over the entire guide. Another measure is to compare the computed wavelength to the
exact wavelength. The wavelength is computed by fitting a sine wave to the magnitude of

the electric field, the period of best fit sine wave defining the wavelength of the electric

field. The exact wavelength for this problems is simily= 21/ 3,

Finally, another measure that is applicable to this wave guide problem is the voltage stand-

ing wave ratio (VSWR). The VSWR is defined as

VSWR= w, (237)
|Emin|

where|Ema>J is the maximum of the time average electric field in the waveguide, and

|Emm| is the minimum of the time average electric field in the waveguide. For an infinite

waveguide, or a perfectly terminated finite length waveguide, the VSWR is 1.0. For a ter-
minated waveguide, the VSWR can be expressed as a function of the reflection coefficient
of the termination

vswr= 1=1el
+ |l

(238)

[ —

wherep is the reflection coefficient. The VSWR was computed by determining the maxi-
mum and minimum fields over one period, and the reflection coefficient is then computed

from

_1-VSWR

" 1+VSWR (239)

Pl
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The reflection coefficient is a measure of how effective the PML is. If the PML was in fact

perfect, the reflection coefficient would be zero. The error according to,the  norm,

impedance, wavelength, VSWR, and reflection coefficient are shown in Table 26. The
computed electric and magnetic fields are shown in Figure 61 and Figure 62 for the 5000

cell waveguide.

TABLE 26. Quality of computed fields for PML terminated waveguide.

L reflection
A/a 2 impedance | wavelength| VSWR | coefficient
1/10 17.38% 2.713% 0.453% 1.057 -31dB

FIGURE 61. Computed z component of electric field in PML terminated waveguide.
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FIGURE 62. Computed x component of magnetic field in PML terminated waveguide.

8.4 Dipole Antenna

In this section, the radiated fields due to a small current source are computed using

VFEM3D and compared to the exact analytical solution. Let the current be at the origin
and aligned in th& direction, and let the observation point ke, 3t 2) as illustrated in

Figure 63. The current is oscillating at frequency
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FIGURE 63. Coordinate system for dipole radiation calculation.

(x.y,2)

The exact frequency domain solution is given by

15 0A,  0A,
uEF(ay ~¥s Dcos(wt+9)

aA 0A, 0A, oA, ]
- %a 5.9 SERA “Lsin (wt +6),
wue axdz ayaz EBxax aya

(240)
where thez component of the complex magnetic vector potéatial  is
I L/2 (LiBR)
= K EXpHPR)
A= am o dz, (241)
-L/2

and@ = arg(A) . The integral in (241) was evaluated numerically using Gaussian

quadrature.

The parameters for this computational experiment were 107.3132 and

L = A/12 = 0.00487916 The problem was modeled using a hemispherical grid con-



164

sisting of 12032 hexahedral cells and 38005 edges. A hemisphere was used since the radi-
ated fields are symmetric with respect tozhe 0 plane, thus a perfectly conducting
ground plane with &/2 current source generates the same fields as a current source of
lengthL in free space. The grid had a spaciniy ef A/24 = 0.00243972 at the origin,

and the grid spacing increases away from the origin. The current source is exactly two

edge lengths long. The current source used in the computation is given by

t .
I(t) = El—exp%—%z—_rg%sm(wt) , (242)

whereT = 0.0147. The simulation was run for 0.05855 seconds using a time step of

At = 0.0001 seconds, which corresponds to 585 time steps.

In order to simulate free space, the same 5 layer PML used for the waveguide in
Section 8.3 was used for this problem, except that the conductivity tensor is rotated such
that the axial direction corresponds to the radial direction. This PML will absorb outgoing

waves, or waves normal to the outer surface of the grid. The PML began at radius

a = A = 0.05855and the grid was terminatedlat= 1.5\ = 0.087825 . The grid is
shown in Figure 64. The relatite,  error was computed in the same manner as for the
waveguide, i.e., according to (234) where the sum is over all cells excluding PML cells.
The computed electric field matched the exact electric field to within 1.6% usihg the

error criteria. This is an excellent result since the electromagnetic field structure is quite
complicated in the near field of the antenna. Snapshots of the computed electric and mag-

netic field are shown in Figure 65 and Figure 66 respectively.
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FIGURE 64. lllustration of hexahedral grid with 5 layer PML used for dipole calculation.

FIGURE 65. Computed electric field magnitude in vicinity ofA/ 12 dipole.
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FIGURE 66. Computed magnetic field in vicinity ofA/ 12 dipole.

8.5 Parallel Results

Two different parallel computers were used, the Meiko CS-2 and the Cray T3D. The
Meiko CS-2 consists of 48 computational nodes. Each computational node consists of
dual 90 MHz SPARC microprocessors (90 MFLOPS peak theoretical), 128 MB of mem-
ory, and a one 1-GB hard disk. The computational nodes communicate with each other
over a 50 MB/s peak network. No explicit effort was made to take advantage of the dual

processors on each node.

The Cray T3D system consists of the 256 processor T3D and a 3 processor YMP front
end. The T3D processors are 150 MHz DEC Alpha microprocessors (150 MFLOPS peak
theoretical). Each processor has 8 MW of memory. The T3D processors communicate

with each other over a 140 MB/s peak network. The Parallel Virtual Machine (PVM) ver-
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sion 3 message passing library was used to perform all of the communication tasks on
both the Meiko and the Cray. No non-standard PVM extensions were used. It should be
noted that complicated data structures are required to allow for arbitrary partitioning of
arbitrary grids, and the data structures used in VFEM3D may not be optimal. Thus the

results shown below should not be considered the best than can be achieved.

The test problem consisted of simple sphere excited by a pulsed current source. Two dif-
ferent grids were used, a tetrahedral grid with 62618 cells and an hexahedral grid with
169440 cells. The grids are not shown since they were too large. As described in
Section 7.2, domain decomposition is used on the grid. The actual RSB method used to
decompose the grid is described in [72]. Each grid was decomposed into a power-of-two
number of sub grids from 1 to 32. The computer CPU time for the Meiko CS-2 is tabu-
lated in Table 27 and Table 28 for both grids as a function of the number of processors.
This CPU time is for the time stepping part of the code only, it does not include time
required for computing the matrices. The matrix calculation is trivially parallel thus there

is no need to experimentally determine the parallel efficiency.

TABLE 27. Meiko performance on 62618 cell tetrahedral grid.

# processors | 1 2 4 8 16 32
JCG iter 20.7 20.7 20.7 20.7 20.7 20.7
JCG cpu sec 271 121.2 54.2 27.8 18.1 11.7
ICCG iter 8.1 14.4 15.3 16.2 17.1 17.1
ICCG cpu sec, 87.9 46.6 43.8 20.1 13.6 8.86

TABLE 28. Meiko performance on 169440 cell tetrahedral grid.

# processors | 1 2 4 8 16 32
JCG iter 35.5 35.5 35.5 35.5 35.5 35.5
JCG cpu sec 1097 532 274 145 83.5 46.3
ICCG iter 7.2 8.1 19.09 21.8 22.5 23.1

ICCG cpu sed| 453 205 190 134 77.4 455
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The data in Table 27 and Table 28 indicate that the number of Jacobi preconditioned CG
iterations is independent of the number of processors used, as expected. However, the
number of block ICCG iterations grows as the number of processors is increased. As
shown in Section 7.3, the form of this preconditioner is dependent upon the domain
decomposition. Use of block incomplete Cholesky preconditioner reduces the number of
CG iterations, and hence reduces communication, but at the expense of increased work per
iteration. For four or fewer processors, block ICCG is faster than Jacobi CG, for eight or

more processors the CPU time is virtually identical. The absolute CPU time and the

speedup curves for the Meiko are shown in Figure 67 - Figure 70.

FIGURE 67. Meiko CPU time on 62618 tetrahedral grid: Jacobi CG vs. block ICCG.
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FIGURE 68. Meiko CPU time on 169440 hexahedral grid: Jacobi CG vs. block ICCG.

1000

800

CPU seconds

200

600

400

K

———e Block ICCG

& ————a  Jacobi CG

|

|

|

|

1
1
1
|
|
*

5 10 15 20 25

number of processors

30

FIGURE 69. Meiko speedup: block ICCG vs. Jacobi CG on 62618 tetrahedral grid.
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FIGURE 70. Meiko speedup: block ICCG vs. Jacobi CG on 169440 hexahedral grid.
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The same computational experiments were performed on the Cray T3D, with the results
shown in Table 27 and Table 28. In general, the Cray T3D was faster then the Meiko CS-2
for a given number of processors. However, block ICCG was not as effective on the Cray
as it was on the Meiko. This is due to the fact that the Cray has faster communication,
reduction in the number of CG iterations, with a consequent reduction in the amount of
message passing, is not as significant on the Cray as on the Meiko. Another factor could
be that the block IC preconditioner requires both a forward and backward substitution on
an unstructured data structure. This process does not vectorize well on the Cray, hence, it

costs more to perform the block IC preconditioning on the Cray than on the Meiko. In
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other words, on the Cray, it is better to perform many fast iterations than fewer slow itera-

tions.

TABLE 29. Cray performance on 62618 cell tetrahedral grid.

# processors | 1 2 4 8 16 32
JCG iter 20.7 20.7 20.7 20.7 20.7 20.7
JCG cpu sec 271 121.2 54.2 27.8 18.1 11.7
ICCG iter 8.1 14.4 15.3 16.2 17.1 17.1
ICCG cpusec 87.9 46.6 43.8 20.1 13.6 8.86

TABLE 30. Cray performance on 169440 cell tetrahedral grid.

# processors | 1 2 4 8 16 32
JCG iter 35.5 35.5 35.5 35.5 35.5 35.5
JCG cpu sec 1097 532 274 145 83.5 46.3
ICCG iter 7.2 8.1 19.09 21.8 22.5 23.1
ICCG cpu sec| 453 205 190 134 77.4 45.5

The absolute CPU time and the speedup curves for the Cray T3D are shown in Figure 71 -
Figure 74. While the absolute CPU time for the Cray is less than for the Meiko, the
speedup curves are essentially the same. As discussed in Section 7.1 the causes of non-
optimal speedup include: 1) a portion of the algorithm may be inherently serial, 2) a load
imbalance, 3) interprocessor communication, and 4) extra work. The portion of VFEM3D
that is inherently serial is quite small and is negligible compared to the other factors. Load
imbalance is an important factor in the above results. For example, on the 32 processor
calculation on the 62618 cell tetrahedral grid the maximum number of degrees of freedom
was 2380, while the minimum number was 2305. Also, some processors sent more mes-
sages than others, the minimum number of messages was 6 and the maximum was 12.
Thus, there is a slight load imbalance in the amount of floating point calculations per-
formed on each processors, and another imbalance in the amount of time spent sending/

receiving messages. The amount of load imbalance is dependent upon the domain decom-
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position. As mentioned in Section 7.2, VFEM3D allows for arbitrary partitioning of a

grid, the partitioning of the grid is described by a color file. The RSB algorithm was used

to generate the color file. Other algorithms may generate a better partitioning of the grid,
this was not investigated. While the load imbalance is the same for the two machines the
actual time spend sending/receiving messages is different since the communication hard-
ware and software is different. The actual time spent sending/receiving messages could be
significantly reduced by using a different communication library such as MPI or

SCHMEM, but this was not investigated. There is also a significant amount of extra work
required in order to perform the message passing. For example, it is necessary to figure out
exactly which subdomains share information and which information they share. All of this
message passing information is computed once and stored in a data structure, but this data
structure must be accessed every time message passing is to occur. This is an example of
extra work. As the number of processors increases, the amount of work done by each pro-
cessor decreases, and the amount of extra work and communication increases. This is
exemplified by the fact that the speedup for the 169440 cell grid is much better than for the

smaller 62618 cell grid.



FIGURE 71. Cray CPU time on 62618 tetrahedral grid: Jacobi CG vs. block ICCG.

CPU seconds

100

80

60 |

40 +

20

number of processors

1
|
|
\ e—& Block ICCG
Jacobi CG
____________ ———— 4
10 15 20 25 30

FIGURE 72. Cray CPU time on 62618 tetrahedral grid: Jacobi CG vs. block ICCG.

CPU seconds

150

125

100

75

50

25 ¢

———e Block ICCG
a4 ————Aa Jacohi CG
10 15 20 25 30

number of processors

173



FIGURE 73. Cray speedup: block ICCG vs. Jacobi CG on 62618 tetrahedral grid.
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9.0 Conclusion

9.1 Summary of the method

The primary goal of this research effort was to develop a “FDTD-like” method that gives
physically reasonable results for any grid. In this dissertation, physically reasonable

means that the method is stable, energy is conserved, charge is conserved, and the continu-
ity/discontinuity of the electromagnetic fields across a material interface are modeled
properly. In this dissertation a method, called the Discrete Time Vector Finite Element
Method (DTVFEM) is derived, analyzed, and validated. The DTVFEM uses covariant
vector finite elements as a basis for the electric field and contravariant vector finite ele-
ments as a basis for the magnetic flux density. These elements are complementary in the
sense that the covariant elements have tangential continuity across interfaces whereas the
contravariant elements have normal continuity across interfaces. The Galerkin approxima-
tion is used to convert Ampere’s and Faraday’s law to a coupled system of ordinary differ-

ential equations (ODE). The leapfrog method is used to advance the fields in time.

By construction the DTVFEM correctly models the jump discontinuity of electromagnetic
fields across material discontinuities. In Section 5.0, it is proved that the DTVFEM
method is conditionally stable, and if the time step is chosen such that the method is sta-
ble, it will conserve energy and conserve charge independent of how coarse the grid is. In
addition a numerical dispersion analysis indicates that the method is second order accu-
rate, even on distorted, but regular, three dimensional hexahedral grids. However, like

most finite element methods, the DTVFEM requires that a sparse linear system be solved
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at every time step. This is a disadvantage compared to FDTD and FVTD methods. In
Section 6.0, the solution of large, sparse, unstructured matrices that arise in the DTVFEM
is discussed. It is shown that for a Cartesian grid there are two options: 1) capacitance
lumping can be employed in which case the DTVFEM reduces to the classic FDTD
method, or 2) the capacitance matrix can be inverted exactly, using a direct Cholesky
decomposition, ir0D (n) operations. For unstructured grids, iterative methods must be
employed. Several iterative methods were investigated, the most useful being stationary
iteration or conjugate gradient. The incomplete Cholesky decomposition was investigated
as a preconditioner for both the stationary iteration and the conjugate gradient method.
The computational effort required to solve the system depends upon how distorted the grid

is. In Section 7.0, parallelization via domain decomposition is reviewed.

The DTVFEM has a combination of attributes not shared by other unstructured grid, time-

domain methods for solving Maxwell's equation. Specifically, the DTVFEM

Is valid for unstructured grids

« allows for tensor permittivity, permeability, and conductivity

» correctly models field continuities/discontinuities across material interfaces

* reduces to FDTD for Cartesian grids

* is conditionally stable

* IS energy conserving

* is charge preserving

* is 2nd order accurate in the dispersion relation sense
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* is 1st order accurate in thhg, ~ sense when using linear finite elements.

9.2 Summary of the results

Only so much can be proved about the DTVFEM; at some point it is necessary to imple-
ment the method in software and perform computational experiments. The software devel-
oped under this research effort is referred to as VFEMS3D. It is not really a single computer
program, but actually a suite of programs. The software has been installed on a variety of
computers including a Apple Macintosh lici, HP/SUN/SGI Unix workstations, and two

parallel supercomputers.

In Section 8.0, VFEMS3D is validated by comparing computed solutions to analytical solu-
tions for a simple resonant cavity, waveguide, and antenna. The accuracy and computer

CPU time is tabulated for a variety of different grids. It is established that the DTVFEM is

second order accurate in the dispersion relation sense and first order accuratg in the

norm sense, which is comparable to the classic FDTD method.

Several computational experiments are performed in order to investigate how the specific
method used to solve the linear system impacts the accuracy and the efficiency of the
method. It is shown that for a uniform Cartesian grid capacitance lumping works well,
hence the popularity of the classic FDTD method for such grids. For general hexahedral or
tetrahedral grids, iterative methods are used to solve the linear system. It is shown that as

the grid is refined the number of iterations remains constant, hence the DTVFEM is of

O (n) complexity. The number of iterations is dependent upon how distorted the grid is
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and is problem dependent; the spherical cavity using a hexahedral grid required 7.8 ICCG
iterations on average whereas the chevron waveguide using a hexahedral grid required 5.7
ICCG iterations. While the DTVFEM method@(n) , it is more computationaly inten-
sive then other finite difference and finite volume methods that do not require the solution

of linear systems at all.

It is also shown that the recently developed PML concept can be used to approximate an
infinite space using a finite grid. Since VFEM3D allows for arbitrary tensor material prop-
erties, the PML concept is trivial to implement. While the PML concept worked well for

the problems investigated in this dissertation, other approaches may be more accurate and/

or more efficient, this was not investigated.

VFEMS3D was tested on two MIMD distributed memory computers, the Meiko CS-2 and
the Cray T3D. Domain decomposition is used to decompose the spatial domain into sub-
domains. The RSB algorithm is used to perform the composition. VFEM3D follows the
SPMD paradigm where each processor executes the same program, but on different grids.
Each processor communicates with other processors via message passing. The PVM mes-
sage passing library was used on both the Meiko and the Cray. The crux of the paralleliza-
tion is the solution of the linear system. The computer CPU time versus number of
processors was examined. The point Jacobi preconditioned conjugate gradient method
scaled well, with the standard result that if the surface-to-volume ratio of the sub-domains
was small, the parallel speedup was good. It was also shown that for small number of pro-
cessors, block incomplete Cholesky preconditioned conjugate gradient was very effective.

As the number of processors increases the performance reduced to that of point Jacobi
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preconditioned conjugate gradient. This is because the preconditioner is dependent upon
the decomposition, and the number of iterations grows as the number of processors

increases.

9.3 Future research

The DTVFEM described in this dissertation is by no means the “last word” in computa-
tional electromagnetics. However, it is definitely a step in the right direction since it works
as well on random unstructured grids as it does on Cartesian grids. There are many ques-
tions that remain to be answered. Like other finite element methods the DTVFEM would
benefit from a faster sparse matrix solver. Perhaps approximate inverse methods [83][84]
or multigrid methods [85] could be used to speed up the linear solve portion of the

DTVFEM.

In this research effort, the materials were restricted to be linear and non-dispersive. How-
ever there are many interesting and important applications that require accurate modeling
of nonlinear and dispersive materials. Dispersive material models have been incorporated
into the FDTD framework [86][87], and nonlinear material models have been investigated
also [88][89]. These same models could in theory be incorporated into the DTVFEM

framework.

Finally the most intriguing future research direction is the incorporation of charged parti-
cles, either discrete or fluid, into the method. The addition of charged particles into the
problem means the electric field is no longer divergence free everywhere, but only diver-

gence free in cells with no net charge. The magnetic field, on the other hand, remains
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divergence free for all time. Several researchers have proposed finite element particle-in-
cell methods and finite element fluid plasma methods [90]-[92]. Methods that model the
fields using traditional nodal elements will have problems similar to those encountered
when solving Maxwell’s equations; charge might not be conserved, energy might not be
conserved, and boundary conditions might not be modeled appropriately. Perhaps the
electric field should be decomposed into solenoidal (divergence free) and irrotational (curl
free) components, with the solenoidal component approximated by covariant edge ele-
ments and the irrotational component approximated by contravariant face elements. The
charge density would be approximated by discontinuous, i.e. three-form, volume ele-
ments. Of course, the Lorentz force law would have to be included to move the charge
around, and the charge position and velocity would be updated in a leapfrog fashion just
like the electric and magnetic fields are. Such a method could, in theory, conserve every-
thing that is supposed to be conserved independent of how random or coarse the underly-

ing unstructured grid is.
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11.0 Appendix: Mathematica Scripts

11.1 Mathematica script for generating linear vector basis functions on
a tetrahedron

(* generate and plot nedelec original linear elements on a tetrahedron*)
a ={a0,al,a2,a3,a4,a5};

(* define edge polynomial space*)
pedge = {a[[1]] + a[[2]] y + a[[3]] z,
a[[4]] - a[[2]] x + a[[5]] z,

a[[6]] - a[[3]] x - a[[5]] v}
(*define face polynomial space?*)
pface = {a[[1]] + a[[4]] x,a[[2]] + a[[4]] y.a[[3]] + a[[4]] z};
(* define normal vectors*)
n={

{0,0,-1},
{0,-1,0},
{-1,0,0},
{1,1,1}/Sqrt[3]
I§

(* define tangent vectors*)
t={

{1,0,0},

{0,1,0},

{0,0,1},
{-1,1,0}/Sqrt[2],

{-1,0,1}/Sqrt[2],



{0,-1,1}/Sqrt[2]
2
(* construct the edge elements*)

eq = Table[0,{i,1,6}];

eq[[1]] = Integrate[x = s;y = 0;z = O;pedge . t[[1]],{s,0,1}];
eq[[2]] = Integrate[x = Oy = s;z = O;pedge . t[[2]],{s,0,1}];
eq[[3]] = Integrate[x = 0;y = 0;z = s;pedge . t[[3]].{s,0,1}];
eq[[4]] = Integrate[x = 1-s/Sqrt[2];y = s/Sqrt[2];z = O;pedge . t[[4]].{s,0,Sqrt[2]}];
eq[[5]] = Integrate[x = 1-s/Sqrt[2];y = 0;z = s/Sqrt[2];pedge . t[[5]].{s,0,Sqrt[2]}];

eq[[6]] = Integrate[x = 0;y = 1-s/Sqrt[2];z = s/Sqrt[2];pedge . t[[6]].{s,0,Sqrt[2]}];

A = Table[0,{i,1,6},{,1,6}1;
Do[

Do[

A[[i,j]] = Coefficient|[Expand[Simplify[eq([i]]]].al[ill],

{i.1,6}],
{i.1,6}];
W = Table[0,{i,1,6}];
Do[
rhs = Table[0,{j,1,6}];
rhs[[i]] = 1,
s = LinearSolve[A,rhs];
X =5y=.,2=
WILJ] = {s[[1]] + sl[2]] y + sI[3]] z,
s[[4]] - s[[2]] x + s[[3]] z,

s[[6]] - s[[3]] x - s[[5]] y},
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{i,1,6}];
Dol[Print[WI[[i]]].{i,1,6}]
(* plot the edge elements*)

<< Graphics PlotField3D"

mytet = Graphics3D[Line[{{0,0,0},{1,0,0},{0,1,0},{0,0,0},

{0,0,1},{0,1,0},{0,0,1},{1,0,0}}1I;
myplot = Table[0,{i,1,6}];
Do[
data = Table[0,{i,1,500}];
n=0;
Do[
X=1l/8;
Do[
y=j/8
Do[
z=k/8;
Ifix+y+z<=1,
n=n+1;
data[[n]] = {{x.y,z},WI[[iill}
1,
{k,0,8}],
{i.0.8},
{i.0,8}];

data = Drop[data,-(500-n)];
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myplot[[ii]] = Show[ListPlotVectorField3D[data,
VectorHeads->True,ScaleFactor->.15,
PlotLabel->StringJoin[*W”, ToString[ii]],
ViewPoint->{10,5,5},
(* SphericalRegion->True, *)
BoxRatios->{1,1,1},
Boxed->False,
DefaultFont->{"Helvetica”,12}],mytet],
{ii,1,6}];
Display[“plotl.ps”,GraphicsArray[{{myplot[[1]],myplot[[2]]},
{myplot[[3]],myplot[[4]]},
{myplot[[5]],myplot[[6]1}}]];

(* construct the face elements*)
eq = Table[0{i,1,4}];
eq[[1]] = Integrate[x = .;y = .;z = O;pface . n[[1]],{x,0,1}{y,0,1-x}];
eq[[2]] = Integrate[x = .;y = 0;z = .;pface . n[[2]],{x,0,1},{z,0,1-x}];
eq[[3]] = Integrate[x = Ojy = .;z = .;pface . n[[3]].{y,0,1},{z,0,1-y}];
eq[[4]] = Integrate[x = .}y = .;z = 1-x-y;(pface . n[[4]])/n[[4,3]].{x,0,1},{y,0,1-x}];
A = Table[0,{i,1,4},{j.1,4}];
Do[

Dol

Alli.jl] = Coefficient[Expand[Simplify[eq[ifl]].a[[i]ll.

{1.1.,4}],

{i.1,4}];

F = Table[0,{i,1,4}];



Do[
rhs = Table[0,{j,1,4}];

rhsf[i]] = 1;

s = LinearSolve[A,rhs];

X =.y=.z2=

FIIIT = {s{[L]] + s[[4]] x,

s[[2]] + s[[4]] v,
s[[3]] + s[[4]] z},
{i,1,4}];

Do[Print[F[[i]]].{i,1,4}];

myplot = Table[0,{i,1,4}];

Do[

data = Table[0,{i,1,500}];

Do[
y=j/8;
Do[
z=k/8;
Ifix+y+z<=1,

n=n+1;

data[[n]] = {{x.y,z},F[[i]]}

1,
{k,0,8}],
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{1.0.8},
{i.0,8}];
data = Drop[data,-(500-n)];
myplot[[ii]] = Show[ListPlotVectorField3D[data,
VectorHeads->True,ScaleFactor->.15,
PlotLabel->StringJoin[*F”, ToString[ii]],
ViewPoint->{10,5,5},
(* SphericalRegion->True, *)
BoxRatios->{1,1,1},
Boxed->False,
DefaultFont->{*Helvetica”,12}],mytet],
{ii,1,4}];
Display[“plot2.ps”,GraphicsArray[{{myplot[[1]],myplot[[2]]},

{myplot[[3]],myplot[[4]1}}]];
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11.2 Mathematica script for generating linear vector basis functions on
a hexahedron

(*this is a Mathematica script for generating

vector basis functions, both edge and face,

for hexahedral elements.

this script can be used to generate 3D plots

of vector basis functions, or to generate

elemental matrices.

the user must specify rr, the location of

eight nodes. see bottom of this script.

subroutine MakeLocal makes the basis functions,

subroutine MakeCurl computed the curl of the functions,

subroutine MakeMatrices computes the elemental matrices,

subroutine PlotHex plots the hexaheron,

subroutine PlotLocal Edge plots the local (undistorted)
edge basis functions,

subroutine PlotLocal face plots the local (undistorted)
face basis functions,

subroutine PlotEdge plots the edge basis functions,

subroutine PlotFace plots the face basis functions.

*)

<< Graphics'PlotField3D"

map = {

{1,2},

{4.3},
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{5.6},

{87},

{14},

{58},

{2.3},

{6.7},

{15},

{2.6},

{4.8},

{3.7}

I

MakeLocal := (

psi = .;

eta=.;

nu=.;

Print[*making lambda’];

lambda = {

1-eta-nu+etanu - psi+etapsi+ nupsi-etanu psi,
psi - eta psi - nu psi + eta nu psi,
eta psi - eta nu psi,

eta - eta nu - eta psi + eta nu psi,
nu - eta nu - nu psi + eta nu psi,
nu psi - eta nu psi,

eta nu psi,

eta nu - eta nu psi



g

hi[psi_,eta_,nu_] = lambda[[1]];
h2[psi_,eta_,nu_] = lambda[[2]];
h3[psi_,eta_,nu_] = lambda[[3]];
h4[psi_,eta_,nu_] = lambda[[4]];
h5[psi_,eta_,nu_] = lambda[[5]];
h6[psi_,eta_,nu_] = lambda[[6]];
h7[psi_,eta_,nu_] = lambda[[7]];

h8[psi_,eta_,nu_] = lambda[[8]];

Print[“making jac’];

xx = Simplify[Sum[lambdal[[i]J*rr[[i, 1]1,{i,1,8}];
yy = Simplify[Sum[lambdal[i]]*rr([i,2]].{i,1,8}];
zz = Simplify[Sum[lambdal[[i]]*rr[[i,3]].{i,1,8}]];
jac[psi_,eta_,nu_] ={
{D[xx,psi],Dlyy,psi],D[zz,psi]},
{D[xx,eta],D[yy,eta],D[zz,eta]},
{DDxx,nu],D[yy,nu],D[zz,nul}

J§

Print[*making G”];

G[psi_,eta_,nu_] = jac[psi,eta,nu] . Transposeljac[psi,eta,nu]];

Print[“making W'];

templ[psi_,eta ,nu_] = {lambda[[map[[1,1]]]]+lambda[[map[[1,2]]]],0,0};
temp2[psi_,eta_,nu_] = {lambda[[map[[2,1]]]]+lambda[[map][[2,2]]]],0,0};

temp3[psi_,eta_,nu_] = {lambda[[map[[3,1]]]]+lambda[[map[[3,2]]]].0,0};
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temp4[psi_,eta_,nu_] = {lambda[[map[[4,1]]]]+lambda[[map][[4,2]]]],0,0};
temp5[psi_,eta_,nu_] = {0,lambda[[map][[5,1]]]]+lambda[[map][[5,2]]]],0};
temp6[psi_,eta ,nu_] = {0,lambda[[map[[6,1]]]]+lambda[[map[[6,2]]]],0};
temp7[psi_,eta_,nu_] = {0,lambda[[map[[7,1]]]]+lambda[[map][[7,2]]]],0};
temp8[psi_,eta_,nu_] = {0,lambda[[map][[8,1]]]]+lambda[[map][[8,2]]]],0};
temp9[psi_,eta_,nu_] = {0,0,lambda[[map[[9,1]]]]+lambda[[map[[9,2]]]]};
templO[psi_,eta_,nu_] = {0,0,lambda[[map[[10,1]]]]+lambda[[map[[10,2]1]]};
templl[psi_,eta ,nu_] ={0,0,lambda[[map[[11,1]]]]+lambda[[map[[11,2]]]]};
templ2[psi_,eta_,nu_] ={0,0,lambda[[map[[12,1]]]]+lambda[[map[[12,2]]]]};
W ={

templ,

temp2,

temp3,

temp4,

tempb5,

temp6,

temp7,

temp8,

temp9,

templ0,

templl,

templ2

I

Print[*making F"];

temp2l[psi_,eta_,nu_] = 1.0/Det[jac[psi,eta,nu]] {0,0,1-nu};
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temp22[psi_,eta_,nu_] = 1.0/Det[jac[psi,eta,nu]] {0,0,nu};

temp23[psi_,eta_,nu_] = 1.0/Det[jac[psi,eta,nu]] {0,1-eta,0};

temp24[psi_,eta_,nu_] = 1.0/Det[jac[psi,eta,nu]] {0,eta,0};

temp25[psi_,eta_,nu_] = 1.0/Det[jac[psi,eta,nu]] {1-psi,0,0};

temp26[psi_,eta_,nu_] = 1.0/Det[jac[psi,eta,nu]] {psi,0,0};

F={

temp21,

temp22,

temp23,

temp24,

temp25,

temp26

I3

);

PlotLocalEdgelii_] := (

PlotVectorField3D[WI[[ii]][psi,eta,nu],{psi,0,1}{eta,0,1},{nu,0,1},
VectorHeads->True,

ViewPoint->{100,100,100}];
);

PlotLocalFacelii_] := (
PlotVectorField3DI[F[[ii]][psi,eta,nu],{psi,0,1}{eta,0,1},{nu,0,1},
VectorHeads->True,

ViewPoint->{100,100,100}];
);
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mycurl[f_] :={

DIf[[3]].eta]-DIf{[2]].nu],

DIf[[1]],nu] - DIf[[3]].psi],

DIf[[2]].psi] - DIf[[1]],eta]
I3
MakeCurl := (
psi = .;
eta = .;
nu=_;
maggiel[psi_,eta_,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {0, -1 + eta, 1 - nu};
maggie2[psi_,eta ,nu_] := 1.0/Sgrt[Det[G[psi,eta,nu]]] {0, -eta, -1 + nu};
maggie3[psi_,eta_,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {0, 1 - eta, nu};
maggie4[psi_,eta_,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {0, eta, -nu};
maggie5[psi_,eta _,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {1 - psi, 0, -1 + nu};
maggie6[psi_,eta_,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {-1 + psi, O, -nu};
maggie7[psi_,eta_,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {psi, O, 1 - nu};
maggie8[psi_,eta ,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {-psi, 0, nu};
maggie9[psi_,eta_,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {-1 + psi, 1 - eta, 0};
maggielO[psi_,eta ,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {-psi, -1 + eta, 0};
maggiell[psi_,eta ,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {1 - psi, eta, O};
maggiel2[psi_,eta ,nu_] := 1.0/Sqrt[Det[G[psi,eta,nu]]] {psi, -eta, 0};
KW = {
maggiel,
maggie2,

maggie3,



maggie4,

maggieb,

maggie6,

maggie’,

maggies,

maggie9,

maggielO,

maggiell,

maggiel?2

I3

);

MakeBasis = (

lisal[psi_,eta ,nu_] := Inverse[jac[psi,eta,nu]] . {1,0,0};

lisa2[psi_,eta_,nu_] := Inverse[jac[psi,eta,nu]] . {0,1,0};

lisa3[psi_,eta_,nu_] := Inverse[jac[psi,eta,nu]] . {0,0,1};

basis = {

lisal,

lisa2,

lisa3

3

);

PlotHex = (

lines = Table[{AbsoluteThickness[2],Line[{rr[[map([i,1]]]],rr[[mapl[i,2]]]]}]},
{i,1,Length[map]}];

pl = Show[Graphics3DJ[lines],ViewPoint->{100,100,100}];
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);
PlotEdge[iplot_] := (
nvect = 7;

scale = 0.1;

data = Table[{{0,0,0},{0,0,0}},{i,1,(nvect+1)"3}];
ivect = 0;
Do[
psi = i/nvect;
Do[
eta = j/nvect;
Do[
ivect = ivect + 1;
nu = k/nvect;
data[[ivect]] = {{xx,yy,zz},Inverse[jac[psi,eta,nu]] .
W([iplot]][psi,eta,nu]},
{k,0,nvect}],
{1,0,nvect}],
{i,0,nvect}];
Show]ListPlotVectorField3D[data,VectorHeads->True,ScaleFactor->scale,
ViewPoint->{100,100,100}],p1]
);
PlotFace][iplot_] := (
nvect = 7;

scale = 0.1;



data = Table[{{0,0,0},{0,0,0}},{i,1,(nvect+1)"3}];

ivect = 0;

Do[

psi = i/nvect;
Do[
eta = j/nvect;
Dol
ivect = ivect + 1;
nu = k/nvect;
data[[ivect]] = {{xx,yy,zz},
Transpose[jac[psi,eta,nu]] . F[[iplot]][psi,eta,nu]},
{k,0,nvect}],
{i,0,nvect}],
{i,0,nvect}];
Showl[ListPlotVectorField3D[data,VectorHeads->True,ScaleFactor->scale,
ViewPoint->{100,100,100}],p1]

);

Mylintegratel[i_,j_] := Nintegrate[
WI([i]][psi,eta,nu] . Inverse[G[psi,eta,nu]] .
W([[j]l[psi,eta,nu] Det[jac[psi,eta,nu]],

{psi,0,1} {eta,0,1},{nu,0,1}];

Mylntegrate2[i_,j_] := Nintegrate[
KWI[i]][psi,eta,nu] . G[psi,eta,nu] .
KWI[[j]l[psi,eta,nu] Det[jac[psi,eta,nu]],

{psi,0,1}{eta,0,1},{nu,0,1}];
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Mylintegrate3[i_,j_] := Nintegrate[
F[[iN[psi,eta,nu] . G[psi,eta,nu] .
F[[]l[psi,eta,nu] Det[jac[psi,eta,nu]],

{psi,0,1},{eta,0,1},{nu,0,1}];

Mylintegrate4[i_,j_] := Nintegrate[
F[[iN][psi,eta,nu] . G[psi,eta,nu] .
KWI[[j]l[psi,eta,nu] 1.0/Det[jac[psi,eta,nu]],

{psi,0,1},{eta,0,1},{nu,0,1}];

PlotBasis]iplot_] := (

nvect = 7;

scale = 0.001;

data = Table[{{0,0,0},{0,0,0}},{i,1,(nvect+1)"3}];

ivect = 0;

Do[

psi = i/nvect;
Do[
eta = j/nvect;
Dol
ivect = ivect + 1,
nu = k/nvect;
data[[ivect]] = {{xx,yy,zz},basis[[iplot]][psi,eta,nu]},
{k,0,nvect}],
{i,0,nvect}],
{i,0,nvect}];

Show/[ListPlotVectorField3D[data,VectorHeads->True,ScaleFactor->scale,
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ViewPoint->{100,100,100}],p1]
);
MakeMatrices := (
Print[*making KK;

KK = Table[0,{i,1,6},{j,1,12}];

KKI[L, 1] = 1;
KKI[L, 2]] = -1;
KKI[L, 511 = -1;
KKI[L, 711 = 1;
KKI[2, 3]] = 1;
KKI[2, 4]] = -1;
KK[[2, 6]] = -1;
KKI[2, 8]] = 1;
KKI3, 1]] = -1;
KKI[3, 3]] = 1;
KKI3, 9]l = 1;

KKI[[3,10]] = -1;
KKI[[4, 2]] = -1;
KK[[4, 4]] = 1;
KK[[4,11]) = 1;

KK[[4,12]] = -1;

KKI[S, 8] = 1;
KKI[5, 6]] = -1;
KKI[S, 911 = -1;

KK[[5,11]] = 1;



KKI[6, 7] = 1;
KKI6, 8]] = -1;
KKI[6,10]] = -1;
KK[[6,12]] = 1;

Print[*making CC™];

CC = Table[0.0,{i,1,12}.{j,1,12}];

Do[
Do[
CCI[i,j]] = MylIntegrate?2][i,j];
Printfi,” “j," * CC[[i,jIII;
CCID,il = CCILijIl,
{i.1,12}],
{1,1,12}];

Print[*making AA™];

AA = Table[0.0,{i,1,12},{j,1,12}];

Do[
Do[
AA[[i,j]] = MyIntegratel[i,j];
Printfi,” “j," “AA[[LIL
AA[LTT = AAILLL
{i.1,12}],
{i,1,12}];
Print[*making DD"];
DD = Table[0.0,{i,1,6}.{j,1,6}];

Do[
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Do[

DDI][i,j]] = MyIntegrate3]i,j];

Print[i,” “,j,” “,DD[[i,j]ll;
DD, i]] = DD{[ijIl,
{i.i.6}],
{i,1,6}];
);
pp = {
{0,0,0},
{1,0,0},
{1,1,0},
{0,1,0},
{0,0,1},
{1,0,1},
{1,1,1},
{0,1,1}
g
(* shift hex n x and in z*)
phi = 60;
theta = 60;
rr={
{0,0,0},

{1,0,0},

{1 + N[Cos[Pi / 180 * phi]] * N[Sin[Pi / 180 * theta]],

N[Sin[Pi / 180 * phi]] * N[Sin[Pi / 180 * theta]],
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N[Cos[Pi / 180 * theta]]

12

{N[Cos[Pi / 180 * phi]] * N[Sin[Pi / 180 * thetal]],
N[Sin[Pi / 180 * phi]] * N[Sin[Pi / 180 * theta]],
N[Cos[Pi / 180 * theta]]

12

{0,0,1},

{1,0,1},

{1 + N[Cos[Pi/ 180 * phi]] * N[SIin[Pi / 180 * theta]],
N[Sin[Pi / 180 * phi]] * N[Sin[Pi / 180 * theta]],
1 + N[Cos[Pi/ 180 * theta]]

12

{N[Cos[Pi / 180 * phi]] * N[Sin[Pi / 180 * theta]],
N[Sin[Pi / 180 * phi]] * N[Sin[Pi / 180 * theta]],

1 + N[Cos[Pi / 180 * theta]]}};
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11.3 Mathematica script for performing numerical dispersion analysis
on distorted hexahedral grids

(*
this is a Mathematica script for performing

numerical dispersion analysis of the

DTVFEM.

the user must first compute the elemental matrices

AA and CC using subroutine covariant.m

this script computes the 3 by 3 homogeneous equation, the
roots of the equation determine the numerical

dispersion relation.

the user can either Taylor series the roots using

subroutine hex_dispersion3.m, or plot 2D curves

using subroutine hex_dispersion2.m, or plot 3D

surfaces using subroutine parametric_plot.m

*)
a=.b=.c=
W=
n=.m=.,l=;

(* shear grid in two directions*)
theta = 60;
phi = 60;
fln_m_,| ]:=Exp[-Ina] *
Exp[-I m (a Cos[Pi / 180 * phi] Sin[Pi / 180 * theta] +

b Sin[Pi / 180 * phi] Sin[Pi / 180 * theta] +



¢ Cos[Pi/ 180 * theta])] *

Exp[-11c];

(* make Ex equation*)

Print[*"makeing Q];

eql =

P*Ex*

(
AA[1,1]] +
AA[[1,2]] * f[0,1,0] +
AA[[1,3]] * f[0,0,1] +
AA[[1,4]] *f[0,1,1] +
AA[[2,1]] * f[0,-1,0] +
AA[[2,2]] +
AA[[2,3]] * f[0,-1,1] +
AA[[2,4]] * [0,0,1] +
AA[[3,1]] * f[0,0,-1] +
AA[[3,2]] *f[0,1,-1] +
AA[[3,3]] +
AA[[3,4]] * f[0,1,0] +
AA[[4,1]] * f[0,-1,-1] +
AA[[4,2]] * f[0,0,-1] +
AA[[4,3]] * f[0,-1,0] +
AA[[4.4]]

) +

P*Ey*
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AA[[1,5]] +
AA[[1,6]] * f[0,0,1] +
AA[[L,7]] * f[1,0,0] +
AA[[L,8]] * f[1,0,1] +
AA[[2,5]] * f[0,-1,0] +
AA[[2,6]] * f[0,-1,1] +
AA[[2,7]] * f[1,-1,0] +
AA[[2,8]] * f[1,-1,1] +
AA[[3,5]] * f[0,0,-1] +
AA[[3,6]] +
AA[[3,7]] * f[1,0,-1] +
AA[[3,8]] * f[1,0,0] +
AA[[4,5]] * f[0,-1,-1] +
AA[[4,6]] * f[0,-1,0] +
AA[[4,7]] * f[1,-1,-1] +
AA[[4,8]] * f[1,-1,0]

) +

P * £y *

(
AA[[L,9]] +
AA[[1,10]] * f[1,0,0] +
AA[[1,11]] * f[0,1,0] +
AA[[L,12]] * f[1,1,0] +

AA[[2,9]] * f[0,-1,0] +
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AA[[2,10]] * f[1,-1,0] +
AA[[2,11]] +
AA[[2,12]] * [1,0,0] +
AA[[3,9]] * f[0,0,-1] +
AA[[3,10]] * [1,0,-1] +
AA[[3,11]] * f[0,1,-1] +
AA[[3,12]] * f[1,1,-1] +
AA[[4,9]] * f[0,-1,-1] +
AA[[4,10]] * f[1,-1,-1] +
AA[[4,11]] * f[0,0,-1] +

AA[[4,12]] * f[1,0,-1]

Ex *

CCl[L,1]] +
CC[[1,2]] * f[0,1,0] +
CCI[1,3]] * f[0,0,1] +
CCI[1,4]] * f[0,1,1] +
CCl[2,1]] * f[0,-1,0] +
CCl2,2]] +

CCl[2,3]] * f[0,-1,1] +
CCl[2.4]) * f[0,0,1] +
CC[[3,1]] * f[0,0,-1] +
CC[[3,2]] * f[0,1,-1] +

CCI[3,3]] +
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CCI[3,4]] * f[0,1,0] +

CC[[4,1]] * f[0,-1,-1] +
CCI[4,2]] * f[0,0,-1] +
CCI[4,3]] * f[0,-1,0] +

CCI[4,4]]

Ey *

CCI[1,5]] +

CCI[1,6]] * f[0,0,1] +
CCI[12,7]] * f[1,0,0] +
CCI[1,8]] * f[1,0,1] +
CCI[2,5]] * f[0,-1,0] +
CCJ[[2,6]] * f[0,-1,1] +
CCI[2,7]] * f[1,-1,0] +
CCI[[2,8]] * f[1,-1,1] +
CCI[[3,5]] * f[0,0,-1] +
CCI[3,6]] +

CCI[3,7]] * f[1,0,-1] +
CCI[3,8]] * f[1,0,0] +
CCI[4,5]] * f[0,-1,-1] +
CCJ[4,6]] * f[0,-1,0] +
CCI[[4,7]] * f[1,-1,-1] +

CCJ[4,8]] * f[1,-1,0]
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Ez *

CC[[1,9]] +
CC[[1,10]] * f[1,0,0] +
CC[[1,11]] * f[0,1,0] +
CC[[1,12]] * f[1,1,0] +
CCI[2,9]] * f[0,-1,0] +
CC[[2,10]] * f[1,-1,0] +
CC[[2,11]] +
CC[[2,12]] * f[1,0,0] +
CCJ[[3,9]] * f[0,0,-1] +
CC[[3,10]] * f[1,0,-1] +
CCJ[[3,11]] * f[0,1,-1] +
CC[[3,12]] * f[1,1,-1] +
CCI[[4,9]] * f[0,-1,-1] +
CC[[4,10]] * f[1,-1,-1] +
CCJ[[4,11]] * f[0,0,-1] +
CC[[4,12]] * f[1,0,-1]

);

(* make Ey equation*)

eq2 =

P*Ex*

(
AA[[5,1]] +

AA[[5,2]] * f[0,1,0] +



AA[[5,3]] * f[0,0,1] +
AA[[5,4]] * f[0,1,1] +
AA[[6,1]] * f[0,0,-1] +
AA[[6,2]] * f[0,1,-1] +
AA[[6,3]] +

AA[[6,4]] * f[0,1,0] +
AA[[7,1]] * f[-1,0,0] +
AA[[7,2]] * f[-1,1,0] +
AA[[7,3]] * f[-1,0,1] +

AA[[7,4]] *f[-1,1,1] +

AA[[8,1]] * f[-1,0,-1] +

AA[[8,2]] * f[-1,1,-1] +

AA[[8,3]] * f[-1,0,0] +
AA[[8,4]] * f[-1,1,0]

) +

P * Ey *

(
AA[[5,5]] +
AA[[5,6]] * f[0,0,1] +
AA[[5,7]] * f[1,0,0] +
AA[[5,8]] * [1,0,1] +
AA[[6,5]] * f[0,0,-1] +
AA[6,6]] +
AA[[6,7]] * f[1,0,-1] +

AA[[6,8]] * f[1,0,0] +
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AA[[7,5]] * f[-1,0,0] +
AA[[7,6]] * f[-1,0,1] +
AA[[7,71] +
AA[[7,8]] * f[0,0,1] +
AA[[8,5]] * f[-1,0,-1] +
AA[[8,6]] * f[-1,0,0] +
AA[[8,7]] * f[0,0,-1] +
AA[[8,8]]

) +

P * £z *

(

AA[[5,9]] +

AA[[5,10]] * f[1,0,0] +
AA[[5,11]] * f[0,1,0] +
AA[[5,12]] * f[1,1,0] +
AA[[6,9]] * f0,0,-1] +
AA[[6,10]] * f[1,0,-1] +
AA[[6,11]] * f[0,1,-1] +
AA[[6,12]] * f[1,1,-1] +
AA[[7,9] * f[-1,0,0] +
AA[[7,10]] +
AA[[7,11]] * f[-1,1,0] +
AA[[7,12]] * f[0,1,0] +
AA[[8,9]] * f[-1,0,-1] +

AA[[8,10]] * f[0,0,-1] +



AA[[8,11]] * f-1,1,-1] +
AA[[8,12]] * f[0,1,-1]

) -

Ex *

CC[[5.1]] +
CC[[5,2]] * f[0,1,0] +
CC[[5,3]] * f[0,0,1] +
CC[[5,4]] * f[0,1,1] +
CC[[6,1]] * f[0,0,-1] +
CC[[6,2]] * f[0,1,-1] +
CC[[6,3]] +
CC[[6,4]] * f[0,1,0] +
CC[[7.,1]] * f[-1,0,0] +
CC[[7,2]] * f[-1,1,0] +
CC[[7,3]] * f[-1,0,1] +
CC[[7,4]] * f[-1,1,1] +
CC[[8,1]] * f[-1,0,-1] +
cc[[8,2]] * f[-1,1,-1] +
CC[[8,3]] * f[-1,0,0] +
CC[[8,4]] * f[-1,1,0]

) -

Ey *

(
CC[[5,5]] +
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CCI[5,6]] * f[0,0,1] +
CCI[[5,7]] * f[1,0,0] +
CCI[[5,8]] * f[1,0,1] +
CCI[[6,5]] * f[0,0,-1] +
CCI[6,6]] +

CCI[[6,7]] * f[1,0,-1] +
CCI[6,8]] * f[1,0,0] +
CCI[[7,5]] * f[-1,0,0] +
CCI[7,6]] * f[-1,0,1] +
CC[[7.7]] +

CCI[[7,8]] * f[0,0,1] +
CCI[[8,5]] * f[-1,0,-1] +
CCI[[8,6]] * f[-1,0,0] +
CCI[[8,7]] * f[0,0,-1] +

CC[[8.8]]

Ez *

CCI[[5,9]] +
CCI[[5,10]] * [1,0,0] +
CCJ[5,11]] * f[0,1,0] +
CCI[[5,12]] * f1,1,0] +
CCI[[6,9]] * f[0,0,-1] +

CCI[[6,10]] * f[1,0,-1] +

CC[[6,11]] * f[0,1,-1] +
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CCI[[6,12]] * f[1,1,-1] +
CCI[[7,9]] * f[-1,0,0] +
CCI[[7,10]] +
CCI[7,11]] * f[-1,1,0] +
CCI[[7,12]] * f[0,1,0] +
CCI[[8,9]] * f[-1,0,-1] +
CCI[[8,10]] * 0,0,-1] +

CC[[8,11]] * f[-1,1,-1] +

CC[[8,12]] * f[0,1,-1]

);

(* make Ez equations*)

eq3 =

P*Ex*

(
AA[[9,1]] +
AA[[9,2]] * f[0,1,0] +
AA[[9,3]] *f[0,0,1] +
AA[[9,4]] * f[0,1,1] +
AA[[10,1]] * f[-1,0,0] +
AA[[10,2]] * f[-1,1,0] +
AA[[10,3]] * f[-1,0,1] +
AA[[10,4]] * f[-1,1,1] +
AA[[11,1]] * f[0,-1,0] +
AA[[11,2]] +

AA[[11,3]] * f[0,-1,1] +
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AA[11,4]] * f[0,0,1] +
AA[[12,1]] * f[-1,-1,0] +
AA[[12,2]] * f[-1,0,0] +
AA[[12,3]] * f[-1,-1,1] +
AA[[12,4]] * [-1,0,1]

) +

P *Ey*

(
AA[[9,5]] +
AA[[9,6]] * f[0,0,1] +
AA[[9,7]] * f[1,0,0] +
AA[[9,8]] * f[1,0,1] +
AA[[10,5]] * f[-1,0,0] +
AA[[10,6]] * f[-1,0,1] +
AA[[10,7]] +
AA[[10,8]] * [0,0,1] +
AA[[11,5]] * f[0,-1,0] +
AA[[11,6]] * f[0,-1,1] +
AA[[11,7]] * f[1,-1,0] +
AA[11,8]] * f[1,-1,1] +
AA[[12,5]] * f[-1,-1,0] +
AA[[12,6]] * f[-1,-1,1] +
AA[[12,7]] * f[0,-1,0] +
AA[12,8]] * f[0,-1,1]

) +



P * Eg *
(

AA[[9,9]] +
AA[[9,10]] * [1,0,0] +
AA[[9,11]] * f[0,1,0] +
AA[9,12]] * [1,1,0] +
AA[[10,9]] * f[-1,0,0] +
AA[[10,10]] +
AA[[10,11]] * f[-1,1,0] +
AA[[10,12]] * f[0,1,0] +
AA[[11,9]] * f[0,-1,0] +
AA[[11,10]] * [1,-1,0] +
AA[[11,11]] +
AA[[11,12]] * f[1,0,0] +
AA[[12,9]] * f[-1,-1,0] +
AA[[12,10]] * f[0,-1,0] +
AA[[12,11]] * f[-1,0,0] +

AA[[12,12]]

Ex *

CC[[9,1]] +
CC[[9,2]] * f[0,1,0] +
CC[[9,3]] * f[0,0,1] +

CCI[9,4]] * f[0,1,1] +
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CCI[[10,1]] * f[-1,0,0] +
CCI[[10,2]] * f[-1,1,0] +
CC[[10,3]] * f[-1,0,1] +
CCI[[10,4]) * f[-1,1,1] +
CC[[11,1]] * f[0,-1,0] +
CC[[11,2]] +
CC[[11,3]] * f[0,-1,1] +
CCI[[11,4]] * f[0,0,1] +
CC[[12,1]] * f[-1,-1,0] +
CC[[12,2]] * f[-1,0,0] +
CC[[12,3]] * f[-1,-1,1] +

CC[[12,4]] * f[-1,0,1]

Ey *

CCI[9,5]] +
CCI[9,6]] * f[0,0,1] +
CCI[9,7]] * f[1,0,0] +
CCI[9,8]] * f[1,0,1] +
CCI[[10,5]] * f[-1,0,0] +
CCI[10,6]] * f[-1,0,1] +
CCI[[10,7]] +
CCI[10,8]] * [0,0,1] +
CCI[11,5]] * [0,-1,0] +

CC[[11,6]] * f[0,-1,1] +



CC[[11,7]] * f[1,-1,0] +
CC[[11,8]] * f[1,-1,1] +
CC[[12,5]] * f[-1,-1,0] +
CC[[12,6]] * f[-1,-1,1] +
CC[[12,7]] * f[0,-1,0] +

CC[[12,8]] * f[0,-1,1]

Ez *

CCI[9,9]] +
CCI[9,10]] * f[1,0,0] +
CCI[9,11]] * f[0,1,0] +
CCI[9,12]] * f[1,1,0] +
CCI[[10,9]] * f[-1,0,0] +
CCI[[10,10]] +
CCI[[10,11]] * f[-1,1,0] +
CCI[[10,12]] * f[0,1,0] +
CCI[[11,9]] * f[0,-1,0] +
CCI[[11,10]] * f[1,-1,0] +
CC[[11,11]] +
CCI[[11,12]] * f[1,0,0] +
CC[[12,9]] * f[-1,-1,0] +
CCI[[12,10]] * f[0,-1,0] +
CCI[[12,11]] * f[-1,0,0] +

CC[[12,12]]
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);

bart = {eql,eq2,eq3};

homer = {Ex,Ey,Ez};

Q = Table[Coefficient[Collect[bart[[i]],homer{[j]]],homer[[]]],
{i,1,34{,1,3}];
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11.4 Mathematica script for performing Taylor series of numerical
dispersion relation

(*
this Mathematica script performs a Taylor

series on the roots of the homogenesous equation
")

a=.,b=.c=

(* takes a long time*)

marge = Det[Q];

aaa = Coefficient[Collect[marge,P"3],P"3];

bbb = Coefficient[Collectimarge,P"2],P*2];

ccc = Coefficient[Collect[marge,P],P];

s2 = (-bbb + Sqrt[bbb”2 - 4 aaa ccc])/(2 aaa);

ans = Series[s2,{a,0,4},{b,0,4},{c,0,4}];
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11.5 Mathematica script for plotting numerical phase velocity error
curves in 2D

(*
this Mathematica script plots 2D curves
of numerical dispersion and also performs
least-square fit to determin the accuracy
the user must run covariant.m first, then
run hex_dispersion.m
")
<< Graphics Graphics’
w = .;dt = .;k = .;phi = .;theta = .;
myfunclk_,dt_,phi_,theta_] :=(

lisa = (2 Cos[w dt] - 2)/dt"2;

a = k Sin[phi] Sin[theta];

b = k Cos[phi] Sin[theta];

¢ = k Cos[theta];

myroots = Solve[Det[N[Q]] == 0,P];

rhs = myroots|[[3,1,2]];

sol = N[Solve[lisa == -rhs,w]];

omega = Re[sol[[1,1,2]]];

omega/k
);
k = N[2 Pi/5];
dt = 1/3;

theta = N[Pi/2];
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p0 = PolarPlot[myfunc[k,dt,phi,theta] - 1.0,{phi,0,2 Pi},
PlotRange->{{-.25,.25},{-.25,.25}}];

k = N[2 Pi/10];

dt = 1/3;

theta = N[Pi/2];

pl = PolarPlot[myfunclk,dt,phi,theta] - 1.0,{phi,0,2 Pi},
PlotRange->{{-.25,.25},{-.25,.25}}];

k = N[2 Pi/15];

dt = 1/3;

theta = N[Pi/2];

p2 = PolarPlot[myfunclk,dt,phi,theta] - 1.0,{phi,0,2 Pi},
PlotRange->{{-.25,.25},{-.25,.25}}];

k = N[2 Pi/20];

dt=1/3;

theta = N[Pi/2];

p3 = PolarPlot[myfunc[k,dt,phi,theta] - 1.0,{phi,0,2 Pi},
PlotRange->{{-.25,.25},{-.25,.25}}];

(* to perform a least-square fit un-comment these lines
blake = Table[0,{i,1,4}];

k = N[2 Pi/5];

dt = 1/3;

theta = N[Pi/2];

data = Table[phi =i * Pi/ 180.0;myfunc[k,dt,phi,theta],{i,1,360}];
maxdata = Max[data];

mindata = Min[data];
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ratio = maxdata/mindata,;

Print[*k = “,k,” max = “,;maxdata,” min =*“,mindata,” ratio = “,ratio];
blake[[1]] = {k,maxdata-1};

k = N[2 Pi/10];

dt = 1/3;

theta = N[Pi/2];

data = Table[phi =i * Pi/ 180.0;myfunc[k,dt,phi,theta],{i,1,360}];
maxdata = Max[data];

mindata = Min[data];

ratio = maxdata/mindata,;

Print[*k = “,k,” max = “,;maxdata,” min = “,;mindata,” ratio = “,ratio];
blake[[2]] = {k,maxdata-1};

k = N[2 Pi/15];

dt=1/3;

theta = N[Pi/2];

data = Table[phi =i * Pi/ 180.0;myfunc[k,dt,phi,theta],{i,1,360}];
maxdata = Max[data];

mindata = Min[data];

ratio = maxdata/mindata,;

Print[*k = “,k,” max = *,;maxdata,” min = *,mindata,” ratio = “,ratio];
blake[[3]] = {k,maxdata-1};

k = N[2 Pi/20];

dt = 1/3;

theta = N[Pi/2];

data = Table[phi = i * Pi/ 180.0;myfunc[k,dt,phi,theta],{i,1,360}];
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maxdata = Max|[data];

mindata = Min[data];

ratio = maxdata/mindata,;

Print[*k = *,k,” max = “,maxdata,” min = “,mindata,” ratio = “,ratio];
blake[[4]] = {k,maxdata-1};

Fit[Log[blake],{1,x},X]

*)

11.6 Mathematica script for plotting numerical phase velocity error
surfaces in 3D

(*
this Mathematica script make 3D surface plots
of numerical dispersion.
the user must first run covariant.m and
then hex_dispersion.m
")
<< Graphics Graphics’
w = .;dt = .;k = .;phi = .;theta = ;
myfunclk_,dt_,phi_,theta_] :=(

lisa = (2 Cos[w dt] - 2)/dt"2;

a = k Sin[phi] Sin[theta];

b = k Cos[phi] Sin[theta];

¢ = k Cos[theta];

myroots = Solve[Det[N[Q]] == 0,P];

rhs = myroots|[3,1,2]];

sol = N[Solve[lisa == -rhs,w]];
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omega = Re[sol[[1,1,2]]];
omegal/k
);
k = N[2 Pi/5];
dt =1/3;
p0 = ParametricPlot3D[{(myfunc[k,dt,t,u]-1) Sin[t] Sin[ul],
(myfunc[k,dt,t,u]-1) CosJt] Sin[u],
(myfunclk,dt,t,u]-1) Cos[ul},
{t,0,2 Pi},{u,0,Pil,
PlotRange->{{-0.25,0.25},{-0.25,0.25},{-0.25,0.25}},
Boxed->False,
Axes->False
I;
pl = Show|
Graphics3D[{
Line[{{-.25,0,0},{.25,0,0}}],
Line[{{0,-.25,0},{0,0.25,0}}],
Line[{{0,0,-.25},{0,0,0.25}}]}],
Boxed->False,Axes->False
I;
Show[p0,pl]



