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Abstract
Generating subject-specific, all-hexahedral meshes for finite element analysis continues to be of
significant interest in biomechanical research communities. To date, most automated methods
“morph” an existing atlas mesh to match with a subject anatomy, which usually result in
degradation in mesh quality because of mesh distortion. We present an automated meshing
technique that produces satisfactory mesh quality and accuracy without mesh repair. An atlas
mesh is first developed using a script. A subject-specific mesh is generated with the same script
after transforming the geometry into the atlas space following rigid image registration, and is
transformed back into the subject space. By meshing the brain in 11 subjects, we demonstrate that
the technique’s performance is satisfactory in terms of both mesh quality (99.5% of elements had a
scaled Jacobian >0.6 while <0.01% were between 0 and 0.2) and accuracy (average distance
between mesh boundary and geometrical surface was 0.07 mm while <1% greater than 0.5mm).
The combined computational cost for image registration and meshing was <4 min. Our results
suggest that the technique is effective for generating subject-specific, all-hexahedral meshes and
that it may be useful for meshing a variety of anatomical structures across different biomechanical
research fields.
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1. Introduction
The finite element (FE) method is an effective and widely employed numerical technique for
simulating responses of a variety of biological tissues and structures in a broad spectrum of
biomechanical engineering applications where physically based experiments are often
otherwise infeasible or unethical to perform. The success of this method depends on the
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geometrical fidelity of the FE model that represents the anatomy of interest and the accuracy
of constitutive material properties used to characterize the tissue mechanical behavior, as
well as the boundary conditions. To obtain reliable and realistic simulations with sufficient
accuracy, detailed and sophisticated FE models have been developed to represent
geometrically complex anatomies. These models are often developed from medical images,
in which the anatomy of interest is first segmented to define a geometrical surface and an FE
model is then derived through a meshing software package [1].

Although tetrahedral elements have commonly been used in biomechanical applications
because automated meshing techniques are available, hexahedral elements offer attractive
numerical properties relative to tetrahedrons [2]. For example, linear tetrahedral elements
tend to be overly stiff and can be susceptible to shear-lock (i.e., spurious shear strains that do
not physically exist). In addition, solutions computed on these elements can be slow
convergence with mesh refinement [3]. By contrast, linear hexahedral elements are more
accurate in nonlinear or impact contact analysis and according to [3] are even more efficient
than second order tetrahedrons. However, algorithms to generate hexahedral meshes
automatically are still lacking and manual operations are usually involved, which are not
only tedious and time consuming but also make subject-specific mesh generation a
challenge. Consequently, models based on a generic or average anatomy are often employed
in FE studies. Although they have been used successfully to perform realistic global
simulations and answer many scientific questions especially in parametric studies (e.g., [4],
[5]), they do not capture differences in anatomical morphology or biomechanical properties
between individuals. Consequently, these models are limited in individual-subject studies
and they do not allow investigations of inter-subject variations.

As a result, subject-specific FE models have gained popularity in a variety of biomechanical
research settings (e.g., for the head [6], blood vessels [7], bones [8], heart [9], skeletal
muscles [10], teeth [11], and tumors [12]; see [13] for a recent review on current progress in
subject-specific modeling). Because subject-specific models are based on individualized
instead of average data, they offer a direct link between the FE simulation response (e.g.,
stress and/or strain) and data obtained from subject-specific imaging studies (e.g., change in
fractional anisotropy in diffusion tensor imaging (DTI) that may be an indication of white
matter integrity; see, e.g., [14]).

Currently, a barrier to subject-specific modeling appears to be the large number of manual
steps involved in the processing from data acquisition to model results [13]. To address the
need for generating subject-specific models, a number of algorithms have been developed to
facilitate and streamline the process. These techniques are often based on “mesh-matching”
methods that essentially register an atlas mesh with the subject-specific anatomical geometry
[5, 6, 8, 15, 16, 17, 18]. The atlas mesh is typically constructed manually or semi-manually
from a generic anatomy to ensure mesh quality. Once the atlas mesh is available, a subject-
specific mesh can be generated automatically by registering the atlas mesh directly to the
subject-specific geometry. Although these morphing methods maintain the same mesh
topology and density (i.e., the number of nodes and elements and their connectivity remains
the same), degradation in mesh quality (or even mesh invalidation, e.g., introduction of
inverted elements with negative volumes) can occur because of excessive mesh distortion.
Mesh repair is typically algorithmically complicated and time-consuming to perform [18].

Automatic “wrapping” can also be used to match both the atlas and subject-specific
anatomical surfaces to an auxiliary surface [16]. However, this technique does not guarantee
point-to-point correspondence between the atlas and subject anatomical surfaces and can
lead to distorted meshes in small, convoluted regions. Landmarks can be placed on the atlas
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and subject-specific surfaces to avoid mesh distortion [16], but requires manual effort and
the surface agreement can be poor in regions distant from the landmarks.

To help satisfy the growing need to generate individualized FE models efficiently, we
present a technique that produces a subject-specific mesh automatically without degradation
in mesh quality or geometrical accuracy. The method matches the atlas geometry (as
opposed to the atlas mesh) with that of the subject using image-based rigid registration prior
to mesh generation. Because mesh distortion is not involved, mesh repair is not necessary.
The technique is also applicable to a broad range of anatomical structures because no
restriction on the anatomical morphology is imposed, making it attractive for use in a variety
of biomechanical settings where subject-specific, hexahedral FE models are desired.

2. Materials and Methods
An effective subject-specific meshing scheme was developed based on a meshing script and
rigid image-registration (see Fig. 1 for illustration of the overall scheme). Like other
morphing methods, our subject-specific mesh generator requires an atlas mesh to be created.
In this study, the atlas mesh was formed from surface geometry derived from the segmented
anatomy of interest using a meshing script with a commercial software package (see, e.g.,
[19] and [20] for exemplified meshing of the femur and heart ventricle, respectively). To
generate a subject-specific, hexahedral mesh, the corresponding subject MR image volume
is rigidly registered with the atlas by maximizing their mutual information (MI; [21]). The
anatomical surface of the subject (subject geometry) is subsequently transformed into the
atlas coordinate system (intermediate geometry) to guide execution of the meshing script.
The resulting mesh (intermediate mesh) is rigidly transformed back into the subject
coordinate system (i.e., subject mesh).

To demonstrate the utility of the technique, we generated subject-specific meshes of the
brain in eleven individuals (N=11; 9 males and 2 females) identified with a concussion
sustained while playing football or ice hockey. These subjects are part of an ongoing
prospective study of the biomechanical basis of concussion in high school and college
student athletes who wear instrumented helmets (HIT System [22]) and undergo
neuroimaging pre- and post-season, and within two weeks of a concussion (if applicable).
All subjects had high-resolution, T1-weighted MR images of the head (16-bit grayscale; 256
× 140 × 256; image resolution 1.0 × 1.2 × 1.0 mm). In order to develop an atlas mesh, we
selected a subject whose MR images were approximately symmetrical in the axial plane and
we generated subject-specific, hexahedral meshes for the remainder of the subjects (N=10).

2.1 Meshing software
A parametric meshing software package, TrueGrid® (version 2.3; XYZ Scientific
Applications Inc., Livermore, CA), was used. This software can be executed either
interactively through its graphical user interface or via a script file. Executing a pre-
programmed, text-based script file eliminates the need for any user interaction, which
maintains the automatic feature of the subject-specific mesh generation technique described
in this work.

The meshing software uses a multi-block approach to map highly controllable hexahedral
meshes to a geometrical surface and subsequently subdivides the multi-block into
hexahedral elements. It projects the boundaries of these building blocks to conform the mesh
to a given geometry. In this paper, we used a relatively simple topology for meshing the
atlas brain and focused our efforts on the meshing scheme for automating the subject-
specific mesh generation.
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2.2 Mesh construction for the atlas geometry
The brain was segmented from the atlas MR using FSL (Version 4.1.5; [23]) software and a
triangulated iso-surface was generated with an in-house MATLAB routine (R2009b; The
Mathworks, Natick, MA). The brain surface was further smoothed and imported into
TrueGrid® as a polygonal viewpoint surface to guide the mesh construction (Fig. 2b).

A multi-block was created with its size and position determined by the imported surface.
Unnecessary corner blocks were removed to utilize the “butterfly” topology (i.e., portions of
the blocks were collapsed and the corresponding exposed nodes along the boundaries were
projected to the same physical location; e.g., points with identical labels in Fig. 3a; [24]) in
order to avoid degradation in mesh quality when mesh density increases. The corner nodes
were not projected to the brain surface directly to avoid poorly defined or incorrect elements
in convoluted regions. Instead, the projections were established by the intersections of two
cross-sectional planes and the brain surface with the plane normal directions determined by
the initial nodal location relative to the brain surface (e.g., see Fig. 3bc). The automatic
operation of the meshing scheme was maintained because no manual effort is involved in
placing the boundary nodes. The details of developing the atlas mesh through a meshing
script are secondary to the scope of this paper. A pseudo algorithm illustrating important
steps involved in a typical meshing script is provided here for reference:

1. Initialize parameters for center and dimensions based on input geometry.

2. Create a multi-block and remove unnecessary corner blocks (e.g., Fig. 3a).

3. Sub-divide geometry and create internal surfaces/edges for nodal projections.

4. Project nodes onto the input surface and internal surfaces/edges (e.g., Fig. 3bc).

5. Spatially merge nodes along common boundaries and adjust mesh resolution (e.g.,
Fig. 3d).

6. Output the resulting mesh.

Interested readers may refer to [19], [20] and [24] for more detailed examples. Fig. 3d shows
the top view of the resulting atlas mesh after refinement.

2.3 Image registration
A rigid registration was performed to transform the subject-specific geometry into the
coordinate system of the atlas MR image to allow execution of the meshing script. Mutual
information (MI) was applied to maintain full automation of the process [21]. To maximize
MI as an objective function with respect to six DOF transformational (3 translational and 3
rotational) parameters, we adopted a steepest gradient descent algorithm and a tri-linear
partial volume distribution interpolation scheme implemented in the Insight Segmentation
and Registration Toolkit (ITK, version 3.10; [25]). To reduce the computational cost, sub-
sampling was applied to the moving image (10% of the image voxels were randomly
selected for registration in this study, which typically resulted in a 10-fold speedup
compared to using all of the voxels).

The resulting transformation was then used to map the subject’s brain surface into the atlas
space (i.e., the “intermediate geometry” in Fig. 1). Because the intermediate and atlas
geometries were similar in shape, size and spatial position, the same meshing script was
applied to the intermediate geometry. The resulting mesh was finally rigidly transformed
back into the subject MR image space by inverting the registration transformation (Fig. 1).
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2.4 Mesh quality assessment
We selected a commonly used mesh quality measure, scaled Jacobian [26], to quantify the
resulting mesh quality. The scaled Jacobian is the minimum determinant of the Jacobian
matrix evaluated at each corner and the center of an element, divided by the corresponding
edge lengths [27]. This scalar measure is dimensionless and ranges from −1.0 to 1.0, where
a value of 1.0 represents a unit cube while negative values indicate the corresponding
elements are inverted (non-convex) and unacceptable for FE analysis. Elements are
preferred to have scaled Jacobian values close to 1.0 for the best accuracy in analysis (>0.6
in practice). Values between 0.0 and 0.2 are considered poor because they may result in
questionable accuracy in FE analysis in the corresponding regions [26]. For this study, we
defined mesh quality to be satisfactory when at least 95% of the elements had a scaled
Jacobian greater than 0.6.

2.5 Mesh accuracy assessment
We assessed mesh accuracy by quantifying the distance between mesh boundary elements
and the corresponding anatomical geometry to measure the fidelity of the model
representation. Mesh accuracy was defined as the average distance between centroids of
mesh boundary elements relative to their closest point projections found on the geometrical
surface used as the input to the meshing script. The algorithm to compute “closest point
projection” was identical to the one used in resolving contact search between a master and
slave surface when implementing a contact boundary condition [28]. Briefly, for each
boundary element centroid, its closest node on the triangulated geometrical surface was
computed along with its projection on all of the triangles that share the same closest node.
The closest point projection was then defined as the projection point closest to the centroid
enclosed by the corresponding triangle. When no projection point satisfied the criteria, the
closest node, itself, was chosen as the closest point projection. Distances between the
centroids and their closest point projections were computed to assess mesh accuracy. A
mesh accuracy was defined to be satisfactory when the average distance was less than 0.1
mm for all boundary element centroids and at least 95% of all distance values were less than
0.5 mm.

3. Data analysis
The atlas mesh was first constructed, and subject-specific brain meshes for the remaining 10
subjects were generated subsequently following the meshing scheme described.
Multithreading (two quad cores or 8 processing units in total) was employed when
performing the image-based rigid registration between the subject and atlas MR images and
the computational cost in terms of execution time is reported. For all meshes created in this
study, we report mesh quality and accuracy in terms of scaled Jacobian and surface distance,
respectively. All data analyses were performed through MATLAB, and all computations
were executed on an Intel Xeon computer running Windows Vista (2.00GHz, 8GB RAM).

4. Results
The average computational cost of all image-based registrations was 190 sec (from 156 to
245 sec; all converged within 200 iterations). Due to differences in head size and shape
between the subject and atlas and because a rigid registration was used, some misalignment
was evident (Fig. 4). However, the head orientation of all subjects aligned well with that of
the atlas, which allowed the meshing script to be successfully executed using the segmented
brain surface from each subject as input.
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Two additional visualizations of the atlas mesh are shown in Fig. 5 to illustrate the
distribution of mesh quality (see below for details). Subject-specific brain meshes were
generated automatically (computational cost of approximately 5 sec) using the segmented
brain surface transformed into the atlas space as the input for the meshing script (Fig. 6). All
meshes were similar in topology and they had the same number of nodes and elements as
those of the atlas (101.1 k and 97.8 k, respectively). Despite the varying brain morphology
(size and shape) relative to the atlas (see Fig. 5b), all of the subject-specific meshes were
generated successfully (i.e., no inverted elements).

Mesh quality was evaluated using the scaled Jacobian as shown in Figs. 5 and 6. The
majority of elements had a scaled Jacobian close to 1.0. Elements with low values (e.g.,
<0.4) were in the basal region, especially around the temporal lobe and cerebellum interface.
The vast majority of internal and boundary elements had a scaled Jacobian greater than 0.6
(99.5 ± 0.2% on average for all 11 subjects). Only a few had a value less than 0.2 (the
number of elements ranged from 0 to 39 for the 11 meshes, representing less than 0.01% of
the total number of elements on average). No element with a negative scaled Jacobian was
found in any of the meshes generated. The minimum scaled Jacobian for each subject was
typically within 0.1 to 0.2, and the smallest value across all subjects was 0.06 (subject 4).
Mesh quality histogram distributions for the atlas mesh and a pool of the 10 subject-specific
meshes are shown in Fig. 7.

Mesh accuracy was measured in terms of surface distance between the boundary elements
and the geometrical surface as shown in Figs. 8 and 9. Most elements had a distance close to
zero, although a few large values (>0.8 mm) were found near the cerebellum. For the atlas
mesh, the average distance was 0.07 ± 0.10 mm with 0.61% of the distances greater than 0.5
mm (maximum distance of 1.8 mm). For the pool of 10 subject-specific meshes, the average
distance was 0.07 ± 0.11 mm with 0.88% of the distances greater than 0.5 mm (maximum
distance of 2.6 mm). Mesh accuracy histograms for the atlas and subject-specific meshes are
shown in Fig. 10.

5. Discussion
Rapidly generating subject-specific meshes is important for evaluating the predictive
capability of computational models on a large scale to improve and optimize personalized
diagnosis and clinical treatment. To meet this need, we developed and validated a subject-
specific, hexahedral mesh generator that maintains the same level of mesh quality and
accuracy as an atlas mesh without the need for mesh repair. The mesh generator is
completely automatic and computationally practical once an atlas mesh is developed. A
meshing script is first created based on the segmented brain geometry of an atlas with a
commercial meshing software package. For a given subject, the MR image volume is rigidly
registered with the atlas and the segmented brain surface is transformed into the atlas space
to allow the same meshing script to be executed. Because the registration is rigid, no mesh
distortion or degradation in mesh quality is involved, which eliminates the need for mesh
repair after the mesh is transformed back into the subject’s space (see Fig. 1). Consequently,
the same level of mesh quality is expected in subject-specific meshes relative to the atlas
(the percentage of distorted elements was less than 0.01% for all of the 10 subjects tested).
The percentage of distorted elements is often much higher with other mesh-matching
techniques (e.g., 5–15% using mesh-matching without mesh repair for the femur [15]; 6.1%
(4.9%) using mesh-matching with mesh repair for the femur (face) [18]; 6.5–10.6% using
deformable registration when meshing the phalanx bones [17]; and 0.05% and 0.02% using
automated wrapping and manual landmarks, respectively, when meshing the vertebra [16]).
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The average distance between the mesh boundary elements and the geometrical image
surface was 0.07 mm for all subjects and less than 1% of the distances were greater than 0.5
mm, demonstrating satisfactory mesh accuracy with our technique. The surface distance in
our study was slightly larger than that reported in [17] (<0.05 mm) because we used the
boundary element centroids instead of the boundary nodes for evaluation (the meshing
software would enforce the boundary nodes to project onto the geometrical surface, leading
to an average distance of 0.0015 mm, a non-zero value due to round-off errors).
Interestingly, elements contributing to relatively poorer mesh quality and accuracy were
found to occur in the same basal region of the brain (see Figs. 5, 6, 8, and 9), which is not
surprising because of the greater changes in surface curvature in this region [19]. Increasing
mesh density may reduce the ratio of elements with poorer mesh quality. However, the
optimal mesh density is case-dependent because both simulation accuracy and cost have to
be considered (all meshes developed in this study were successfully employed in dynamic
impact simulations (duration of ~40 ms) with sufficient accuracy and acceptable
computational cost (typically within 4 hours)). Nevertheless, our meshing scheme maintains
the same level of mesh quality and accuracy relative to the atlas mesh and is completely
automatic because of the automated brain segmentation, image registration, and mesh
scripting.

A dedicated meshing script must be created similarly with other mesh-matching methods [5,
6, 8, 15, 16, 17, 18], which is a limitation of the current approach. The meshing script is
essential to the success of the meshing scheme as well as to ensuring sufficient mesh quality.
This task, however, is not trivial and requires significant effort especially when the geometry
is complex (e.g., it took a few weeks to develop and optimize the meshing script used in this
study; also, see [18] and [20] for examples of meshing the femur and heart ventricle,
respectively). In addition, the meshing script may not be universally applicable and may
need to be developed each time the anatomical morphology differs significantly. The level
of anatomical detail in the mesh (e.g., inclusion of the falx when meshing the brain) is also
directly related to the sophistication of the meshing script and our technique is able to
generate meshes of geometrically complex anatomies.

Similarly to previously reported mesh-matching methods, registration plays an important
role. However, our approach differs significantly from other techniques in that the
registration was performed between subject and atlas MR images instead of matching the
atlas mesh directly with the subject anatomy. Therefore, no mesh distortion is involved that
leads to degradation in mesh quality, suggesting that our approach is likely to be more
efficient than other methods because no additional mesh repair is required to correct for
element regularity and quality [18]. Although image-based registration was employed in this
study, surface-based registration (e.g., using the iterative closest point (ICP) algorithm [29])
can also be applied when only anatomical surfaces are available. However, image-based
(especially intra-modality) registration is usually preferred because of its enhanced
registration robustness and accuracy compared with surface-based approaches.

The combined computational cost of image registration and meshing was less than 4
minutes, whereas the computational cost for brain segmentation depends on the algorithm
used and the desired level of segmentation detail. For example, performing a sophisticated
sub-cortical segmentation requires 35–45 min using FreeSurfer [30] (by comparison, 5–10
min using FSL in this study). Sub-cortical segmentation is useful when classification of
mesh elements is desired to characterize the corresponding sub-regions with different
material properties.

The automated subject-specific mesh generator can also be employed to mesh other
anatomical structures with an appropriate meshing script based on the input geometry, since
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no constraints on the type of anatomy or anatomical morphology are imposed. In this work,
we used a rigid registration between subject and atlas MR images because their head sizes
and shapes were similar (see Fig. 4). When a subject’s anatomy differs considerably in size
but not in shape relative to the atlas, linearly scaling the subject anatomy to match the size of
the atlas before applying the rigid registration is recommended. The resulting mesh can then
be inversely scaled afterwards, in which case no mesh repair is necessary because no mesh
distortion or degradation in mesh quality is involved. When a subject’s anatomy differs
significantly in shape compared with the atlas (e.g., infant brain vs. adult brain), the meshing
script for the atlas may not be readily applicable or may result in undesirable mesh quality.
As an alternative to revising the meshing script to account for differences in shape, a
nonrigid registration can be useful to first register the subject and atlas MR image volumes
before executing the meshing script. In this case, however, mesh distortion may occur that
would degrade mesh quality, and additional mesh repair may be necessary. The performance
of the approach when incorporating nonrigid registration in terms of the resulting mesh
quality, accuracy, and computational efficiency warrants further investigation.

Finally, it is important to note that mesh quality not only influences the accuracy of FE
analysis, but is also directly related to the simulation efficiency when a transient analysis is
performed because a stable time increment is proportional to the smallest characteristic
element dimension in the mesh [3]. Although the number of elements with low scaled
Jacobian values (i.e., less than 0.2) is less than 0.01% which may not significantly influence
the overall accuracy of a simulation, the existence of distorted elements may still lead to a
substantial increase in the computational cost of a transient analysis. Consequently, further
improvements in mesh quality are important and can likely be achieved by optimizing the
initial topology of the brain geometry when developing the meshing script ([24]; see for
example, [31], for different topologies applicable to meshing the brain). In this paper, we
applied a simple topology and focused our effort on developing a meshing scheme to
generate subject-specific meshes automatically. Fortunately, optimizing the meshing script
in the future does not alter the subject-specific meshing scheme, which once again highlights
the flexibility of our overall meshing approach.

In summary, we have developed an automated mesh generator for subject-specific,
hexahedral meshes based on an existing atlas mesh that was produced using a dedicated
meshing script. Using a pool of 11 subjects, we have demonstrated that the performance of
the meshing technique is satisfactory in terms of both mesh quality and accuracy, and is
computationally practical. In addition, the meshing technique is flexible because different
anatomical structures or different levels of anatomical details can be incorporated through an
appropriate meshing script without altering the overall meshing scheme. As a result, we
believe that our meshing technique is potentially of significant interest to the biomechanical
research community to aid in the construction of subject-specific, hexahedral meshes for a
variety of anatomical structures.
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Fig. 1.
Illustration of the subject-specific meshing scheme. To generate a subject-specific mesh, the
corresponding geometry is registered with the atlas and transformed into the atlas coordinate
system in order to apply the meshing script. The resulting mesh is then transformed back
into the subject coordinate system.
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Fig. 2.
(a) Composite overlay of the segmented brain (green) and the corresponding axial MR
image (red). (b) Smoothed outer boundary surface to be imported as a polygonal surface.
Surface smoothing is evident when comparing the cross-section of the polygonal surface
intersected by the axial imaging plane and the segmented brain (see arrow in inset in (a)).
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Fig. 3.
Illustration of the multi-block approach for meshing the atlas brain (a). Points with identical
labels are projected to the same physical locations as shown in the coarse (b, c) and refined
(d) meshes. Projection of the corner nodes (e.g., points labeled with “2”) on the brain surface
is determined by the intersection of two cross-sectional planes and the brain surface (b, c).
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Fig. 4.
Checkerboard overlays of the 10 subjects (green) and atlas (red) MR axial images after rigid
registration. Slight misalignments were due to differences in head size and shape resulting
from rigid registration of the subject and atlas. These misalignments did not influence
subject-specific mesh generation using the same meshing script.
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Fig. 5.
Color-coded distribution of scaled Jacobian for the atlas mesh in iso-view (a) and viewed
from inferior to superior (b).
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Fig. 6.
The 10 subject-specific, hexahedral brain meshes viewed from inferior to superior, showing
the distribution of scaled Jacobian on the boundary elements. Color map scale identical to
Fig. 5.
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Fig. 7.
Histograms of scaled Jacobian for the atlas mesh (a) and the pool of 10 subject-specific
meshes (b). Standard deviations for the subject-specific statistics are also reported.
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Fig. 8.
Surface distance for the atlas mesh in iso-view (a) and viewed from inferior to superior (b).
Distances >1 mm were capped to 1.0 mm for ease of visualization.
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Fig. 9.
Surface distance for the 10 subject-specific meshes viewed from inferior to superior
(distances >1 mm were capped to 1.0 mm for ease of visualization). Color map scale
identical to Fig. 8.
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Fig. 10.
Histograms of surface distance for the atlas mesh (a) and the pool of 10 subject-specific
meshes (b). Standard deviations for the subject-specific statistics are also reported. Distances
>1 mm were lumped into a single bin from 1 to 1.2 for ease of visualization.
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